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Background: Brain connectome fingerprinting represents a recent and valid 
approach in assessing individual identifiability on the basis of the subject-specific 
brain functional connectome. Although this methodology has been tested 
and validated in several neurological diseases, its performance, reliability and 
reproducibility in healthy individuals has been poorly investigated. In particular, 
the impact of the changes in brain connectivity, induced by the different 
phases of the menstrual cycle (MC), on the reliability of this approach remains 
unexplored. Furthermore, although the modifications of the psychological 
condition of women during the MC are widely documented, the possible link 
with the changes of brain connectivity has been poorly investigated.

Methods: We conducted the Clinical Connectome Fingerprint (CCF) analysis 
on source-reconstructed magnetoencephalography signals in a cohort of 24 
women across the MC.

Results: All the parameters of identifiability did not differ according to the MC 
phases. The peri-ovulatory and mid-luteal phases showed a less stable, more 
variable over time, brain connectome compared to the early follicular phase. 
This difference in brain connectome stability in the alpha band significantly 
predicted the self-esteem level (p-value <0.01), mood (p-value <0.01) and five 
(environmental mastery, personal growth, positive relations with others, purpose 
in life, and self-acceptance) of the six dimensions of well-being (p-value <0.01, 
save autonomy).

Conclusion: These results confirm the high reliability of the CCF as well as its 
independence from the MC phases. At the same time the study provides insights 
on changes of the brain connectome in the different phases of the MC and their 
possible role in affecting women’s subjective mood state across the MC. Finally, 
these changes in the alpha band share a predictive power on self-esteem, mood 
and well-being.
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1 Introduction

Recent years have seen the growing interest in searching for the 
subject-specific network stability with the purpose of reaching an 
individual identifiability on the basis of the brain functional 
connectome (Mallaroni et al., 2024; Finn et al., 2015; Van De Ville 
et al., 2021; Colenbier et al., 2023). From here arises the notion of 
brain fingerprinting, an approach utilized to define the connectome 
subject-specific characteristics (Finn et al., 2015; Amico and Goñi, 
2018; Sareen et al., 2021). This methodology has been tested in several 
neurological diseases, revealing that individuals affected by 
neurodegenerative diseases showed reduced identifiability with 
respect to healthy subjects (Sorrentino et al., 2021; Svaldi et al., 2021). 
Interestingly, the reduced identifiability was able to predict individual 
motor, cognitive or behavioral features, giving rise to the concept of 
the Clinical Connectome Fingerprint (CCF; Sorrentino et al., 2021; 
Svaldi et al., 2021; Romano et al., 2022; Cipriano et al., 2023a; Troisi 
Lopez et al., 2023).

However, although the impact of different neurological conditions 
on CCF has been demonstrated, whether brain fingerprint is reliable 
and applicable, regardless of the cyclic physiological changes that take 
place in biological organisms on time scales ranging from a few 
seconds to weeks or months (Paranjpe and Sharma, 2005) remains 
poorly explored. Very recently, the stability of brain fingerprint was 
evaluated in a population of healthy young adults over a 24 h period, 
revealing that the functional connectome (FC) was stable during the 
daytime hours (between the morning and evening recordings), but 
after a night of sleep deprivation, the intra- and inter-identifiability 
was reduced. Consistently, the reduced stability of brain fingerprint 
following sleep deprivation was found to be negatively correlated with 
the effort perceived by participants in completing a cognitive task 
(Ambrosanio et al., 2024).

In consideration of the role played in the reproductive process, the 
menstrual cycle (MC) is one of the most important biological 
phenomena that takes place on a cyclical scale. However, the MC 
affects the woman’s life far beyond the reproductive function, inducing 
changes in the functioning of the central nervous system and in the 
women’s self-perception and behavioral states, as recently remarked 
by a very large study (3.3  million women across 109 different 
countries; Pierson et  al., 2021). Furthermore, a large number of 
women suffer from MC related psychological changes ranging from 
not clinically relevant cycle-related emotional symptoms to overt 
premenstrual syndrome (PMS). Moreover, approximately 5–8% of 
women of reproductive age suffer from premenstrual dysphoric 
disorders (PMDD; Payne et al., 2009; Parker and Brotchie, 2010). 
PMDD is characterized by cyclic, debilitating cognitive, somatic and 
affective symptoms (depressed mood, irritability, affective lability, 
anxiety) which occur during the luteal phase, and greatly affect quality 
of life (Wittchen et al., 2002). In particular, self-esteem fluctuations 
have been related to the MC phases since the 90s (Bloch et al., 1997; 
Taylor, 1999), especially in the context of premenstrual syndrome. 
More recently, Brock et al. investigated whether self-esteem fluctuates 
over the MC, demonstrating that at premenstrual phase, negative 

self-esteem, anxiety and depression were higher whereas positive self-
esteem was lower than at mid-cycle phase (Brock et al., 2016). The 
same is true for anxiety and depression that were found exacerbated 
in the few days before and during the menstrual period (Clayton, 
2008). Most of these symptoms can occur in all the phases of the MC 
with a high prevalence in the late luteal phase when both estradiol and 
progesterone fall right before the menses (Le et al., 2020). This phase 
is commonly characterized by a poorer performance in emotion-
related cognition (Le et  al., 2020; Handy et  al., 2022), a potential 
vulnerability to anxiety (Armbruster et al., 2014; Welz et al., 2016; 
Shayani et al., 2020) and minimal difficulties in executive functions 
(Solis-Ortiz et al., 2004; Dan et al., 2019). Additionally, the hormonal 
fall during this phase is also associated with important physical 
symptoms such as mastalgia, edema, headache, skin changes, muscle 
and joint pain as well as depression, anxiety insomnia and irritability 
(Modzelewski et al., 2024). These cyclic psychological, behavioral, and 
somatic symptoms get worse during the late luteal phase and improve 
after the onset of menses. This suggests that fluctuating ovarian 
hormones play a role in this mechanism (Yen et  al., 2019). 
Progesterone (stable during most of the mid-luteal phase) decline 
prior to menses and higher concentrations in women blood have been 
associated with lower irritability and symptoms of fatigue in healthy 
women (Ziomkiewicz et al., 2012). Additionally, the estrogen receptor 
alpha gene polymorphism is associated with the risk of PMDD (Huo 
et al., 2007). However, to date, all these studies examining the MC and 
its relationship with cognition and mood in healthy woman have been 
unable to show consistent associations between these aspects and the 
different phases of the MC.

