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Mobile, low-cost, and energy-aware operation of Artificial Intelligence (AI)

computations in smart circuits and autonomous robots will play an important

role in the next industrial leap in intelligent automation and assistive devices.

Neuromorphic hardware with spiking neural network (SNN) architecture utilizes

insights from biological phenomena to o�er encouraging solutions. Previous

studies have proposed reinforcement learning (RL) models for SNN responses

in the rat hippocampus to an environment where rewards depend on the

context. The scale of these models matches the scope and capacity of small

embedded systems in the framework of Internet-of-Bodies (IoB), autonomous

sensor nodes, and other edge applications. Addressing energy-e�cient artificial

learning problems in such systems enables smart micro-systems with edge

intelligence. A novel bio-inspired RL system architecture is presented in this work,

leading to significant energy consumption benefits without foregoing real-time

autonomous processing and accuracy requirements of the context-dependent

task. The hardware architecture successfully models features analogous to

synaptic tagging, changes in the exploration schemes, synapse saturation, and

spatially localized task-based activation observed in the brain. The design has

been synthesized, simulated, and tested on Intel MAX10 Field-Programmable

Gate Array (FPGA). The problem-based bio-inspired approach to SNN edge

architectural design results in 25X reduction in average power compared to

the state-of-the-art for a test with real-time context learning and 30 trials.

Furthermore, 940x lower energy consumption is achieved due to improvement

in the execution time.

KEYWORDS

reinforcement learning, system architecture, spiking neural network, neuromorphic

hardware, low-cost, low-energy, context-dependent task, autonomous

1 Introduction

Device markets associated with the Internet of Things (IoT) continue to grow

relentlessly, fueled by new segments such as the Internet of Bodies (IoB) comprising

wearable and implantable intelligent sensor systems. The widespread computation

paradigm, which consists of a small cloud-connected embedded system at the edge, is

rapidly transitioning to a new model. The edge sensor nodes will have artificial intelligence
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(AI) for quick and autonomous decision-making with high security

(Brainchip and GSA, 2023). However, this is not a simple feat due

to the lack of energy-efficient approaches to small-scale recognition

and classification problems. The computational effectiveness of the

human brain is well-recognized, particularly due to the combined

data storage and processing in the same element (Mechonic and

Kenyon, 2022). A typical human brain has 1011 neurons and

1015 synaptical connections, which consume 20 W of power.

Considering a digital simulation of a similar artificial neural

network consumes 7.9 MW, it is clear novel approaches are needed

(Wong et al., 2012). Parallel and event-driven architectures (Dan

and Poo, 2004), exemplified by Spiking Neural Networks (SNNs),

operate based on Spike-Timing-Dependent Plasticity (STDP).

This mechanism facilitates the dynamic adjustment of synaptic

connection strengths in response to temporal patterns between

presynaptic and postsynaptic spikes.

SNN-based architectures provide a compelling framework as

energy-efficient, biologically plausible alternatives to traditional

von Neumann machines. Spiking neurons can be modeled with

varying complexity (Izhikevich, 2004). Most implementations

avoid the full Hodgkin-Huxley model (Hodgkin and Huxley, 1952)

that requires solving a minimum of four differential equations with

tens of parameters using floating point arithmetic. For example, the

Leaky integrate-and-fire (LIF) model (Gerstner and Kistler, 2012)

provides a good compromise between accuracy and complexity.

An artificial learning agent in a reinforcement learning (RL)

system discovers which actions yield the most reward through

trials (Sutton and Barto, 2018). Sequential decision processes in

RL are promising for implementing intelligence in autonomous

robots. Hence, associated learning algorithms have been under

scrutiny. Neuromorphic many core processors, such as Loihi

(Davies et al., 2018), have enormous benefits compared to general-

purpose processors in addressing machine learning applications

at high energy efficiency. Loihi is a neuromorphic processor with

an energy-delay product that outperforms conventional CPUs by

over three orders of magnitude. It features 16 MB of synaptic

memory, enabling over 2.1 million synaptic variables per mm2—

more than triple the density of its predecessor, TrueNorth.

