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In recent years, the incidence of neurodegenerative diseases (NDs) has gradually

increased over the past decades due to the rapid aging of the global population.

Traditional research has had difficulty explaining the relationship between its

etiology and unhealthy lifestyle and diets. Emerging evidence had proved that

the pathogenesis of neurodegenerative diseases may be related to changes of

the gut microbiota’s composition. Metabolism of gut microbiota has insidious

and far-reaching effects on neurodegenerative diseases and provides new

directions for disease intervention. Here, we delineated the basic relationship

between gut microbiota and neurodegenerative diseases, highlighting the

metabolism of gut microbiota in neurodegenerative diseases and also focusing

on treatments for NDs based on gut microbiota. Our review may provide novel

insights for neurodegeneration and approach a broadly applicable basis for the

clinical therapies for neurodegenerative diseases.
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1 Introduction

Neurodegenerative diseases, which constitute a complex and heterogeneous group of
conditions, are characterized at their core by a progressive and irreversible degeneration
of the structure and function of the nervous system. At a time of accelerated global
population ageing, the incidence of these diseases has steadily increased over the past
decades (Brayne and Miller, 2017; Milo and Kahana, 2010). Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), and multiple sclerosis (MS) are the
most common neurodegenerative diseases. The primary pathological hallmarks of NDs are
chronic and progressive loss of neurons, which is caused by the deposition of neurotoxic
etiological substances in the central nervous system (Tang and Le, 2016). There are still
many gaps to fill in curing neurodegenerative diseases despite the numerous advances made
to understand the complex mechanisms in the past decades.

Bacteria, archaea, viruses, and various eukaryotes, a variety of microorganisms,
form the gut microbiota, which exists in different niches of the intestine
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(Arumugam et al., 2011). It is established that the overall
health of humans is closely affected by the gut microbiota
(Gates et al., 2022). The host physiology, including aspects
of nutrient metabolism, neuroinflammation, neuroimmunology
and neurodevelopment, can be influenced profoundly by gut
microbiota (Sommer and Bäckhed, 2013; Geva-Zatorsky et al.,
2017). As is widely recognized, the gut microbiota plays an
integral role in promoting our overall health. This includes
safeguarding us against pathogens, aiding in nutrient absorption
and synthesis, facilitating metabolic processes, and modulating
immune responses, among other essential functions (Nishida et al.,
2018). Interestingly, Kerstin Berer found that gut microbiota is
associated with neurodegenerative diseases, which made research
on the correlation between neurodegenerative diseases and gut
microbiota become a hot topic (Berer et al., 2017). What’s more,
aging is an essential and important factor in the progression
of neurodegenerative diseases, which is a natural process that is
influenced by various biological and genetic mechanisms. The
effects of microbial composition and associated changes have
been shown to indicate that microbes can accelerate the aging
process (Láng et al., 2024). A fairly consistent finding in studies
of age-related diseases is a reduction in microbiome diversity,
especially in NDs (Bradley and Haran, 2024). The gut-brain axis
(GBA), a bidirectional communication, connects the gut to the
brain through various neurotransmitters and metabolites. Multiple
biological systems are involved in the GBA, which is essential to
maintain the stability of the whole body (Morais et al., 2021).
In addition, gut microbiota, with its unique metabolic pathways,
produces metabolites that can contribute to the development
of diseases (Paik et al., 2022), particularly in lipid and amino
acid metabolism, which contribute to the development of NDs
(Yan et al., 2022; Augustin et al., 2023). Recently, research has
shown that micro-ecological dysregulation of the gut microbiota
is also associated with a variety of diseases, particularly the
neurodegenerative diseases (Cryan et al., 2019). A large body of
literature suggests that gut microbiota affects the development of
NDs in many ways, especially in metabolism, and that related
studies can provide new targets for preclinical diagnosis and
preclinical intervention in NDs.

Metabolism accompanies microorganisms throughout their
lives, providing them with the energy necessary for their activities
or creating a favorable environment for their survival, and some
of these metabolites can have an effect on the human body.
Recently, the impact of gut microbiota and its metabolite alteration
on NDs has received increasing attention. The gut microbiota
metabolites can mediate inflammatory responses (Voigt et al.,
2022), produce cytotoxicity, and have a direct effect on neuronal
cells. What’s more, metabolites can trigger intestinal inflammation
and allow more harmful substances to invade the nervous system
(Chang et al., 2020). Therefore, the study of metabolites has
gradually become an intervening link in the relationship between
gut microbiota and NDs.

In this article, we delineated the basic relationship between
gut microbiota and neurodegenerative diseases, highlighting
how the metabolism of gut microbiota made a difference to
neurodegenerative diseases, also focusing on therapies for NDs
based on gut microbiota and providing a landscape for NDs in the
area of metabolism of gut microbiota.

2 Gut microbiota–brain
communications

2.1 Gut–brain axis (GBA)

The GBA, which is a bidirectional pathway combining the brain
and the gut microbiota and critical site for maintaining homeostasis
in the gastrointestinal tract, is involved in several physiological
processes (Zhang H. et al., 2022). Gut microbes act as signal factors
within the GBA to activate the immune system, promote cytokine
production, contribute to gastrointestinal motility and mucin
secretion (Villavicencio-Tejo et al., 2023). It has been hypothesized
that GBA potentially functions through the vagal nerves, and
interacts with the neurologic, endocrine, and immunologic
systems. The gut microbiota exists as a parasitic symbiosis in
the host, which on the one hand can influence GBA through
direct contact or immune stress, and on the other hand, as
microorganisms produce microbial hormones and metabolites that
can act directly or indirectly by specific metabolic pathways. When
considering how the microbiome interacts with the nervous system,
the most inevitable conclusion is through the control of host
neurotransmitters and/or associated pathways (Forsythe et al.,
2014; Strandwitz, 2018).

2.2 Barrier system permeability and
gut-derived molecules

Made up of intestinal mucosal barrier and blood-brain barrier
(BBB), the barrier system permeability is a unique communication
pathway. Many environmental factors such as stress, dietary
change, and diseases can lead to dysfunction of intestinal mucosal
barrier. The BBB is a physiological barrier that divides the
central nervous system from the peripheral blood. It is formed of
pia mater, choroid plexus, cerebral blood vessels, and astrocytes
(Ballabh et al., 2004; Daneman and Prat, 2015; Avila and Perry,
2021). It is indicated that the gut microbiota and associated
neurotransmitters and metabolites play an important role in
BBB function (Braniste et al., 2014). The blood-brain barrier’s
permeability can be impacted by some microbial compounds,
such as lipopolysaccharides (LPS) and short-chain fatty acids
(SCFAs). By interacting with the BBB, the chemicals of SCFAs
can inhibit neuroinflammation and neurodegeneration via having
an immediate impact on brain neurons or activating the immune
and endocrine systems (Braniste et al., 2014; Harrington, 2015;
Aho et al., 2021). The mucosal barrier’s dysfunction and increased
blood-brain barrier permeability further promote the release of
metabolites, byproducts, and cytokines into the bloodstream and
stimulate the expression of toll-like receptors (Rezai-Zadeh et al.,
2009; König et al., 2016; Brenchley and Douek, 2012).