To date, the relationship between the MC-related changes in brain 
structure and function and women’s subjective mood state across the 
MC remains elusive (Dubol et al., 2021). However, recently, some 
structural and functional studies have reported the association 
between some specific brain features and subjective mood aspects. 
DTI studies, for example, have reported a greater white matter volume 
in the right uncinate fasciculus in patients with PMDD (as compared 
to controls) and demonstrated a positive correlation between 
premenstrual symptom severity and fractional anisotropy in the right 
superior longitudinal fasciculus (Gu et al., 2022). Studies on the brain 
metabolism (through PET scans) have emphasized the role played by 
the altered availability of the serotonin transporter during the luteal 
phase and the following temporary depletion of synaptic serotonin as 
a possible explanation of the mood changes observed during the luteal 
phase, supporting the clinical evidence of SSRIs efficacy in PMDD 
(Reilly et  al., 2023; Sacher et  al., 2023). Interestingly, a recent 
interventional study by Derntl et al. reported that the administration 
of estradiol valerate resulted in changes in effective connectivity in 
emotional-related networks, highlighting the potential utility of 
hormonal administration in the treatment of MC-related mental 
disorders that show a dysregulation of emotions (Derntl et al., 2024).

Taken together, the paucity of the exhaustive studies on this topic, 
the great social and economic impact (considering that several 
previous studies report that the prevalence of at least one premenstrual 
symptom can reach up to 90%; Dennerstein et al., 2012) as well as the 
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broad interest in studying the relationship between the brain and 
behavior, mood and self-related aspects during the MC, suggest that 
there is more to be done in this field.

The aim of our work was to verify whether the brain fingerprint is 
stable during MC, thus establishing whether this technique is reliable 
and can be applied regardless of the MC phases. A further objective 
was to explore the functional connectome (FC) features and the 
contribution of specific brain areas to brain fingerprinting along 
MC. Finally, the possible relationship between changes of FC and the 
subjective mood state, assessed as subjective wellbeing and self-esteem 
was examined.

To scrutinize these aspects, we  performed for each recruited 
woman a brain fingerprinting based on her whole functional 
connectome (Finn et al., 2015; Amico and Goñi, 2018; Sareen et al., 
2021). More specifically, we  used source-reconstructed 
magnetoencephalography (MEG) signals in a cohort of 24 healthy 
women without menstrual cycle dysfunction, premenstrual symptoms, 
anxiety and/or depression. We performed two separate recordings for 
each subject in three phases (early follicular, peri-ovulatory and 
mid-luteal) of the MC. After filtering the source-reconstructed signals 
in the canonical frequency bands, we  used the phase linearity 
measurement (PLM; Baselice et  al., 2019) to estimate the 
synchronization between regions, obtaining frequency-specific 
connectomes. Then, we estimated the identifiability rate of the women 
at each time point, based on the Pearson’s correlations between the 
connectomes. Furthermore, we compared the similarity between each 
subject’s connectome at a time point with the phases’ connectomes at 
the other time point, thereby obtaining a cycle-specific fingerprinting 
score of identifiability (I-cyclical, IC; Figure 1) that suggests how much 
the FC of each woman changed across the MC. To test the hypothesis 
that the IC score was predictive of the psychological subjective 
condition, we designed a multilinear regression model from the IC 
score of each subject. Lastly, we studied the nodal strength of each 
region of interest (ROI), thus defining the regions with the greatest 
contribution in predicting subjective features.

2 Materials and methods

2.1 Participants and experimental protocol

Twenty-four right-handed, native Italian speakers, heterosexual 
women with regular MC (mean cycle length 28.4 ± 1.3 days) were 
recruited. Exclusion criteria were: (1) use of hormonal contraceptives 
(or other hormone regulating medicaments) during the last 6 months 
before the recording (the use of these during the life was not an 
exclusion criteria); (2) pregnancy in the last 12 months; (3) chronic use 
of drugs able to affect the central nervous system; (4) alcohol, tobacco, 
and/ or coffee consumption 48 h prior to the MEG recordings; (5) 
absence of history of neuropsychiatric diseases and premenstrual 
dysphoric/depressive symptoms. Mood and/or anxiety symptoms 
were investigated by means of the Beck Depression Inventory (BDI; 
Beck et al., 1996) and Beck Anxiety Inventory (BAI; Beck and Steer, 
1990), using a cut-off below 10 and 21, respectively, to exclude women 
with clinically evident depression and/or anxiety. To control for the 
influence of circadian rhythm, the time of testing varied no more than 
2 h among testing sessions. To reduce the impact of sleep deprivation 
on brain connectivity, we  recommended at least 8 h of sleep; the 

women did not report relevant sleep disturbances in the 24 h prior to 
the MEG acquisition. Additionally, none of the women were mothers 
at the time of the MEG acquisition. The intensity of the symptoms 
before and/or during menstruation was not specifically assessed. The 
subjects’ characteristics are shown in Table 1.

All women were tested in three different time points of the MC, 
that is, in the early follicular phase (cycle day 1–4, low estradiol and 
progesterone, T1), during the peri-ovulatory phase (cycle day 13–15, 
high estradiol and low progesterone, T2) and in the mid-luteal phase 
(cycle day 21–23, high estradiol and progesterone, T3).

At each of the three time points along the cycle, all subjects 
underwent the following examinations: MEG recording, blood 
sampling for the hormone assay, and psychological evaluation (self-
esteem, well-being, anxiety and depression). All participants 
underwent a transvaginal pelvic ultrasonography during the early 
follicular phase and a structural magnetic resonance imaging (MRI) 
after the last MEG recording. Hormone assays, MRI and ultrasound 
examination have been performed according to Liparoti et al. (2021).