While Loihi’s neuron density is slightly lower than TrueNorth’s,

this trade-off allows for a significantly expanded feature set,

including support for various sparse matrix compression models,

flexible network connectivity, and variable weight precision. These

enhancements ease programming constraints and improve the

processor’s versatility. Neuromorphic processors are sufficiently

flexible and programmable to implement versions of supervised,

unsupervised, or reinforcement learning schemes on up to one

million neurons per chip. However, such solutions have high

costs, complexity, and power dissipation that do not often fit the

application-specific optimization requirements of the small edge

sensors. Work presented by Donati et al. (2019) utilizes a custom

Dynamic Neuromorphic Asynchronous Processor (DYNAP) for

executing SNN composed of 192 neurons. The spiking learning

method achieves 74% accuracy with SNN power consumption of

only 0.05 mW. The component does not have an online learning

feature, but provides a promising initial step for application specific

real-time low-energy operation.

Field-Programmable Gate Arrays (FPGAs) have been the

platform of choice recently to investigate application-specific

optimizations in digital SNN architectures. Among these,

multiplier-less approaches have received much focus in achieving

higher speed with lower cost and power dissipation (Soleimani

et al., 2012; Farsa et al., 2019; Asgari et al., 2020). In both (Farsa

et al., 2019; Asgari et al., 2020), 32-bit fixed-point numbers

represent digitized neuron voltage potential and synapse weights,

and simple shift operations replace complex multiplication

functions. FPGA implementation in Asgari et al. (2020) builds on

recent animal studies with shorter sequences to learn from single

stimulus-response pairs across multiple contexts (Raudies and

Hasselmo, 2014). Although the size of the RL network required

for the application is modest, a synapse module in this work

consumes 172 slices of Look-Up Tables (LUTs) and 38 flip-flops

(state elements). A digital architecture is targeted in Yang et al.

(2020) using compartmental neuron (CMNs) models to enhance

biological realism through a multiplier-less approach for energy

efficiency. While the implementation on four Altera Stratix III

EP3SL340 FPGsA offers significant advancements in biological

realism and computational efficiency, it comes with a relatively

high network communication overhead for simple tasks. Yang et al.

(2022) introduces a biological-inspired cognitive supercomputing

system (BiCoSS) that uses large-scale spiking neural networks

(SNNs) to study neural mechanisms. BiCoSS features a digital

architecture with over four million neurons implemented on

FPGAs. It is reported to outperform other large-scale approaches

in real-time computational capability, but is not evaluated for

smaller scale energy-aware edge applications. NADOL architecture

presented in Yang et al. (2024) incorporates dendritic processing

to enhance spike-driven learning. NADOL improves power

efficiency and learning speed, but has lower accuracy compared

to supervised deep learning networks due to limitations of the

two-layer architecture.

Different techniques are demonstrated in our previous

work (Rasheed et al., 2024) to reduce logic complexity in

implementing STDP for reinforcement learning at the edge. Given

a context-dependent task with rewarding and non-rewarding

action sequences (Raudies and Hasselmo, 2014), significant RL

network energy savings are henceforth achieved compared to the

state of the art. However, all spikes generated by the network

need to be monitored by an external processor, and replay

cycles must be activated at the correct times for learning to

occur. Context changes must be manually detected, and frequent

relearning (replay) activation is necessary to retain memory.

Hence, the complete system based on the existing RL network is

incompatible with real-time autonomous operation. A challenging

aspect of real-time operation is preserving energy efficiency while

simultaneously achieving high learning accuracy. Not an easy feat,

this is achievable through bio-inspired enhancements at the system

architecture level. These enhancements are outlined below as the

original contributions of this work and are further detailed in the

following sections.

i) Replay with synapse locking: Recent animal studies indicate

synapses can saturate after Long Term Potentiation (LTP)

and Long Term Depreciation (LTD) activities (Nguyen-Vu

et al., 2017). This results in temporary inhibition of further

LTP and LTD activities on the same synapses, which can

also be considered a desirable property for energy-efficient RL
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architectures. As long as the context does not change, synapses

with accumulated “large” weights through LTP or “small”

weights through LTD can exploit their recent learning instead

of modifying their weights further during the next exploration

cycles. The Replay Sequencer proposed in this work contains

a synapse locking mechanism that will disable the synapses

with extremely elevated or diminished weights through recent

LTP/LTD operations from changing until the detection of the

next context change.

ii) Senso-motoric event detection and scratchpad: Our previous

implementation (Rasheed et al., 2024) includes a scratchpad to

add a temporal hysteresis to hippocampus neurons to prevent

frequent LTP/LTD activities on the same mid-layer neuron,

which consequently optimizes the overall RL energy dissipation.