LPS is an essential component of the Gram-negative bacteria’s
outer membrane, including Bacteroides and Prevotella. It is a
bacterial element which is known for its immune-stimulating
properties. When present in excessive amounts, it can lead to
systemic inflammation and sepsis in germ-free mice (Miller
et al., 2005). Research has discovered that gut microorganisms,
such as Bacteroides, can produce significant quantities of LPS.
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This substance then interacts with Cluster of Differentiation 14
(CD14) and Myeloid Differentiation factor-2 (MD-2) proteins,
subsequently activating Toll-like Receptor 4 (TLR4) and resulting
in inflammation in mice (Cani et al., 2007). In C57 mice, LPS
increases BBB permeability mainly by increasing inflammatory
factors such as interleukin-6 (IL-6) and interleukin-9 (IL-9)
decreasing the expression of intercellular tight junction proteins
such as claudin-5, occludin and zonula occluden-1 (ZO-1) (Feng
et al., 2018). The increase in these cytokines can be blocked by
indomethacin and Irbesartan. In addition to this, LPS increases
BBB permeability by activating monocyte-macrophages (Banks
et al., 2015). It has been shown that LPS activation activates
the immune response mainly through the NF-κB/MLCK/MLC
pathway (Yang et al., 2021). Other studies have shown that the
pro-inflammatory transcription factor NFκB can be activated by
LPS which is secreted by Bacteroidetes and responsible for the
development of AD in microglial cells. The function of NFκB is
to stimulate the transcription of pro-inflammatory micro RNAs
(miRNAs), thereby activating neuroinflammatory mediators and
preventing phagocytosis (Zhao and Lukiw, 2018).

SCFAs, generated in the gut, are saturated fatty acids and
are affected by the quantity of fiber consumed. The mechanisms
by which SCFAs might influence brain function could possibly
be through the immunological regulatory pathway, the endocrine
pathway, and the neural factor pathway. By modulating the
immune system, SCFAs influence the immunity and barrier
function of the intestinal mucosa, thereby enhancing the barrier’s
integrity and sustaining the production of mucus. SCFAs are
responsible for mediating immunological regulation in the system.
They achieve that by controlling the production of cytokines,
which in turn affect the proliferation and differentiation of immune
cells (Corrêa-Oliveira et al., 2016). This association induces an
anti-inflammatory response and decreases the production of pro-
inflammatory cytokines (IL-1, IL-6, and tumor necrosis factor-α).
Monocarboxylate transporters allow SCFAs to cross the BBB, and
the upregulation of tight junction protein expression by SCFAs
has been shown to maintain the BBB’s integrity (Vijay and Morris,
2014). In addition, SCFAs have the potential to alter the levels of
neurotransmitters as well as neurotrophic factors. According to the
research, it’s possible that the bacteria in gut are responsible for
either the production of neurotransmitter precursors, or catalyzing
of the synthesis and release of a variety of neurotransmitters
through the metabolism of food, or both (Chen et al., 2021).

2.3 Nervous system modifications

The CNS, autonomic nervous system (ANS), enteric nervous
system (ENS), and the hypothalamic–pituitary–adrenal (HPA)
axis form the bidirectional communication network. The brain
can adjust intestinal activity through the parasympathetic and
sympathetic nervous systems, and control digestive secretions and
intestinal movement through hormones and neurotransmitters. On
the other hand, the gut microbiota also generates molecules that
influence the activity of the host immune system and the function
of the CNS. The ENS is a network made up of sensory neurons,
motor neurons and interneurons of the ANS, which is a quasi-
autonomous part of the nervous system. It regulates digestion,

intestinal peristalsis and permeability, bile secretion, glucose levels,
mucosal mechanical deformation, epithelial fluid level, luminal
osmotic pressure, mucus production, and mucosal immunological
response (Spencer and Hu, 2020). There are mounting proofs
that the gut microbiota may interact with the CNS through
metabolites and neurotransmitters with neuroregulatory qualities
such as tryptophan, serotonin (5-HT), γ-aminobutyrate (GABA),
glutamine, histamine, SCFAs, catecholamines, and others, like
the ENS (Ojeda et al., 2021). Short-chain fatty acids are the
major metabolites produced by microbial fermentation of dietary
fiber (Ikeda et al., 2022). The majority of research has been
conducted on acetic acid, propionic acid, and butyric acid. Their
molar ratio in the colon is approximately 60:20:20 (Cummings,
1981). SCFAs can serve as an energy source for epithelial cells as
well as gut microbiota (Chang et al., 2014; Usami et al., 2008).
Additionally, it has been demonstrated to stimulate neurosecretion
of neuropeptides and hormones (Rooks and Garrett, 2016). In
particular, SCFAs can activate the GPR43/AMPK pathway, which
in turn mediates intestinal inflammation and cytokine release (Yang
et al., 2018). Enterochromaffin cells in the colon synthesize and
secrete serotonin, which is therefore required for physiological
processes in the intestine (Yano et al., 2015). However, some
bacteria, such as Corynebacterium spp., Streptococcus spp. and
Esherichia coil, also synthesize serotonin in the intestine (Yano et al.,
2015). Despite the fact that serotonin does not cross the blood-brain
barrier, serotonin can still affect the brain by directly interacting
with 5-HT3 receptors on vagal afferent fibers and directly activating
the vagus nerve (Raybould, 2010). The HPA axis is a component
of the limbic system that includes the amygdala, hippocampus,
and hypothalamus, and it plays a role in both the formation of
memories and the expression of emotional reactions. When driven
by prolonged stress or pro-inflammatory cytokines like IL-6, the
levels of corticotropin releasing factor and corticotropin produced
by the pituitary gland rise. This results in an increase in cortisol,
which is toxic to the brain, being released from the adrenal gland
(Frankiensztajn et al., 2020).

2.4 Regulation of immune system

The gut microbiota acts out a significant part in the
development of the immune system of host as well as the
maintenance of intestinal homeostasis (Sommer and Bäckhed,
2013). A disruption in the connection between the immune system
and the microbiota might cause an increase in immunological
signaling, which may have ramifications for the development
of the CNS and NDs (Fung et al., 2017). It has been shown
that the gut microbiome regulates Th17 cells and Treg cells,
implying that microbiome composition has a remarkable effect
on the immune response against pathogenic microorganisms and
inflammatory responses (Park et al., 2015). Intricate interactions
between gut microbiota and intestinal mucosa boost the host’s
cellular immunological response by activating immune cells and
releasing cytokines (Ashraf and Shah, 2014). It has been shown
that the species of bacteria known as Lactobacillus salivary and
Bifidobacterium breve are regarded to be significant contributors
to the maintenance of a healthy immune system (Drago et al.,
2015). Other probiotic gut bacteria species, such as Lactobacillus
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FIGURE 1

The role of the gut microbiota in the pathogenesis of neurodegenerative diseases. Altered composition of gut microbiota results in decreased SCFAs
and increased LPS leading to immune cell activation thereby increasing BBB permeability. Accompanying metabolite changes can cause
neurotransmitter dysregulation in the nervous system or directly participate in the pathogenesis of NDs.

plantarum, Bifidobacterium infantis, and Lactobacillus rhamnosus,
should be investigated for their potential anti-allergic and anti-
autoimmune benefits (Elian et al., 2015; Mileti et al., 2009;
Scaldaferri et al., 2013) (Figure 1).