2.2 Hormone assays

Each participant underwent venous blood sampling during each 
phase of the MC. The blood sampling was preceded from a 12 h of 
fast. Blood samples were collected in S-Monovette tubes (Sarstedt), 
containing gel with a clotting activator, according to predetermined 
standard operating procedure (Tuck et  al., 2009). Samples were 
centrifuged at 4,000 rpm for 10 min, with a following serum 
collection, aliquot in 1.5 mL tubes (Sarstedt), and storage at −80°C 
until the analysis. Determination of estradiol followed different 
ranges according to the MC phase (range: 19.5–144.2 pg./mL in the 
early follicular phase; 63.9–356.7 pg./mL in the peri-ovulatory phase 
and 55.8–214.2 pg./mL in the mid-luteal phase) with the detection 
limit of 11.8 pg./mL. Progesterone ranges were ND–1.4 ng/mL in the 
early follicular phase, ND–2.5 ng/mL in the peri-ovulatory phase and 
2.5–28.03 ng/mL in the mid-luteal phase with a detection limit of 
0.2 ng/mL. LH ranges were 1.9–12.5 mIU/ml in the early follicular 
phase, 8.7–76.3 mIU/ml in the peri-ovulatory phase and 0.5–16.9 
mIU/ml in the mid-luteal one with a detection limit of 0.07 mIU/ml. 
FSH ranges: 2.5–10.2 mIU/ml in the early follicular phase, 3.4–33.4 
mIU/ml in the peri-ovulatory phase and 1.5–9.1 mIU/ml in the 
mid-luteal one with a detection limit of 0.3 mIU/ml. All was 
measured by Advia Centaur XT Immunoassay System analyzer 
(Siemens) which uses competitive (estradiol) or direct (progesterone, 
FSH, LH) immunoassay and for quantification of reaction uses 
Chemiluminescent Acridinium Ester technology. The hormone 
blood levels at the three time points of the MC are reported in 
Table 1.

2.3 Ultrasound evaluation

Transvaginal pelvic ultrasonography was performed in the early 
follicular phase. Scans were performed using a 4–10 MHz endocavitary 
transducer (GE Healthcare, Milwaukee, WI). Both the uterus and the 
ovaries were visualized, to address the presence of abnormal findings, 
such as endometrial polyps, myomas, ovarian cysts, or other adnexal 
masses. None of the women presented uterine or ovarian anomalies.
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2.4 Psychological evaluation

The psychological assessment was performed at each of the three 
phases of the MC. To quantify the self-esteem level, the Rosenberg 
self-esteem scale (Prezza et al., 1997) was adopted. The Ryff ’s test was 
administered to examine the six dimensions of well-being (autonomy, 
environmental mastery, personal growth, positive relations with 
others, purpose in life, and self-acceptance; Ruini et al., 2003). Finally, 
in addition to BAI (Beck and Steer, 1990) and BDI (Beck et al., 1996) 
tests administered at the first experimental session (as inclusion/
exclusion criteria, see above), the tests were re-administered at each 
time point to exclude the appearance of depressive/anxious symptoms.

2.5 MEG acquisition, preprocessing and 
source reconstruction

MEG acquisition, preprocessing, source reconstruction and 
synchrony estimation have been performed according to our previous 
works (Liparoti et al., 2021; Cipriano et al., 2023b, 2024; Romano et al., 
2023; Polverino et al., 2024). All the women were scanned in three 
time points that were sequential. The first scanning could change, that 
is to say that in some women the first scanning was performed during 
a T1, in other ones at T2 or at T3. So, most of them were scanned in 
the same cycle or, at most, during two successive cycles (Table 1).

In detail, data were acquired using a MEG system composed of 
154 magnetometers SQUID (Superconductive Quantum Interference 

Device) and 9 reference sensors. The entire acquisition process took 
place in a magnetically shielded room (ATB, Biomag, ULM, Germany) 
to reduce external noise. A tracking system (Fastrak, Polhemus®) was 
used to define the position and orientation of the subject’s head. MEG 
signals were acquired with a sampling frequency of 1,024 Hz.

Two consecutive, resting state, closed eyes, 3.5 min-long 
recordings (of which the entire recording was used in preprocessing 
steps) were acquired. Electrocardiography (ECG) and electro-
oculography (EOG) were also co-registered during the scan. The 
preprocessing and source-reconstruction was performed by filtering 
the MEG data in the 0.5–48 Hz range applying a 4th-order Butterworth 
IIR band-pass filter using the Fieldtrip toolbox in MATLAB 
(Oostenveld et al., 2011). After that, a Principal Component Analysis 
(PCA) was performed to orthogonalize signals with respect to the 
reference signals, reducing the environmental noise. An Independent 
Component Analysis (ICA; Barbati et al., 2004) was used to remove 
any ECG and EOG artifact.

After the co-registration of MEG data with MRI T1-weighted images, 
we extracted the time series of 116 ROI, according to the Automated 
Anatomical Labeling (AAL) atlas parcellation (Tzourio-Mazoyer et al., 
2002). We exploited the volume conduction model introduced by Nolte 
(2003) and applied the Linearly Constrained Minimum Variance (Van 
Veen et al., 1997) beamformer algorithm implemented in the Fieldtrip 
toolbox (Oostenveld et al., 2011). The resulting time series were then 
band-pass filtered in the following frequency bands: delta (0.5–4 Hz), 
theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–48 Hz). 
Cerebellar ROIs were removed due to the poor reliability of the MEG 