Further enhancements are proposed in this work to save energy

associated with LTP/LTD events, inspired by a relationship

discovered two and a half decades ago between synaptic tagging

and long-term potentiation (Frey and Morris, 1997). A Senso-

Motoric Event Detection Unit and a new Scratchpad Unit are

integrated to identify spike sequences that represent a new

context or new Senso-motoric aspects of an existing context.

Temporal hysteresis is then applied to prevent modification

of synapse connections unrelated to such significant events.

This ensures that recurring senso-motoric observations during

exploration do not create new energy-consuming replay cycles.

iii) Learning evaluation and exploration reseeding: Recent findings

not only stress the significance of insula and ventromedial

prefrontal cortex (vmPFC) in balancing exploration and

exploitation in reinforcement learning (Blanchard and

Gershman, 2017), but infer a monitoring function at vmPFC

and a response function at dorsomedial prefrontal cortex

(dmPFC) for the ongoing action plan to drive new exploration

schemes (Domenech et al., 2020). This phenomenon inspires

a Learning Evaluation Unit in the presented hardware

organization.

iv) Power management through coarse and fine clock gating:

Patterns of localized brain activation have long been observed

during cognitive tasks (Posner and Raichle, 1994). It has

also been claimed that spatially localized brain activation can

be regulated voluntarily through learning (deCharms et al.,

2004). Both coarse and fine clock gating features integrated

into the power management architecture in this work serve

the same purpose as containing the power dissipation to the

portions of the hardware that need to be essentially active.

Clock gating is a well-known power reduction technique

in digital electronics. Nevertheless, the particular application

of the scheme in this work properly complements the rest

of the presented bio-inspired approaches to reduce energy

consumption further.

The rest of the paper is organized as follows: Section 2

presents an energy-aware implementation of the bio-inspired

real-time system architecture for the context-dependent RL task

with the features described above in (i–iv). Section 3 presents

verification and simulation results to quantify the benefits of the

new architecture. Finally, a discussion of the results is provided and

significant conclusions are summarized.

2 Materials and methods

2.1 Existing framework

A relatively straightforward RL model for a context-dependent

task is chosen for the edge application based on Raudies and

Hasselmo (2014). This task involves a total of four physical

locations, with two in context A (A1, A2) and two in context B

(B1, B2), as illustrated in Figure 1A. Each location contains either

item X or Y, resulting in eight possible triplets (e.g., A1X, A2X,

A1Y, etc.). These triplets correspond to the activation of different

pairs of sensory inputs in the SNN, as displayed in Figure 1B.

Upon selecting between the two contexts and a location within

the chosen context, the mouse receives a reward for exactly half of

these triplets. When activations from one pair of sensory neurons

move through the second layer to the third, the motor neurons

generate a “dig” or “move” action. The inhibitory interconnections

among neurons in the hippocampus andmotor layer, depicted with

dashed lines in Figure 1B, facilitates the winner-take-all (WTA)

network as described in Asgari et al. (2020). To achieve this,

inhibitory non-plastic synapses with substantial negative weights

are incorporated into the network. In the proposed structure,

each inhibitory connection is realized through a cost-effective

combinational dendrite link with a fixed negative value, activated

by the first neuron to fire in a given layer. It is anticipated

that multiple neurons in a layer may fire simultaneously as

the supported number resolution is decreased for optimizing

energy. Therefore, the proposed scheme implements prioritization,

which is configurable via multiplexed inhibition wires as part of

the network’s random initialization. Incorporating random WTA

priority decreases the latency of the exploratory RL trials.

The machine learning algorithm involves repeated cycles

of exploration and replay modes orchestrated by an external

controller or software in the original approach. During the first

phase, random triplets are produced to simulate exploratory trials

by feeding sensory input in Figure 1C. The prosecution can involve

multiple “move” motor actions before culminating in a “dig”,

transitioning the machine to the replay mode or the second phase.

Based on whether the “dig” yields a reward, the network undergoes

either potentiation or depression of the synapses that contribute to

the final “move” and “dig”. This necessitates the external controller

to monitor all related neuronal activity.