3 The relationship between gut
microbiota and NDs

Given that aging is a significant risk factor for NDs, it becomes
crucial to initially comprehend how gut microbiota alterations
occur in populations as they age. Aging is an unavoidable
physiological transition that is accompanied by progressive
dysfunction in most tissues and organs including a progressive
deterioration in regenerative capacity, cell proliferation, telomere
maintenance and genomic stability (López-Otín et al., 2023). There
is generally a degree of stability in the adult microbiome, but
significant changes in the gut microbiota occur with age, which
may be related to physiological changes in the gastrointestinal tract
(Rinninella et al., 2019; Zoetendal et al., 1998). A recent study
using 16sRNA sequencing revealed that the relative abundance

of Bacteroidota and Lactobacillus spp. decreased in the gut of
old mice, whereas the relative abundance of Alistipes increased
(Donati Zeppa et al., 2022). It has been shown that aging African
turquoise killifish, a new model organism, have significantly
lower gut bacterial abundance. Significant differences were also
found in the gut bacterial composition of young and old fish.
The intestines of young fish were enriched with Bacteroidetes,
Firmicutes and Actinobacteria, whereas the intestines of old fish
were represented by Proteobacteria (Smith et al., 2017). Differences
in gut microflora are not only found in old versus young animals,
but also in people of different ages. One study found that
the proportion of Bifidobacteria in the gut microbiota of older
people over the age of 70 decreased, while the proportion of
Clostridium and Proteobacteria increased, compared to younger
people (Odamaki et al., 2016). It has been demonstrated that
the diversity of Bacteroides species increases in the faces of
healthy older adults compared to healthy adolescents. However,
with increasing age, Bifidobacterial species diversity decreased
(Hopkins and Macfarlane, 2002).

Loss of neural function over time is a hallmark of
neurodegenerative illnesses, which may eventually lead to
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FIGURE 2

Mechanisms of gut microbial composition and its metabolic alterations in several neurodegenerative diseases. The dysbiotic microbiota affects BBB
stability, leads to activation of immune cells, dysregulates neurotransmitters, and promotes oxidative stress, leading to the development of
neuroinflammation and neurodegeneration. In Alzheimer’s disease, persistent activation of NMDAR by D-glutamate causes Ca2+ influx leading to
cytotoxicity; phenylalanine and isoleucine regulate naive T cell differentiation to Th1 via Slc7a5 causing autoimmunity. Eventually, Tau protein
tangles accumulate into neurofibrillary tangles and amyloid of bacterial origin act as a prion protein to cause endogenous amyloid production,
which ultimately lead to the onset of Alzheimer’s disease. In Parkinson’s disease, α-synuclein aggregation leads to loss of function in dopaminergic
neurons, and metabolites of gut microbiota is involved in this process by mediating mitochondrial dysfunction, SCFAs, BCAAs can delay neuronal
damage. In Huntington’s disease, aggregation of aberrantly expressed mHTT and activation of microglial and astrocyte leads to neural death. In
Multiple sclerosis, autoimmunity mediates neuronal demyelination, and lactic acid inhibits the antigen-presenting role of dendritic cell in
autoimmunity by activating HIF-α; N-acetic acid lysine protects nerves by inhibiting microglial immunity.

difficulties with movement and thought. At present, the incidence
of neurodegenerative diseases is quickly climbing to epidemic
proportions. Despite the fact that having a family history of
neurodegenerative disorders is one of the most important risk
factors, environmental variables throughout life also have a
considerable effect on the start, progression, and final severity
of such disorders (Sini et al., 2021). Increasing clinical and
experimental data shows that alterations in gut microbes may, to
some degree, enhance the risk of neurodegeneration. Behind the
altered gut microbiota, the accompanying altered metabolism of the
gut microbiota becomes an important factor potentially influencing
the development of NDs (Coker et al., 2022). The metabolites of
the gut microbiota can not only directly interact with the cells of

the intestinal wall to increase the permeability of the intestinal wall,
but can also enter the blood stream by absorption and cross the
blood-brain barrier to directly and directly act on neurons (Mishra
et al., 2023; Figure 2). Therefore, research on the metabolism of
gut microbiota can be helpful for the clinical intervention of ND
through multi-targets and multi-methods.

3.1 Alzheimer’s disease

The most prevalent kind of dementia is Alzheimer’s disease
(AD), and it may be identified by increasingly aberrant patterns
of both cognitive and behavioral functioning. The key pathogenic
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characteristics of AD are synaptic damage, abnormal buildup
of extracellular beta-amyloid (Aβ), and abnormal formation of
neurofibrillary tangles of tau protein. Death of neurons and damage
to brain tissues accompany these changes. AD is a brain illness
that progresses slowly for many years before symptoms appear
(Alzheimers and Dementia, 2022). A great deal of research on
Alzheimer’s disease therapy or intervention tactics has shown
encouraging outcomes in animal models and clinical trials
(Nakamura et al., 2023; Dubois et al., 2023; Wunderlich et al.,
2023; Guha et al., 2022). Sadly, medications that target pathogenic
processes are ineffective for the clinical therapy of Alzheimer’s
disease (Kodamullil et al., 2017). In recent years, a number of
preclinical and clinical studies have continuously revealed that
the pathogenesis of AD may be directly related to changes in gut
microbiome composition (Hoffman et al., 2019; Hill and Lukiw,
2015; Cattaneo et al., 2017). The gut microbiome may play an
important role in AD pathology.

3.1.1 The studies of microbiota alteration in AD
Data from animal studies suggested that the gut microbiome

conduced to the cognitive impairment and the progression of
AD pathology in terms of the aggregation of amyloid and
tau, dysregulation of immune system, and neuroinflammation
(Kowalski and Mulak, 2019; Wang, 2023). One study found that
the abundance of phylum Proteobacteria increased and Firmicutes
phylum decreased in AD mice. This article emphasized an increase
in Proteobacteria in AD compared to WT mice and a remarkable
increase in Escherichia coli taxa at the genus level. Similarly,
significant changes in the group of Bacteroidetes in AD mice
were elaborated, including an increase in the genus Pasteurella
(D’Argenio et al., 2022). These are gram-negative bacteria whose
outer membranes are mostly composed of lipopolysaccharides
(LPS). It has been well established that LPS is a potent stimulator
of the innate immune system in vertebrates (Chen et al., 2024).
Moreover, pathogenic alterations in Aβ are linked to the gut
microbiota. In a recent study, 3-month-old APPSWE/PS1E9 mice
(a model for Aβ amyloidosis) that got gut microbiota from 16-
month-old APPSWE/PS1E9 mice had more Aβ plaques, but there
weren’t any of these changes in wild-type mice. According to
these findings, gut microbial dysbiosis, even while it does not
generate Aβ plaques, may promote AD in those who have a
genetic predisposition for the condition (Wang et al., 2021). The
intestinal microbiota of patients with mild cognitive impairment
(MCI), a pre-dementia state, has undergone AD-related changes,
indicating that the intestinal microbiota has changed before the
onset of AD. The gut microbiome’s α-diversity was significantly
reduced in AD patients. Clinical research has shown that elderly
individuals with cognitive impairment and brain amyloidosis had
less anti-inflammatory Eubacterium rectale and Bacteroides fragilis
and more pro-inflammatory Escherichia/Shigella spp (Cattaneo
et al., 2017; Mancuso and Santangelo, 2018). Butyrate-producing
species like Faecalibacterium were dramatically reduced in AD
patients, which was positively connected with AD symptoms.
What’s more, lactate-producing species such as Bifidobacterium
rose were adversely linked with clinical symptoms. This dysbiosis
of the gut microbiota in AD patients disrupts the pathways
involved in folate production and fatty acid metabolism, leading to
immunomodulatory dysfunction (Ling et al., 2021). Intriguingly,
a scientific trial showed that AD patients’ cognitive, sensory, and

emotional capacities were significantly enhanced after ingesting
fermented milk containing Bifidobacterium and Lactobacillus spp
(Tillisch et al., 2013).