FIGURE 1

FCs processing and fingerprint analysis. (A) a: the neuronal activity was recorded using a 154-sensors magnetoencephalography (MEG); b: MEG signals 
were cleaned by removing noise and artifacts, coregistered with the subject-specific MRI scan for source reconstruction (c); d: functional connectivity 
matrix estimation based on the PLM. (B) The green and the pink blocks represent the two identifiability matrices of women in two different MC phases 
(in this explanatory figure: the T1 and T2 phases), resulting from the correlation of the test and re-test of the individual functional connectomes, in 
each phase (defined according to the MC phase) separately. Hybrid identifiability matrices (IMs) were created by crossing the FCs test of the T1 phase 
with the FCs retest of the T2 phase and vice-versa. The hybrid IMs contain the “cycle-specific fingerprinting” score (I-cyclical, IC) of each individual.
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signals in the posterior cranial fossa. These regions included the cerebellar 
lobules of both the cerebellar hemispheres (ROIs from 91 to 108 of the 
AAL) and the cerebellar vermis (ROIs from 109 to 116 of the AAL). 
Hence, 90 ROIs were retained for further analyses. Synchrony estimation 
between brain areas was estimated using the phase linearity measurement 
(PLM; Sorrentino et  al., 2019), a phase-based metric unaffected by 
volume conduction (Baselice et al., 2019). PLM was estimated between 
each couple of regions obtaining a functional connectome per each of the 
two MEG scans (test and re-test, respectively). This was performed in 
each of the canonical frequency bands.

2.6 Fingerprint analysis

At each of the three time points of the MC, we performed two MEG 
recordings separated by ~2 min, hence calculating two FCs, named test 
and retest. Based on them (Figure  1), we  estimated the brain-
fingerprinting of each subject in the three different MC phases. 
We started by creating frequency-specific identifiability matrices (IM), 
using the Pearson’s correlation coefficient between the test and re-test 
FCs. The IM has subjects as rows and columns and encodes the 
information about the self-similarity and the similarity of each subject 
with the others. The test FC of each subject was correlated to the retest 
FCs of all the subjects within the same phase of the MC (including 
herself; Amico and Goñi, 2018). So, the resultant IM embodies, in the 
main diagonal, the information inherent to homo-similarity (I-self, the 
similarity between FCs of the same individual), while data about hetero-
similarity (I-others, i.e., the similarity of that subject’s FC with the whole 
group of the same MC phase) are represented by the off-diagonal 
elements. Then, we extracted the differential identifiability (I-diff), a 
score that estimates the subject-specific fingerprint level of a specific 
brain dataset, by subtracting the I-others value from the I-self value 

(Amico and Goñi, 2018). Moreover, to define the probability of correctly 
identifying a specific individual, we calculated the success rate (SR) of 
subject recognition within a specific phase. The SR was computed on the 
number of times (expressed as percentage) that each subject showed an 
I-self higher than the I-others (i.e., how many times an individual was 
more similar to themselves than to another individual of the same phase).

Finally, we set out to measure how much each subject’s FC was 
similar to the mean of the other subject’s FCs in the previous phase of 
the MC by computing the “cycle-specific fingerprinting” score 
(I-cyclical, IC). Similarly to Sorrentino et al. (2021) we built two block 
identifiability matrices (hybrid identifiability matrices, IMs) by crossing, 
for each individual, the FC test and re-test, respectively (Figure 1). In 
this case, the Identifiability matrix was represented by a block matrix, 
where the number of blocks equals the number of groups (i.e., three in 
this work, one for each phase of the MC, Figure 1B). The within-phase 
group blocks (green and pink blocks in Figure 1B) represent the IM 
within a specific MC phase (in the figure T1 phase for the green block 
and T2 phase for the pink block). The between blocks elements (i.e., the 
two bicolor blocks) encode the similarity (or distance) between the 
test–retest connectomes of the women belonging to two different 
phases of the MC. The top right bicolor block contains the similarities 
between the connectomes from the test session of the T1 phase with the 
connectomes of the retest session of the T1 phase, while the bottom-left 
bicolor block contains the similarities between the connectomes of the 
women during the re-test session of the T2 phase with the connectomes 
of the test session of the T1 phase. The same analysis was performed 
comparing the connectomes of the T2 phase with the T3 phase and the 
connectome of the T3 phase with the ones of the T1 phase. Then, the 
correlation coefficients were averaged for each individual, obtaining 
subject-specific IC scores for each MC phase, that represent the 
similarity to the previous MC phase and as consequence, how much the 
FC of each individual changed across the MC.

TABLE 1 Demographic and sex hormone data.

Demographic features Mean (SD)

Age (y) 26.29 (5.10, 22–40)

Education (y) 16.54 (2.01)

Menstrual cycle duration (days) 28.4 (1.5)

Sex hormone blood levels Early-follicular 

(T1)

Peri-ovulatory 

(T2)

Mid-luteal (T3) T1vsT2, p 

value

T1vsT3, p 

value

T2vsT3, p 

value

LH (mIU/ml) 5.38 (2.34) 15.91 (11.88) 5.95 (4.04) <0.001 ns <0.001

FSH (mIU/ml) 7.28 (1.39) 7.65 (2.99) 3.88 (1.16) ns <0.001 <0.001

Progesterone (ng/ml) 0.30 (0.06) 1.12 (0.81) 5.75 (2.61) ns <0.001 <0.001

Estradiol (pg/ml) 33.94 (12.09) 134.27 (70.62) 97.42 (39.72) <0.001 <0.001 <0.05

Affective/emotional tests Early-follicular 

(T1)

Peri-ovulatory 

(T2)

Mid-luteal (T3) T1vsT2, p 

value

T1vsT3, p 

value

T2vsT3, p 

value

BAI 7.62 (7.15) 7.88 (8.11) 5.92 (4.70) ns ns ns

Rosenberg 22.58 (4.84) 23.08 (4.84) 23.83 (4.15) ns ns ns

BDI 3.71 (3.47) 3.04 (3.16) 2.88 (2.82) ns ns ns

Wellbeing 401.88 (50.84) 400.50 (51.73) 399.00 (45.40) ns ns ns

Number of patients with first MEG 

acquisition in each time point

13 (T1) 3 (T2) 8 (T3)