The random initialization of neuron potentials and synapse

weights may lead to numerous “move” iterations in the exploration

phase before any replay can occur for learning, inevitably

lengthening the learning latency. Furthermore, the same synapses

may undergo both potentiation and depression operations across

consecutive replays. Although this is expected to correct its

course over time, it wastes time and energy. The previously

proposed implementation with off-line learning integrates a

hippocampus hysteresis scratchpad, as illustrated in Figure 1C,

which monitors whether the synapses from the last sequence

have been recently altered. If they have, the replay cycles are

bypassed. Once the scratchpad indicates all hippocampus nodes

have been recently replayed, the same synapses can be adjusted

again, allowing plasticity to take effect after fully utilizing the

existing hippocampus neurons.
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FIGURE 1

(A) Context-dependent task, (B) SNN for the given RL task (Raudies and Hasselmo, 2014), and (C) original RL network implemented using

SystemVerilog on FPGA with o�-line learning control and hippocampus hysteresis scratchpad (Rasheed et al., 2024).

2.2 Senso-motoric event detection and
scratchpad

It is proposed by Frey and Morris (1997) that long-term

potentiation (LTP), which is primarily responsible for memory

in the mammalian brain, initiates the creation of short-lasting

“synaptic tag” at the potentiated synapse to delay the next LTP event

as shown in Figure 2A. This behavior is expected to save energy

because the repetitive stimulation of the same synapses for new

learning processes is avoided. Senso-motoric activity of the network

is monitored in this work such that input triplet-output dig/move

groups are suppressed from relaunching new energy-consuming

replay sequences through the added hardware units. Bio-

inspired senso-motoric event detection and scratchpad features

are depicted in Figure 2B as an enhancement to the previous

hippocampus hysteresis scratchpad. The senso-motoric hardware

implementation of the system effectively manages sensory inputs,

events, and rewards by tracking various combinations of valid

triplets, corresponding actions, and rewards, preventing redundant

replay events. The scratchpads help detect context changes by

identifying new reward feedback for different events, ensuring

that only relevant data is processed. A synapse saturation signal

indicates when a context is fully explored, and if a context change is

detected, the scratchpads update with new values.

The senso-motoric implementation saves energy by optimizing

how sensory inputs, events, and rewards are processed. The synapse

saturation signal indicates when a context has been fully explored,

signaling that learning in that context is complete. If a context

change is detected, the scratchpads are updated with new values,

ensuring the system only focuses on new, relevant information,

which further minimizes energy use.

2.3 Learning evaluation and exploration
reseeding

Exploring new action plans vs. exploiting previous learning

requires a delicate balance, because new explorations and new

replays for learning consume energy. Recent studies identify

collaboration between the insula and ventromedial prefrontal

cortex (vmPFC) in balancing exploration and exploitation in

reinforcement learning (Blanchard and Gershman, 2017). vmPFC

monitors the ongoing plan while dorsomedial prefrontal cortex

(dmPFC) exhibits activation for new exploration when the existing

plan is not rewarding (Domenech et al., 2020), as illustrated in

Figure 3A. The Learning Evaluation unit, designed to achieve a

more energy-efficient balance in the machine, serves two purposes:

The unit skips learning (replay) activities when exploration does

not result in new material to learn. It also triggers exploration

reseeding in this scenario and in cases when there has been a

long exploration period without any discovery. This operation

changes the network stimulus randomization seed and the

inhibition priority across the hippocampus layer to reduce the time

needed to identify the subsequent meaningful discovery during

exploration. Figure 3B depicts bio-inspired learning evaluation

and exploration of reseeding features. The transitions between
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FIGURE 2

Bio-inspiration from (A) synaptic tagging for new hardware units: (B) senso-motoric event detection and scratchpad.

bio-inspire learning evaluation and exploration reseeding are

managed by the reinforcement learning (RL) system control

module running in the FPGA hardware, which functions as a

Moore-type Control Unit. The hardware architecture manages

transitions between system states (initialization, rest, explore, and

replay) to optimize energy use. It activates learning and replay

processes only when needed, avoiding unnecessary activities, which

reduces energy consumption.

The energy savings within the system are achieved through

efficient management of transitions between different states

(system initialization, system rest, explore, and replay) by the

reinforcement learning (RL) system control module. The system

operates across defined states, ensuring that energy-intensive

processes like learning and replay are only activated when

necessary, avoiding unnecessary exploration or learning activities

that would otherwise consume additional energy.