A growing body of research confirms that alterations in the
composition of gut microbiota directly affect cognitive function,
which has important consequences for the pathogenesis and
progression of AD (Cattaneo et al., 2017; Liu et al., 2019; Mitra et al.,
2023). In patients with AD, the accumulation of pro-inflammatory
bacteria in the gastrointestinal tract leads to increased intestinal
permeability, disruption of the integrity of the blood-brain barrier,
and ultimately neuroinflammation (Varesi et al., 2022). Disruption
of the blood-brain barrier due to alterations in the gut microbiota
allows Aβ peptides, pro-inflammatory factors, and immune cells
to enter the brain from the periphery, resulting in changes in
the brain’s internal environment that ultimately lead to disease
(Kincaid et al., 2021). In addition, it has been found that the
application of anti-inflammatory Bifidobacterium longum can alter
the composition of the gut microbiota and inhibit the expression
of amyloid-β, β/γ-secretase, cystatinase-3 and the accumulation
of amyloid β in the hippocampus of 5 × FAD-Tg mice thereby
alleviating cognitive impairment in AD mice (Lee et al., 2019).

3.1.2 Metabolism of gut microbiota in AD
It has been shown that gut microbiota can increase the ratio

of phenylalanine/isoleucine to promote the expression of the
phenylalanine and isoleucine transporter Solute Carrier Family
7 Member 5 (Slc7a5), and regulate the differentiation of T cells
to Th1 cells in the brain to promote the development of AD
(Wang et al., 2019). In the gut microbiota, Bacteroides spp. and
Fusobacterium spp. are capable of producing polyamines, which
are mainly spermine, spermidine, and putrescine (Sánchez-Jiménez
et al., 2019) and are ligands for various receptors such as N-Methyl-
D-Aspartate Receptor (NMDAR) and calcium-sensing receptor
(CaR) (Zhang et al., 1994; Hofer and Brown, 2003). Activation
of these receptors allows large amounts of Ca2+ to be inwardly
flowing. Although studies have shown that Ca2+ overload occurs
after Aβ deposition, however, it has been demonstrated that excess
intracellular Ca2+ can be taken up by mitochondria to maintain
homeostasis, and that when overloaded in mitochondria Ca2+

can cause mitochondria to become dysfunctional and play an
important role in the process of iron death (Calvo-Rodriguez
et al., 2020; Sun et al., 2023). In addition, Desulfovibrio alaskensis
and Desulfovibrio desulfuricans convert choline in the gut to
TMA, which selectively activates trace amine-associated receptors
(TAARs) (Craciun and Balskus, 2012). More interestingly, trace
amine-associated receptors (TAARs) is abundantly ectopically
expressed in the brain and are associated with many neurological
disorders such as AD, depression, and schizophrenia, and the ability
of gut microbiota to metabolize amino acids in the gut to ligands
of TAARs such as trimethylamine and cadaverine makes TAARs a
potential target for gut microbiota to promote the development of
AD (Shang et al., 2023; Guo et al., 2023).

In addition to relying on independent metabolism to produce
neurotransmitter-like substances, gut microbiota also produces a
number of small-molecule ligands that affect the metabolism of
neuronal cells and produce cytotoxicity. It has been found that gut
microbiota contains the enzyme Murl, which converts L-glutamate
to D-glutamate. D-amino acids are present in trace amounts in
mammals. In contrast to L-amino acids, D-amino acids are typically
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present in lower amounts and are synthesized primarily through
food intake and by gut microbiota (Lee et al., 2022). D-glutamate
can over-activate NMDAR to produce persistent Ca2+ influx in
neuronal cells, which in turn produces cytotoxicity (Bertoldi et al.,
2003; Choi et al., 1988). More interestingly, it has been found that
amyloid of bacterial origin can increase the immune response of
the nervous system to endogenous amyloid, more importantly,
these bacterial amyloid proteins share tertiary structural similarities
with neural amyloid (Friedland and Chapman, 2017), and through
molecular mimicry, bacterial amyloid proteins can induce amyloid
misfolding like prion proteins, leading to their aggregation and
precipitation (Friedland and Chapman, 2017; Friedland, 2015).
Currently, there are few studies on gut microbiota-related lipid
metabolism, but Xin Cheng et al. found differences in lipid
metabolites in feces, serum, and brain between APP1/SP1 and
normal mice, implying that enzymes related to lipid metabolism
in gut microbiota may play a potential role (Cheng et al.,
2022). The variety of lipids that bacteria are able to synthesize
is enormous, with the major classes including phospholipids,
lipopolysaccharides, and sphingolipids, and thus the resolution of
intestinal lipid composition may be an important area of research
(Brown et al., 2023). In conclusion, gut microbiota metabolism-
related research still has a broad prospect, which is involved
in the occurrence and development of AD, and gut microbiota
metabolism-related research can provide new targets for the early
diagnosis of AD as well as pharmacological interventions in AD.

3.2 Parkinson’s disease

Parkinson’s disease (PD) is one of the most common
neurodegenerative diseases, and it is anticipated that, by 2040, there
will be more than 10 million confirmed cases worldwide (Yang
et al., 2022). PD is caused by the death of dopaminergic neurons in
the substantia nigra compactus, followed by a loss of dopamine in
the striatum (Lotharius and Brundin, 2002). Elevated production
and misfolding of α-synuclein, as well as its aggregation to create
Lewy bodies, are additional causes of neurodegeneration in PD
patients (Olanow and Brundin, 2013; Mahul-Mellier et al., 2020).
In addition, PD is thought to be caused by misfolded α-synuclein
that starts in the gut and then locates in the brain and PD is
strongly associated with gastrointestinal complications including
bloating, nausea, and abdominal discomfort (Hayes, 2019; Braak
et al., 2003a). Animal models of PD have been shown to have
abnormal deposition of α-synuclein in the olfactory bulb or ENS
due to changes in gut microbiome composition. These abnormal
deposits may be conveyed through the trans-synaptic transmission
to the dorsal motor nucleus of the vagus nerve and subsequently
through retrograde axons to other sections of the CNS (Peelaerts
et al., 2015). These findings indicated that intestinal microbes play
a crucial role in the pathogenesis of PD.