BAI, Beck Anxiety Index; BDI, Beck Depression Inventory; FSH, follicle stimulating hormone; LH, luteinizing hormone. Analysis of variance (ANOVA) of sex hormones according to the MC 
phases; the p values of post-hoc analysis between the MC phases are shown in the last three columns. ns, not significant.
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2.7 Edges of interest for fingerprint

To estimate the edgewise reliability of individual connectomes 
across the test and the re-test recordings, we  used the intra-class 
correlation coefficient (ICC; Koch, 2006), a measure that quantifies the 
similarity of the elements belonging to the same phase group. In our 
case, the higher the ICC values, the greater the stability of an edge over 
different recordings (Sorrentino et al., 2021). We hypothesized that, in 
a functional connectome, the edges with higher ICC were those that 
could contribute more to subject identifiability. So, we conducted a 
fingerprint analysis by sequentially adding them on the basis of their 
ICC values. We carried out this analysis by adding 100 edges at each 
iteration (and computed the SR values) starting from the highest ICC 
value to the lowest. A null model was built by adding the edges in 
random order, 100 times at each iteration, to validate our findings.

2.8 Cycle-specific fingerprinting and 
subjective mood state

Since the IC score describes the similarity of a subject to the 
subjects in a previous MC phase, it also entails information about how 
much a given subject’s FC is changed. Following this line of reasoning, 
we hypothesized that such a parameter may be related to the subjective 
mood state that can vary in function on theMC phase. Since our aim 
was to assess mood aspects that had no clinical significance (women 
with PMDD or PMS were excluded), we built a multilinear regression 
model to predict self-esteem, well-being and mood scores based on 
the IC scores. For well-being dimensions we built six different models 
in which one of the six dimensions was used as a dependent variable; 
the independent variables were unchanged. A model with the total 
well-being score was also performed.

2.9 Regional contribution

We evaluated the regional contribution of specific brain areas to 
identifiability and subjective mood state. Based on the ICC values in 
the alpha band, we studied the nodal strength of the most reliable 
edges, thus determining the regions of interest (ROIs) with the greatest 
influence on subjective mood state and identifiability. We performed 
the current analysis on the basis of the data extracted by the 
comparison of the clinical connectome of T1 and T2 phases. 
We included 1,200 edges (because of the best IC values, see above for 
details) and later we selected the most influential edges (i.e., above the 
90% percentile).

2.10 Statistics

Statistical analysis was performed in MATLAB 2021b. Differences 
in hormonal fluctuation and psychological parameters were 
investigated through the ANOVA test. We  analyzed all the 
comparisons among the I-self, I-others and I-diff values using 
permutation testing, where the labels of the two phases were randomly 
allocated 10,000 times. Thus, we obtained a null distribution of the 
randomly determined differences by computing the absolute value of 
the difference of the phase group averages at each iteration (Nichols 

and Holmes, 2002). The relationship between variables was studied 
with Pearson’s correlation and the results were corrected for multiple 
comparisons using the False Discovery Rate (FDR; Benjamini and 
Hochberg, 1995), setting the significance level at p-value <0.05. A 
multilinear regression model was performed to predict self-esteem, 
well-being and mood scores based on the IC scores and six other 
predictors: age, education and hormone blood levels (progesterone, 
estradiol, LH and FSH; Shen et  al., 2017). Multicollinearity was 
assessed through the variance inflation factor (VIF; Snee, 1983; Belsley 
et al., 2004). The model was validated by using the leave-one-out cross 
validation (LOOCV) framework (Varoquaux et  al., 2017). 
Furthermore, similarly to the edgewise identification, the multilinear 
analysis was performed in an iterative scenario where the IC score was 
calculated using different subset of edges, based on their ICC values. 
In particular, we  calculated the IC by adding 100 edges at each 
iteration in descending order of stability (from the highest to lowest 
ICC). For the regional contribution of specific brain areas to 
identifiability and self-perception status, we studied the nodal strength 
of the most reliable edges, thus determining the ROIs with the greatest 
influence on both self-perception status and identifiability. 
We included 1,200 edges (i.e., the best IC values) and selected the most 
influential edges (i.e., above the 90% percentile).

3 Results

3.1 Demographic features

In Table 1 we report the clinical and laboratory characteristics of 
our study population. The significant differences in the profile of sex 
hormones between the MC phases were in line with the well-known 
hormonal trends over the MC. There were no significant differences 
in subjective clinical features across the MC. None of the women had 
undetectable progesterone in one of the three MC phases.

3.2 Connectome fingerprint

After False Discovery Rate (FDR) correction, no statistically 
significant difference in identifiability parameters (i.e., I-self, I-others, 
I-diff) between the three time points was found. Additionally, a linear 
mixed model, with age, education and phase of cycle set as fixed effects 
and “subject” as random effect did not show any difference in 
identifiability parameters values (in each canonical frequency band, set 
as dependent variables) according to age, education and, above all, cycle 
phase. This result demonstrates that, within the limit of our experimental 
design (which included a two-minute interval between test and retest 
recording) the I-self did not change significantly over MC.

3.3 Edge-based identifiability

We used the one-way random-effects intra-class correlation 
coefficient (ICC) to test the edgewise reliability of the individual FCs. 
The edges with higher ICC values were those that contributed the most 
to the identifiability. We  therefore investigated whether the 
identifiability of participants, at each MC phase, was dependent on the 
number of edges considered in the fingerprint analysis. We studied the 
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distribution of success rate (SR) values (i.e., how many times, expressed 
as percentage, an individual was more similar to themselves than to 
another individual of the same phase) extracted from the fingerprint 
analysis by adding 100 edges per iteration, from the most to the least 
stable ones, based on ICC values. Our results showed different 
contributions to identifiability of the edges according to the MC phase. 
The women in the T1 phases quickly reached a complete SR (100%; 
Figure 2), maintaining a complete SR up to the 500 edges, where a 
slowly progressive decay in SR started without ever falling below 90%. 
The T2 and T3 phases also reached an almost complete SR (~98%) with 
a few ultrastable edges (right from 100 edges), but with a rapid and 
progressive decline in SR up to 4,005 edges (SR of ~70–75%).