3.2.1 The studies of microbiota alteration in PD
Concerning the pathogenesis of α-synuclein, a substantial

body of data demonstrates a two-way connection between the
gastrointestinal tract and the brain. Accumulation of α-synuclein
in neurons may be seen in both the brain and the ENS. As
α-synuclein inclusions initially occur in the ENS and then go

to the brain through glossopharyngeal or vagal neurons, the
gastrointestinal tract may accelerate the spread of Parkinson’s
disease (Braak et al., 2003b; Shannon et al., 2012). Holmqvist
et al. demonstrated that α-synuclein travels from the intestines
to the brain through the vagal nerves (Holmqvist et al., 2014).
Nevertheless, Arotcarena et al. could not discover any pathological
lesions caused by α-synuclein in the vagal nerve. This disproves
the hypothesis that the vagal nerve plays a role in the spread of
α-synuclein pathology (Arotcarena et al., 2020). In another study,
patient-derived α-synuclein aggregates injected into the enteric or
striatum of baboon monkeys caused nigra striatum damage and
ENS pathology, demonstrating the gut-brain axis’ participation in
Parkinson’s disease transmission. Pathological alterations in the
dorsal motor nucleus of vagal nerves, locus coeruleus, amygdala,
dorsal raphe nucleus, and substantia nigra pars compacta were
created in mice by injecting α-synuclein fibrils into their intestines,
mimicking the motor and non-motor symptoms of PD (Kim et al.,
2019). Additionally, nigral overexpression of α-synuclein resulted
in a significant loss of neuronal cells in the ileal submucosal plexus,
as well as changes in the microbiota of the gut and the metabolism
of bile acid (O’Donovan et al., 2020). Mice that overexpressed
α-synuclein and were either treated with antibiotics or maintained
in sterile circumstances exhibited enhanced motor capabilities and
a decreased number of α-synuclein deposits. Fecal microbiota
transplantation (FMT) from Parkinson’s patients to mice that
overexpress α-synuclein resulted in a greater decline in motor
function than the transplantation of gut bacteria from healthy
individuals, which suggests that changes in the gut microbiota are
the cause of disease symptoms (Sampson et al., 2016).

It has been shown beyond a reasonable doubt that persons
with Parkinson’s disease have significantly distinct gut flora from
healthy individuals. The relative abundance of Clostridium family
XI and the Bacillus alimentary canal in PD patients was high,
while the numbers of genera Faecalis and Clostridium were
reduced (Weis et al., 2019). Interestingly, the gut microbiota
of PD patients who received medication also differed from
that of healthy control group. The relative abundances of the
Peptoniphilus and Finegoldia genera were significantly increased in
PD patients treated with levodopa, whereas the relative abundances
of Peptophagus, anaerobic cocci, Euobacteria brevis, Sellimonas,
Bifidobacteria, and Enterococcus were increased in PD patients
treated with Entacapone (Weis et al., 2019). It should also
be emphasized that the human intestine includes both bacteria
and unidentified eukaryotes. Recently, it has been found that
eukaryotic abundance is reduced in PD patients. At the same
time, when PD patients were given levodopa or Entacapone, the
abundance of Geotrichum rose in comparison to healthy controls
(Weis et al., 2021).

3.2.2 Metabolism of gut microbiota in PD
More and more studies have begun to focus on the potential

mechanisms by which microbial changes in the gut microbiota
led to the development of PD, and the metabolite changes
accompanying gut microbiota alterations may be an important
factor in the development of PD. Sampson et al. enabled the oral
administration of specific microbial metabolites to sterile mice to
be able to trigger neuroinflammatory and locomotor symptoms
(Sampson et al., 2016). Branched-chain amino acids (BCAAs)
were found to significantly ameliorate locomotor symptoms
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and reduce the loss of dopaminergic neurons in PD mice
by decreasing the secretion of IL-6, IL-1β, and TNF-α from
immune cells (Yan et al., 2022). BCAAs attenuate the levels
of inflammatory factors (IL-6, IL-1β, and TNF-α) to delay the
progression of PD in a fisetinone-induced mouse model. These
molecules activate the NF-κ pathway in microglia, which promotes
the activation of nucleotide-binding oligomerization domain-
like receptor protein 3 (NLPR3) inflammatory vesicles, leading
to chronic neuroinflammatory damage in neurons (Fan et al.,
2020). However, gut microbiota alterations were associated with
decreased plasma concentrations of leucine, isoleucine, valine,
and tyrosine in PD patients and worsened with the severity
of PD symptoms (Zhang Y. et al., 2022). In lipid metabolism,
Erny et al. demonstrated that gut microbiota-synthesized SCFAs,
especially acetic acid, can regulate microglia maturation and
function, and repair microglia damage by incorporating microglia
core metabolism (Erny et al., 2015). Energy metabolism related
studies are fewer, but through macro-genome sequencing and
metabolomics techniques, it was verified that gut microbiota
produces metabolites associated with mitochondrial dysfunction
and that it is implicated in the pathogenesis of PD (Yan et al., 2021).
The potential influence of gut microbiota in other metabolisms
has also been found, with studies finding that the gut microbiota
of PD patients is capable of producing indole and homocysteine
(Rosario et al., 2021) and that Enterococcus intestinalis reduces
the efficacy of levodopa by degrading it via tyrosine decarboxylase
(Maini Rekdal et al., 2019).

3.3 Huntington’s disease

Brain shrinkage, most noticeably in the cerebral cortex and
striatum, is a hallmark of Huntington’s disease (HD), a genetic
neurodegenerative condition. These people have progressively
deteriorated muscular, cognitive, and psychological symptoms over
the course of 15–20 years until they eventually succumb to their
illness and die. HD patients are diagnosed after the onset of
significant motor symptoms, which usually occur between the ages
of 35 and 55, although other symptoms can appear 10–15 years
earlier (Bates et al., 2015). The increase of CAG repeats in the
Huntington protein (Htt) gene is the cause of the condition. This
gene is ubiquitously expressed, meaning it may be found not just
in the brain but also in many other tissues and cells throughout
the body, such as skeletal muscles and gut intestinal epithelial
cells (The Huntington’s Disease Collaborative Research Group,
1993; Sathasivam et al., 1999; Moffitt et al., 2009). Transcriptional
regulation and normal cell function are profoundly disrupted
by the expression of HD mutations, thereby affecting overall
physiology (Chang et al., 2006; Kim et al., 2010; Luthi-Carter
and Cha, 2003). As a result, people who have this condition also
suffer from a variety of peripheral deficits, such as a wasting
away of their skeletal muscles, a major loss of weight, and an
impaired immunological response (Zielonka et al., 2014; Aziz
et al., 2008; Björkqvist et al., 2008). Prior research has shown that
individuals with HD and transgenic animals both had different
levels of circulating gut metabolites, which suggests that the gut
microbiota may shift even before the beginning of the illness
(Verwaest et al., 2011).

3.3.1 The studies of microbiota alteration in HD
A recent study that looked at the differences in the gut

microbiota of HD mice and wild-type mice found that male HD
mice had a greater number of Bacteroidetes and Lactobacillus
but a lower abundance of clostridium in their guts. On the other
hand, female HD mice showed a decreased number of Clostridiales
and an increased number of Coriobacteriales, Erysipelotrichales,
Bacteroidales, and Burkholderiale. Additionally, male HD mice
exhibited a greater variety of microorganisms than female HD
mice as well as wild-type mice (Kong et al., 2020). Commensal
fungus, much like intestinal bacteria, contribute significantly
to the regulation of the host immune system and metabolic
functions (Chiaro et al., 2017; Paterson et al., 2017; Underhill
and Iliev, 2014; Jiang et al., 2017). Recent research has shown
that the fungus community in the gut may cause significant
changes in the organization of the gut bacteriome and help
mold the gut microbiome throughout the formative years of
an organism’s existence (van Tilburg Bernardes et al., 2020).
These fungal groups contributed to the development of the host
immune system by acting synergistically with the gut bacterial
community to trigger a powerful local and systemic immune
response (van Tilburg Bernardes et al., 2020; Leonardi et al.,
2018). Moreover, several fungal species are commonly employed
as probiotics due to their ability to release enzymes that neutralize
toxins produced by inflammatory intestinal residents and prevent
the growth of additional possible pathobionts (Markey et al.,
2018; Buts et al., 2006; Kumamoto et al., 2020). The abundance
of numerous important fungal species was also found to have
changed. In addition, in the HD mice by 12 weeks of age,
Malassezia restricta and Yarrowia lipolytica were underrepresented
in the gut mycobiome (Kong et al., 2022). Between the patients
with HD and the healthy control group, the study found several
significant changes in the fecal microbiota. To be more specific,
the relative abundances of the following in the patients with HD
were considerably greater than those in the group with healthy
controls: Actinobacteria; Deltaproteobacteria Actinobacteria;
Desulfovibrionales; Oxalobacteraceae; Lactobacillaceae;
Desulfovibrionaceae, and so on. In contrast, the healthy control
people had significantly higher levels of Clostridium XVIII at genus
than that in the HD group (Du et al., 2021).

3.3.2 Metabolism of gut microbiota in HD
Although HD is a degenerative disease caused by polyglutamine

amplification due to genetics (The Huntington’s Disease
Collaborative Research Group, 1993), metabolites of the gut
microbiota can have an impact on the timing of the onset of motor
symptoms in HD. It has been shown that sodium butyrate improves
the neurodegenerative phenotype of HD, which may delay the
onset of motor symptoms (Ferrante et al., 2003). HD patients
express large amounts of mutant huntingin that bind to and inhibit
histone acetyltransferases, resulting in blocked transcription of
genes, and sodium butyrate, an inhibitor of histone deacetylases,
restores gene transcriptional activity to slow the progression
of HD (Steffan et al., 2000; McCampbell et al., 2001). Sodium
butyrate enhances specificity protein-1 acetylation and inhibits 2,3-
nitropropionic acid-induced excitotoxicity (Ryu et al., 2003) and
improves oxidative metabolism by increasing histone acetylation
at the transcriptional level to promote bead protein expression
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(Ferrante et al., 2003; Sealy and Chalkley, 1978). In amino acid
metabolism, kynurenic acid (KYNA), a metabolite of tryptophan,
is able to delay neurodegenerative changes in HD (Campesan
et al., 2011). KYNA acts as a competitive inhibitor of the glycine
agonist site in the NMDAR and a non-competitive inhibitor of the
α7-nicotinic acetylcholine receptor (Alkondon et al., 2011), and
inhibits the release of glutamate within physiological ranges; thus,
KYNA may be neuroprotective by antagonizing these receptors
and reducing glutamate-dependent neurotoxicity (Goda et al.,
1999; Zwilling et al., 2011).

3.4 Multiple sclerosis

Multiple sclerosis (MS), a chronic neurological disease of
CNS, is immune-mediated and characterized by demyelination
and damaged axons that affects around 2.3 million individuals
worldwide. Females are more likely to be affected (Doshi and
Chataway, 2017; Ochoa-Repáraz et al., 2018; Harbo et al., 2013). MS
presents different phenotypes, with primary progressive multiple
sclerosis (PPMS) accounting for around 15% of cases and relapsing-
remitting multiple sclerosis (RRMS) accounting for 85% (Vidal-
Jordana and Montalban, 2017). The pathologic feature of MS is the
formation of inflammatory localized demyelinated plaques in the
CNS, which may occur in the gray or white matter of the spinal cord
and the brain. A neuroinflammatory response is triggered by these
plaques, which in turn leads to the demyelination of neurons and
other specialized cells and ultimately neurodegeneration. Various
cells of the immune system infiltrate into CNS neurons, resulting
in demyelination as a result of the abnormal permeability of BBB.
Myelin antigen-specific T cells, including CD8+ and CD4+ T cells,
are able to pass through this barrier, which contributes to a chain of
events that ultimately results in the development of demyelinating
lesions (Frohman et al., 2006). Recent research has shown that the
commensal microbial communities in the gut are also to blame
for a number of immune-mediated diseases like MS and can be
thought of as a new environmental risk factor. In other words,
immunomodulation, alterations in BBB integrity and function,
promotion of the autoimmune demyelinating process, and direct
interaction with a wide variety of CNS-resident cell types are all
functions mediated by the gut microbiota (Schepici et al., 2019).

3.4.1 The studies of microbiota alteration in MS
When transgenic mice expressing genes encoding a rearranged

T cell receptor specific for myelin basic protein were housed
in a non-sterile facility but not in a specific-pathogen-free
environment, they developed spontaneous experimental
autoimmune encephalomyelitis (EAE), an animal model of
autoimmune and inflammatory diseases including MS. This
provided early evidence that bacteria may play a role in CNS
autoimmunity (Goverman et al., 1993). The initial indication
that commensal bacteria have a role in neurological autoimmune
illness originated from antibiotic-induced reductions in the
natural gut microbiota. Antibiotic treatment reduced the level
of TH17 cells in the mesentery, leading to a reduction in the
severity of EAE (Yokote et al., 2008). This impact required a
fraction of invariant natural killer cells, indicating that innate
immune processes regulate CNS autoimmunity through microbes.

Another groundbreaking work found that oral antibiotic therapy
protected against actively generated EAE, suggesting that the
medication either downregulated pro-inflammatory or elevated
anti-inflammatory pathways (Ochoa-Repáraz et al., 2009). Later
research revealed commensal Bacteroides fragilis as protective
bacteria that inhibits EAE by producing capsular polysaccharide
A, which activates T reg cells through the Toll-like receptor
2 signaling pathway (Round et al., 2011; Wang and Kasper,
2014; Ochoa-Repáraz et al., 2010). Recent research has shown
that the gut microbiota has a substantial effect on MS and may
be altered by environmental variables (Schepici et al., 2019).
When comparing MS patients to healthy controls, 16S rRNA
sequencing of the gut microbiome indicated that MS patients
exhibited a greater abundance of the phylum Firmicutes and a
lower abundance of the phylum Bacteroidetes (Cosorich et al.,
2017). Untreated MS patients also have a greater abundance of
Euryachaetota and Akkermansia than healthy control patients
(Jangi et al., 2016). In particular, other studies have suggested
that reduced Prevotella abundance in RRMS patients increases
disease activity (Cappello et al., 2016). A decrease in the number
of Clostridium bacteria in RRMS patients, leading to a decrease in
SCFAs secretion levels, was also observed in one study (Miyake
et al., 2015). FMT experiments have provided more evidence that
there is a connection between changes in the gut microbiota and
MS by examining the magnitude of such alterations in individuals
who have the disease. Transplanting the MS microbiome in a
mouse model resulted in an increased incidence of experimental
autoimmune encephalomyelitis, and resulted in more severe MS
symptoms (Berer et al., 2017; Cekanaviciute et al., 2017).