3.4 Multilinear edge-based regression 
analysis and relationship with subjective 
mood state

We used the IC values to predict individual subjective mood states 
as assessed by the Rosenberg self-esteem scale, the Ryff ’s test (for the 
six dimensions of well-being), the BAI and the BDI. We performed 
different edge-based multilinear regression models using the IC 
(alongside with age, education level and estradiol, FSH, LH, and 
progesterone hormone levels) as a predictor, and setting the subjective 
mood of interest as a dependent variable. The IC with the greatest 
predictive power was calculated, for each dependent variable, by 
adding 100 edges in descending order of stability at each iteration up 
to the full FC. Despite the participants’ age falling within a narrow 
range, we included it as a predictor to avoid the possibility that its 
influence on hormones could introduce bias in the prediction.

The IC in the alpha band significantly predicted the self-esteem 
level (p-value <0.01), mood (p-value <0.01) and five of the six the 
dimensions of well-being (p-value <0.01), save the autonomy. In 
nearly all the cases (Figure  3) the greatest predictive power was 
achieved when the IC was built with relatively few and highly stable 
edges (300 for BDI, 200 for Wellbeing and 1,200 for self-esteem). The 
IC did not show any significant predictive power over anxiety, as 
assessed by the BAI. The IC showed predictive power over the other 
parameters of the multilinear model including the hormonal ones 
that, with the only exception of the progesterone (inverse correlation) 
for the self-esteem prediction, did not show significant predictive 
power. To verify the independence of these results from the number 
of variables used in the model, linear models without the hormones 
(maintaining only the age and the IC as independent variables) were 
performed. The model maintained the high predictive power of the 
IC. The IC built in the other frequency bands did not show a 
comparable significant predictive power on mood and self-
related aspects.

Additionally, to evaluate the relationship between IC and self-
esteem, mood and well-being, respectively, a Pearson’s correlation 
analysis, performed for each of these subjective conditions using the 
IC with greater predictive power, was carried out. A negative 
correlation was found between IC and both self-esteem (r = −0.45, 
p-value = 0.028, Figure 4A) and well-being (r = −0.6, p-value = 0.002, 
Figure 4C), whereas a positive correlation was observed with BDI 
(r = 0.62, p-value = 0.001, Figure 4C).

Finally, we performed the same analyses comparing the other 
phases of the MC to each other (i.e., T1-T3 and T3-T2) without 

finding statistically significant predictive power of IC in predicting the 
subjective state.

3.5 Regional contribution to identifiability 
and subjective mood state

The ROIs with the greatest stability between T1 and T2 phases, 
hence contributing the most to the identifiability and in predicting 
the subjective outcome (in the T2 phase), were mainly located in the 
midline and posterior areas such as the anterior cingulate, the 
occipital (superior and middle), the calcarine, the lingual and the 
temporal inferior cortices on the left side and the superior parietal, 
the occipital (superior, middle and inferior), the lingual, the cuneus, 
the calcarine and the temporal middle cortices in the right 
hemisphere (Figure 5).

4 Discussion

The aim of the present work was to verify the stability, and 
therefore the reliability, of the brain fingerprint during the menstrual 
cycle. We  subsequently verified this stability as a function of the 
number of FC connections necessary to achieve high identifiability 
and which brain areas play a major role in this aspect. Finally, given 
the variability of the women’s subjective mood state across the MC, 
the possible correlation between the latter and the brain fingerprint 
was investigated.

FIGURE 2

Iterative model of edgewise subject identification. The success rate 
(SR) distributions of T1, T2, and T3 phases, obtained by adding 100 
edges at each step from the most to the least contributing ones, 
according to the intraclass correlation (ICC) values. The T1 phase 
(blue) quickly reached a complete SR (100%), and a slowly 
progressive decline but always preserving a great identifiability 
power. The T2 and T3 phases (red and green, respectively), equally to 
the T1, quickly reach an almost complete SR but start, after a few 
hundred edges, an important drop and a progressive loss in subject 
identification reaching a success rate of ~70–75% with 4,005 edges. 
The shaded areas of each figure represent the null distributions 
obtained by adding 100 edges at a time in a random order.
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We firstly demonstrated that the FC fingerprinting is highly 
reliable and that, despite the effect that the MC has on the brain 
connectivity, the subject’s specific FCs remain identifiable regardless 
of the MC phase. Afterward, we  investigated the contribution of 
specific edges to the identifiability by comparing the early follicular 
(T1), peri-ovulatory (T2) and mid-luteal (T3) phases. We found that, 
although the three phases (T1, T2 and T3) reached almost a complete 
SR (100%) with relatively few stable edges, the T2 and T3 MC phase 
identification dropped after only a few hundred edges, descending 
under 80% of the SR with the total number of edges. These data, along 

with the low SR of the T2 and T3 null models (when compared with 
the T1 null model), suggested a greater disparity of the edge stability 
in T2 and T3 phases. In view of this, the peri-ovulatory and mid-luteal 
phases showed a less stable (i.e., less ordered and more variable over 
time) brain connectome compared to the T1 phase. This feature was 
particularly evident in the anterior regions (being present a lower 
number of edges with great identifiability power in the anterior areas, 
since the more stable edges are located mainly in the posterior regions).