3.4.2 Metabolism of gut microbiota in MS
Studies have shown that metabolites of Lactobacillus play an

important role in the development of MS. Lactic acid produced by
Lactobacillus is able to activate hypoxia-inducible factor 1α (HIF-α)
thereby inhibiting dendritic cells-mediated autoimmune responses
(Sanmarco et al., 2023). In addition, its production of N-acetic acid
lysine has an inflammatory inhibitory effect on microglial cells,
thereby protecting the nerves from immune attacks. R. gnavus
is able to decarboxylate phenylalanine into phenethylamine (Zhai
et al., 2023; Williams et al., 2014). Phenylethylamine was found
to hyperactivate dopamine receptor D2 (DRD2) by metabolome
precision analysis technique thereby decreasing lysozyme sensitive
Lactobacillus (Peng et al., 2023). Bacteria, such as Bacteroides spp.
and Peptostreptococcus spp. (Agus et al., 2018), in the gut degrade
tryptophan and phenylalanine to phenol and indole derivatives
thereby inducing the onset of neurotoxicity in MS (Ntranos
et al., 2022). Metabolites (p-cresol sulphate, indoxyl sulphate and
N-phenylacetylglutamine) originating from gut microbiota are
distributed across the blood-brain barrier into the cerebrospinal
fluid. These metabolites differ from other indoles in that they do not
rely on neuronal oxidation to inhibit electrophysiological activity
and function of neurons, but directly induce neural axonal damage
(Ntranos et al., 2022; Pappolla et al., 2021). Other metabolites such
as p-cresol sulfate, indole phenol sulfate have also been implicated
in the development of MS (Ntranos et al., 2022). The development
of MS has been associated with the development of a variety of
metabolic pathogens such as p-cresol, indole phenol sulfate, and
p-cresol sulfate (Peng et al., 2023).
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4 Therapies for NDs based on gut
microbiota

4.1 Fecal microbiota transplantation
(FMT)

Fecal microbiota transplantation (FMT) is regarded as an
investigational and potential therapeutic treatment for NDs. This
is a relatively new treatment. It involves the transplantation of
microbes and metabolites from the gut of a healthy donor to the
gut of a recipient using a fecal sample as a medium (Zhernakova
et al., 2016). The healthy microbiota replaces itself via reproduction
and creates beneficial compounds through FMT, which is carried
out using endoscopies, enemas, and freeze-dried materials. FMT is
thought to be safe, even for people who are at high risk (Adenzato
et al., 2019; Wimo et al., 2017). In fact, cognitive impairment,
amyloid accumulation, and circulating levels of pro-inflammatory
markers were all reduced in AD animal models when healthy fecal
microbiota was transplanted from wild-type mice (Kim et al., 2020).
Similar results were obtained in another experiment. In addition,
the experiment also found that after bacterial colonization, the
synaptic plasticity of AD model mice was improved, and the
bacterial population that produced SCFAs in the intestine increased
(Sun et al., 2019). The therapeutic effect of FMT in animal models
of NDs has been confirmed by a large number of experiments,
however, only two human case studies have shown promising
results (Hazan, 2020; Park et al., 2021). According to Hazan
et al., an 82-year-old man who got FMT from his wife (an 85-
year-old woman) improved his AD symptoms such as cognitive
function, memory, and mood (Hazan, 2020). After treated with
FMT by a healthy 27-year-old man, a 90-year-old lady with AD and
severe Clostridium difficile infection demonstrated improvements
in cognitive function, microbiome diversity, and SCFA synthesis in
the second case study (Park et al., 2021). Numerous research on
FMT on different neurological illnesses have been conducted, and
more trials are still underway. However, the safety problems faced
cannot be ignored when FMT is applied to clinical practice (Hediyal
et al., 2024). In the United States, six cases of serious infections
following FMT treatment have been reported by the Food and
Drug Administration (FDA, 2020). Therefore, it is essential to set
up relevant clinical implementation protocols that enable clinicians
to operate with the highest degree of quality and safety assurance,
and these behaviors can minimize the risks associated with the
process (Table 1).

4.2 Probiotic

A variety of therapeutic interventions, including the use of
probiotics, have been used to treat intestinal microbiome disorders
with the aim of restoring intestinal microbiome balance and
improving clinical outcomes in neurological diseases (Kerry et al.,
2018). Bifidobacterium and other lactic acid-producing bacteria,
such as Lactobacillus, make up the bulk of a probiotic’s composition.
In addition, the use of probiotics in the treatment of human
neurodegenerative diseases, such as AD, has shown encouraging
outcomes. First, Lactobacillus plantarum was reported to improve

cognitive performance in AD mouse models and increase levels of
acetylcholinesterase in the brain (Nimgampalle and Kuna, 2017).
In a different research, rats that had been injected with Aβ over
a period of eight weeks were given a probiotic combination that
included the bacteria strains Lactobacillus acidophilus, Lactobacillus
fermentum, Bifidobacterium lactis, and Bifidobacterium longum.
The findings showed that altering the makeup of the gut
microbiome enhanced spatial memory, decreased learning deficits,
and lowered oxidative stress (Athari Nik Azm et al., 2018).
Additionally, in a hereditary mouse model of PD, long-term
probiotics using six bacterial strains reduced motor deficits and
protected dopaminergic neurons (Hsieh et al., 2020). Akbari et al.
showed that after taking probiotic milk containing Lactobacillus
acidophilus, Lactobacillus casei, Bifidobacterium bifidum, and
Lactobacillus fermentum for 12 weeks, AD patients had better
cognitive performance and insulin metabolism than the control
group, but oxidative stress, inflammation, blood glucose, fasting,
and indicators of lipid distribution did not change (Akbari et al.,
2016). There is also evidence that probiotics are beneficial for PD
patients (Castelli et al., 2021). In a randomized controlled trial,
patients with PD who took probiotics had improved symptoms
compared to controls, as evidenced by reduced scores on the
Movement Disorders Society-Unified Parkinson’s Disease Rating
Scale (Tamtaji et al., 2019; Table 2).

4.3 Drugs target on metabolism

Probiotic interventions were found to reduce
neuroinflammatory responses and Aβ deposition, but did not
modulate levels of inflammatory factors such as IL-6, IL-10 and
glutathione in AD patients (Akbari et al., 2016; Agahi et al., 2018).
GV-971, the first new AD therapeutic drug targeting the brain-gut
axis, has been newly marketed in China, and it works by inhibiting
the accumulation of phenylalanine and isoleucine thereby
achieving solid cognitive improvement and reversing cognitive
impairment. However, no large-scale clinical studies have been
conducted with drugs other than GV-971, but the introduction
of GV-971 expands and clarifies the research idea of regulating
gut microbiota to prevent and treat AD. Therefore, more research
should focus on the pathogenesis of gut microbiota and AD,
providing new ideas for the development of more drugs targeting
AD. Engineered Clostridium butyricum not only consistently
expresses glucagon-like peptide-1(GLP-1) for PD treatment, but
also mediates mitochondrial autophagy for neuroprotective effects
(Wang et al., 2023). Inspired by this, some beneficial metabolites or
key enzymes of metabolism can also be introduced by engineering
bacteria for therapeutic effects (Table 3).

4.4 Others

In addition to the most common FMT and probiotic therapies,
prebiotics are also a type of gut flora-based therapy used to
treat neurodegenerative diseases. Prebiotics have been shown
to significantly reduce cognitive and psychological dysfunction
in 5xFAD mice, which can be explained in part by altering
the gut microbiota and enhancing the formation of SCFAs
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TABLE 1 Neuroprotective effects of FMT in neurodegenerative diseases.

Interventions Type Subjects Donors Results References

FMT Preclinical
researches

AD-like pathology with
amyloid and
neurofibrillary tangles
(ADLPAPT ) transgenic
mouse model of AD

Healthy wild-type (WT) mice Improved cognitive impairment,
reduced amyloid accumulation
and circulating levels of
pro-inflammatory markers

Kim et al., 2020

APPswe/PS1dE9
transgenic (Tg) mouse
model

Healthy wild-type (WT) mice Improved cognitive impairment,
reduced amyloid accumulation
and tau expression, enhanced
synaptic plasticity, and increased
SCFAs-producing bacteria in the
gut

Sun et al., 2019

Human case studies An 82-year-old man
presented as a gradual
5-year decline in
memory and cognition

The patient’s 85-year-old wife A marked improvement in mood,
was more interactive, and showed
more expressive affect

Hazan, 2020

A 90-year-old woman
with Alzheimer’s
dementia

A 27-year-old man with no
gastrointestinal or other
health problems, not using
drugs and antibiotics

A marked improvement in mood
(GDS 17) and daily living
activities and showed more
expressive affection

Park et al., 2021

TABLE 2 Neuroprotective effects of probiotic in neurodegenerative diseases.

Interventions Type Subjects Drugs Taken Results References

Probiotic Preclinical
researches

D-Galactose-induced
Alzheimer’s disease in
albino rats.

Lactobacillus plantarum
MTCC1325

Ameliorated cognition deficits
and restored ACh and the
histopathological features

Nimgampalle
and Kuna, 2017

Alzheimer rats, which
received an
intrahippocampal
injection of amyloid
(Aβ1–42)

A probiotic mix containing
Lactobacillus acidophilus,
Lactobacillus fermentum,
Bifidobacterium lactis, and
Bifidobacterium longum

Improved spatial memory and
learning disability, reduced
oxidative stress

Athari Nik Azm
et al., 2018

Transgenic MitoPark PD
mice

Probiotics consisted of six
bacterial strains
(Bifidobacterium bifidum,
Bifidobacterium longum,
Lactobacillus rhamnosis,
Lactobacillus rhamnosus GG,
Lactobacillus plantarum
LP28, and Lactococcus lactis
subsp. Lactis)

Had neuroprotective effects and
alleviated the progressive
deterioration of motor functions

Hsieh et al., 2020

Human case studies People with AD (60–95
years old)

Probiotic milk
containing Lactobacillus
acidophilus, Lactobacillus
casei, Bifidobacterium
bifidum, and Lactobacillus
fermentum

Had a positive effect on the
cognitive function and insulin
metabolism

Akbari et al.,
2016

Sixty individuals with
PD, aged 50-90
years

Probiotic containing
Lactobacillus acidophilus,
Bifidobacte rium bifidum,
Lactobacillus reuteri, and
Lactobacillus fermentum

Reduced scores on the Movement
Disorders Society-Unified
Parkinson’s Disease Rating Scale

Castelli et al.,
2021

(Liu et al., 2021). There is also a substance known as synbiotic, a
mixture of prebiotics and probiotics, which has been shown to have
a regulatory effect on the intestinal microbiome (Lorente-Picón
and Laguna, 2021). In addition to pharmacological treatments,
changes in diet, appropriate physical exercise and improved sleep
quality can also be used to modify the microbial composition of
the gut and the abundance of SCFAs and intestinal metabolites,
thereby improving the symptoms of neurodegenerative diseases

(Wilson et al., 2020; Voigt et al., 2016; Allen et al., 2015;
Allen et al., 2018). It has been suggested that a healthy diet is
neuroprotective and slows the progression of NDs. Conversely,
poor dietary habits can exacerbate neurodegeneration in the elderly
(Fernández-Sanz et al., 2019). In 5 × FAD mice, a high-fat
diet significantly promoted AD-related pathological changes by
increasing oxidative stress and cerebral amyloid angiopathy (Lin
et al., 2016). However, a Mediterranean ketogenic diet intervention
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TABLE 3 Neurological effects of gut microbiota metabolites.

Disease Type Metabolite Effects References

AD Preclinical researches Phenylalanine and Isoleucine Acting on Slc7a5 mediates
neuroinflammation

Wang et al., 2019

Preclinical researches D-glutamate D-glutamate overactivation of NMDAR
mediates cytotoxicity

Bertoldi et al., 2003; Choi et al.,
1988

Preclinical researches Heterogenic amyloid Involvement in amyloid deposition Friedland and Chapman, 2017

PD Preclinical researches Branched-chain amino acids Improvement of motor symptoms and
reduction of dopaminergic neuronal
damage

Yan et al., 2022

Preclinical researches SCFAs Regulation of microglia maturation and
function and repair of microglia damage

Weis et al., 2021

HD Preclinical researches Kynurenic acid Delaying neurodegenerative changes in
Huntington’s Disease

Campesan et al., 2011

MS Preclinical researches Lactic acid Inhibiting autoimmune by activating
HIF-α of dendritic cell

Sanmarco et al., 2023

Preclinical researches N-acetic acid lysine Inhibiting immune reaction of microglia
cell

Sanmarco et al., 2023

Preclinical researches Indole derivatives Neurotoxicity Ntranos et al., 2022

in patients with MCI found that the ketogenic diet reduced
the abundance of Bifidobacterium spp. and Bradyrhizobium spp.
and increased levels of propionic acid and butyric acid (Chen
et al., 2020). What’s more, polysaccharides, phytosterols, alkaloids,
terpenoids, and carotenoids in marine natural products can bi-
directionally regulate the GBA axis and exert neuroprotective
effects (Fakhri et al., 2021). It has been confirmed that a high
intake of branched-chain amino acids may well improve the
motor symptoms of PD (Yan et al., 2022). Therefore, branched-
chain fatty acids can be used as a dietary supplement in a
way to treat PD.

5 Conclusion

The gut microbiota may impact brain diseases in a number of
different ways, including the modulation of the immune system,
direct neuronal signaling and activation of the humoral route
through microbial chemical. The composition of microbiota has
changed in neurodegenerative diseases, which can be confirmed
in both preclinical and clinical studies. The metabolism of the gut
microbiota is altered along with the altered gut microbiota. The
production of SCFAs is reduced following alterations in the gut
microbiota, and SCFAs are recognized as a protective substance
that plays a protective role in the neuroinflammatory response
as well as in intestinal permeability. In addition, some fatty acid
membrane receptors, such as free fatty acid receptor 4 (FFA4, also
known as GPR120), G protein-coupled receptor 41 (GPR41), and
G protein-coupled receptor 43 (GPR43), are also involved in this
process, allowing drugs targeting lipid receptors to be targeted
for the treatment of NDs. Amino acids and their metabolites
readily cross the blood-brain barrier and act as ligands for many
membrane receptors, so the study of amino acids and their
metabolites can be a target for clinical drug intervention. Many
enzymes of amine metabolism are contained in gut microbiota,
which can metabolize amino acids efficiently, and alterations in

gut microbiota led to changes in the composition of amino acids
in the gut, thus contributing to the progression of NDs. Dietary
supplements of amino acids can play a therapeutic role here. In
other metabolic aspects, which are also the most promising, the gut
microbiota can process primary bile acids to produce hundreds of
secondary bile acids, and the composition of these bile acids can
be used as a map to indirectly reflect the composition of the gut
microbiota, and at the same time, the study of the mapping of the
secondary bile acids may be useful to assist in the early diagnosis
of the disease. In conducting this review, our primary goal was
to compile the available evidence on alterations in gut microbiota
and their metabolic alterations in relation to neurodegenerative
diseases, and to explore promising research directions for gut
microbiota research. However, a special limitation of this review
is its narrow scope, focusing on common neurodegenerative
diseases, and not involving some rare diseases. The research on
the role of intestinal microbiota in neurodegenerative diseases is
still at an early stage, but many studies have pointed out the
potentially important role of various microbiota-related therapies
in altering the composition of the gut microbiota, and the effects
of altered metabolites of the gut microbiota on degenerative
diseases are gradually being emphasized, which will provide
new ideas for the clinical prevention of and intervention in
neurodegenerative diseases.
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