These results find partial confirmation in our recent study 
(Liparoti et  al., 2024), where the peri-ovulatory phase was 

FIGURE 3

A multilinear regression model with leave-one-out cross validation (LOOCV) was performed to test the capacity of the I-cyclical to predict self-
esteem, depression and well-being in the T2 phase. Panels on the left show the explained variance by the stepwise addition of the six predictors. The 
significant predictor is indicated with * in bold. The middle panels show the comparison between actual and predicted clinical features. Panels on the 
right show residuals distribution with cross-validation.
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characterized by a more flexible dynamics as compared to the 
early-follicular phase. In this study, we used the technique based 
on the concept of “avalanche,” to investigate the variation of the 
size of the functional repertoire (i.e., brain’s flexibility) during the 
MC, by using source-reconstructed MEG data. We found that the 
neuronal avalanches underwent profound rearrangements 
especially during the peri-ovulatory phase, as compared to the 
early follicular phase. A flexible dynamics conveys the tendency 
of the brain to explore different configurations. Therefore, the 
greater brain flexibility that characterizes the peri-ovulatory 
phase may be the basis of the difference in edge stability between 
the T2 and T1 phases. A greater flexibility can be  seen as the 
ability of a brain to reconfigure its pathways to maintain a proper 
functioning. So, the greater stability across the MC could 

represent a reduced ability of the brain to adapt to the 
physiological changes that happen during the different phases of 
the MC. In other words, higher edge stability might imply that 
the brain is less efficient in reconfiguring its neural circuits in 
response to the physiological variations associated with the MC, 
which could have implications for the mood state of women 
during these phases. These changes in brain dynamics during the 
MC phases have been also reported by previous fMRI studies that 
investigated the whole-brain dynamics during the MC showing 
that the hormonal changes can impact on brain dynamics across 
large-scale brain networks (Pritschet et al., 2020; De Filippi et al., 
2021; Greenwell et  al., 2023). In particular, in a fMRI study, 
specific brain areas such as prefrontal, limbic and subcortical 
regions exhibited a greater flexibility during the ovulatory phase 

FIGURE 4

Pearson correlation between cycle-specific fingerprinting and subjective symptoms. The figure shows an inverse correlation between both self-
esteem and wellbeing and IC and positive correlation between IC and depression. Higher scores at the Ryff and Rosenberg tests are related to positive 
outcomes, whereas higher BDI scores are indicative of worse outcomes.

FIGURE 5

The colored areas represent the ROIs with the greatest nodal strength in identifiability and predicting subjective state. The nodal strength was 
calculated on the intraclass correlation matrices representing the stability between phases T1 and T2.
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as compared to the follicular and luteal ones (Mueller et  al., 
2021). Similar results were reported in a more recent article by 
Avila-Varela et al. that confirmed, in a fMRI protocol, the highest 
dynamical complexity (i.e., variability over time) in the 
preovulatory phase compared to the early follicular and 
mid-luteal phases (Avila-Varela et al., 2024). In addition, they 
found a direct modulation of estradiol and progesterone on the 
whole-brain, DMN, limbic, dorsal attention, somatomotor, and 
subcortical networks suggesting that ovarian hormones modulate 
brain network dynamics across the MC.

To verify whether these changes in edge stability between the T2 
and T1 phases were associated with changes in subjective self-
perception and mood, we built the I-cyclical (IC) on the basis of ICC 
and, after that, we conducted a multilinear regression model using the 
IC as a predictor variable. The IC in the alpha band was able to predict 
self-esteem, well-being and mood. This observation is in according 
with previous EEG and MEG studies which demonstrated that 
changes along the MC were mainly confined to the alpha band 
(Bazanova et al., 2014; Bröltzner et al., 2014), notoriously linked to the 
thalamic activity (Hughes and Crunelli, 2005). This is an intriguing 
aspect considering previous evidence of the ability of the ovaries to 
affect, directly and indirectly (through the cholinergic pathway of the 
Meynert nucleus), the physiological firing of the thalamus (Haraguchi 
et  al., 2021). Noteworthy, the thalamic-modulated alpha rhythm 
propagation is mainly directed to the posterior brain areas (Halgren 
et al., 2019) which, interestingly, are the brain regions that in our study 
contributed more to prediction of self-esteem, wellbeing and mood. 
Hence, one might speculate that MC-related biochemical fluctuations 
might affect posterior brain activities via a regulation of the thalamic 
activities and that, in turn, these changes could affect the subjective 
self-perception and mood.

Concerning the alpha band and its association with these mood 
aspects, previous studies supported the central role of this frequency 
band in self-perception and well-being. A small number of studies 
investigated the neural correlates of wellbeing through EEG analyses 
and only few of them found significant relationships between single 
frequency bands and well-being (de Vries et al., 2023). A recent study 
with a large sample reported that the profile of high alpha and delta 
power and low beta was associated with higher well-being (Chilver 
et  al., 2021). However, more than the alpha power, it seems to 
be relevant the alpha symmetry that was positively associated with 
well-being in several studies supporting the theory of the relationship 
between the alpha asymmetry and positive feelings (Harmon-Jones 
and Gable, 2018). Concerning self-esteem, previous studies have 
found that frontal alpha (as well as theta) band power decreased while 
participants experienced spontaneous self-referential thoughts 
(Bocharov et  al., 2019) and that the frequency of self-referential 
thoughts during resting state was best predicted by higher alpha 
activity within the posterior brain networks (Knyazev et al., 2012). The 
central role of the alpha waves in the self-referential processing was 
also demonstrated by a recent study that investigated the sense of self 
through an EEG study. They found that somatic self-referential 
processing induced lower alpha in the frontal and insula cortex and 
higher alpha in the parietal cortex (Bao and Frewen, 2022). All these 
EEG studies seem to suggest that alpha rhythm plays an important 
role in self-referential processing and well-being.

It is also important to notice that we  did not find (with the 
exclusion of the progesterone predictive power for the Rosenberg 

score) significant relationships between the blood levels of sex 
hormones and self-perception/brain connectivity parameters. 
Nevertheless, one should keep in mind that the biochemical changes 
across the MC are limited by no means to the fluctuations of the four 
biomarkers investigated in the present article but include a much 
wider set of metabolic and endocrine factors. The brain connectome 
is probably influenced by a complex interaction among all these 
factors. This could explain why the IC (that is itself the result of such 
complex biochemical interplay) benefits from a greater predictive 
power as compared to the levels of the hormones that we had sampled 
in this study. Further studies, including a more thorough investigation 
of the hormonal and metabolic profiles are warranted to clarify some 
of these aspects.

Concerning the brain connectivity correlates, the brain regions 
with the greatest contribution to self-esteem, wellbeing and mood 
prediction overlapped with the brain areas previously described as 
the areas highly influenced by sex hormone fluctuations, as well as 
with the most frequently reported by the studies that addressed the 
large-scale neural substrates of self-esteem, well-being and mood 
neural correlates (Dreher et al., 2007; Jung et al., 2014; Maller et al., 
2014; Thimm et al., 2014; Teng et al., 2018; van Schie et al., 2018; 
Telzer et  al., 2020; Chen et  al., 2021). In fact, a follicular/luteal 
dependence of the activities of specific brain regions has been 
demonstrated in fMRI studies that investigated the relationship 
among sex hormones, ROI-specific brain activity and cognitive and 
mood aspects (see Catenaccio et al., 2016; Dubol et al., 2021). The 
cingulate cortex was the most commonly influenced by the 
hormonal fluctuations (Dreher et al., 2007; Thimm et al., 2014) 
followed by the middle and inferior temporal, lingual and fusiform 
gyri and parietal and occipital cortex (Dreher et al., 2007; Thimm 
et al., 2014; Pletzer et al., 2019).

Additionally, it has been previously reported the association 
between the posterior and midline brain regions and well-being, self-
esteem and mood highlighting the importance of these areas in self-
concept and self-referential aspects, as well as in mentalization and 
motivation circuits (Yang et al., 2016; van Schie et al., 2018; Telzer 
et al., 2020). The midline structures have been suggested to be involved 
in the self-referential aspects by encoding self-relatedness of stimuli 
and by regulating self-related negative and positive stimuli (van Schie 
et al., 2018; Telzer et al., 2020) whereas the temporal lobe contributes 
to the self-referential processing and autobiographical memory 
promoting a memory-based construction of the self (Andrews-Hanna, 
2012; Yang et al., 2016). The posterior brain regions, in particular the 
lingual gyrus, the cuneus and the middle occipital gyrus are involved 
in positive social feedback (Eisenberger et al., 2011; Pan et al., 2016; 
Yang et al., 2016), contributing to self-referential processing and social 
cognition (Kircher et al., 2000; D’Argembeau et al., 2007; Brühl et al., 
2014), and their activation is associated with negative self-appraisal 
(Brühl et al., 2014), self-criticism (Longe et al., 2010) and the retrieval 
of self-encoded negative personality traits (Fossati et al., 2004).

In the present work we  also investigated the trend of the 
relationship between IC in the alpha band and subjective psychological 
assessment. We  found a negative relationship between both self-
esteem and wellbeing and IC, along with a positive correlation 
between IC and depression. Higher scores at the Ryff and Rosenberg 
tests are related to positive outcomes, whereas higher BDI scores are 
indicative of worse outcomes. This means that the higher the stability 
of the connections that involve posterior regions across the MC 
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phases, the worse the outcomes (lower self-esteem and wellbeing as 
well as increased risk of depression).

In summary, in the present study we demonstrate that during the 
MC the brain fingerprint maintains a high stability which in the peri-
ovulatory and mid-luteal phase is slightly lower than in the early 
follicular phase which however does not affect its reliability. Moreover, 
the reduced stability of the functional connections of the posterior 
areas was associated with higher well-being and self-esteem, as well as 
with a better mood.

However, the current study is not exempt from some limits. Firstly, 
the small sample size probably represents the main limit of the study. 
Furthermore, according to the experimental design of the study, the 
women included are a selected population. Previous pregnancies, 
breastfeeding periods, the use of oral contraceptives as well as 
premenstrual symptoms can frequently characterize the life of a woman; 
for this reason, the choice of a sample without these features reduces the 
generalizability of these findings. Another limit of the study could 
be represented by the self-esteem assessment. In fact, the Rosenberg 
scale evaluates this aspect in a global manner without exploring in detail 
the various traits of self-esteem and their sub-components. Finally, 
we did not find (with the exclusion of the progesterone predictive power 
for the Rosenberg score) significant relationship between sex hormone 
blood levels and emotional/brain connectivity parameters. However, it 
is important to recall that the biochemical changes across the MC are 
not only about the fluctuation of the four biomarkers investigated in the 
present article, but include a wider group of other metabolic and 
endocrine factors. The brain connectome is probably influenced by a 
complex interaction among all these factors. This could explain why IC 
(that is itself the result of this complex biochemical interplay) benefits 
from a greater predictive power as compared to a single hormone. So, 
further studies, including a larger cohort, less stringent exclusion criteria 
and a more thorough investigation of the hormonal and metabolic 
profiles as well as more specific psychometric tools are necessary to 
confirm these results. Concerning some aspects of the ROIs selection, 
we should remember that AAL is a structural atlas, and as such, could 
represent a limitation for studies on the brain connectivity. These atlases 
typically rely on macro-anatomical boundaries that may not align with 
the both functional or microstructural organization of the brain, risking 
a misrepresentation of functionally relevant networks. However they 
remain a valuable tool for studying brain connectivity because they 
provide a standardized framework for dividing the brain into regions of 
interest, enabling consistent and reproducible assessment of connectivity 
across studies. In absence of cerebellar ROIs, we  cannot conclude 
whether the cerebellum is involved or not in the MC-related brain 
connectivity changes. This represents a limitation, primary due to the 
intrinsic characteristics of the MEG, and could be better investigated in 
the future by integrating high temporal resolution techniques (e.g., MEG 
or EEG) with MRI which provides a better resolution of the cerebellar 
regions. Also, we found high predictive power on the self-perception 
sphere only in the peri-ovulatory phase but not in the early-follicular 
and the mid-luteal phases. This aspect may be due to a less marked 
difference between T2-T3 and T3-T1 in edge stability that might not 
be observable given the small size of our cohort. This aspect seems to 
be supported by a recent study on brain connectivity reconfiguration 
patterns across the MC (Liparoti et al., 2024) that found a clear difference 
in the stability of the brain dynamics only in T2-T1 comparison.
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