2.4 Replay with synapse locking

The saturation hypothesis explains how synapse can

temporarily inhibit further LTP and LTD activities based on

recent history of experience (Nguyen-Vu et al., 2017). The idea,

illustrated in Figure 4A, is utilized in this work to lock each synapse

weight after the replay sequence that modifies it. The lock stays

in effect until a discrepancy is discovered in reward patterns,

for example, due to a context change, which causes the synapse

to unlock for the subsequent replay. This enhancement to the

hardware architecture requires a “lock” bit to be stored in each

synapse. The locking and unlocking mechanism is integrated

into the Replay Sequencer Unit as shown in Figure 4B. The RL

system control module running in the FPGA hardware includes

a replay sequencer using a Johnson counter to revisit previous

experiences and strengthen learning. It sequences neurons and

applies replay signals to support synaptic plasticity (LTP and

LTD). The synapse lock function ensures that specific synaptic

connections are preserved or modified as needed, and targeted

neurons are activated during replay to reinforce learning.

The system conserves energy by using a replay sequencer

to revisit only necessary past experiences, reducing

computational load. It applies replay signals selectively

to essential neurons, ensuring efficient synaptic plasticity

without unnecessary adjustments. The synapse lock feature

stabilizes key connections, preventing continuous changes,

and only activates neurons needed for replay, minimizing

energy use.

2.5 New energy-e�cient RL datapath
architecture

The entire datapath architecture for energy-efficient RL systems

to support edge applications is depicted in Figure 5, which presents

the datapath of the implemented top-level module, and comprises

sensory, hippocampus and motor neurons organized in a RL

network structure designed to associate sensory inputs with motor

actions through reinforcement learning. The system is equipped

with various input and output signals for operation control

and interaction with external system components, including

initialization, reset, system clock (CLK), sensory input (sense), and

reward signals. In the presented framework, reward corresponds

to digging that results in finding the seeked item e.g., cheese

for a mouse. The datapath evaluates if a new senso-motoric

discovery is made during exploration phase, and signals either

NOTHING TO LEARN or LEARN NEW to indicate to the system

control unit if a new replay sequence needs to be started for

learning. In turn the control unit asserts REPLAY signal to start

a new learning session. Network seeding logic allows variations in

initialization of synapses and neurons and prioritization order in

WTA scheme.
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FIGURE 3

Bio-inspiration from (A) dmPFC and vmPFC coordination for changing exploration scheme for new hardware units: (B) learning evaluation and

network seeding logic.

FIGURE 4

Bio-inspiration from (A) synapse saturation for new hardware feature: (B) synapse locking as part of Replay Sequencer Unit.

The RL system datapath thus integrates sensory triplet

detection, filtering, encoding, and staging logic that allow

the RL network to function with autonomy. The RL system

control module manages state transitions and control signals

essential for the RL system’s operation. The RL Network

module is tailored for synchronous reinforcement learning, with

multiple interconnected neuron layers that process sensory inputs,

generate spikes, and produce motor responses. Each neuron

node module goes through different states (active, waiting)

before qualifying for firing. Each synapse module represents

the synaptic connections between neurons in the network,

maintaining and modifying synaptic weight as a result of LTP/

LTD operations.

Comparing this design and the starting architecture in Figure 1,

the hardware complexity is inevitably increased. However, the

added complexity is well-justified, because the initial approach does

not have fully autonomous learning capabilities in real-time. Off-

line learning requires a minimum of support for an additional

external processor, which generally increases both cost and average

power dissipation. The following section will explore the theoretical

and simulation-based estimation of the benefits associated with the

features supported by the new architecture.
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FIGURE 5

RL system datapath.

FIGURE 6

Finite-State Machine (FSM) for real-time RL control and coarse clock gating.

FIGURE 7

Fine clock gating per synapse.

2.6 Power management

2.6.1 Coarse clock gating in control unit
A simple control Finite State Machine (FSM) is implemented

to orchestrate various operation phases in the previous

implementation for real-time RL, as depicted in Figure 6.

The System clock used to run the datapath logic is only enabled

during exploration and learning phases, but is otherwise turned

off. This implementation significantly reduces average power by

eliminating dynamic power consumption in the datapath logic

for edge sensors where new sensory inputs may not be available

for long periods. The RL processor is thus compatible with the

duty cycling power management modes widely utilized in wireless

sensor networks.

2.6.2 Fine clock gating in synapse logic
Synapses are the most common logic elements in RL network.

Therefore, turning off the individual clock signal to each synapse

when there is no pre-synaptic spike to process and no replay, as

shown in Figure 7, results in a significant reduction in dynamic

power consumption.
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FIGURE 8

Example simulation results with (A) no real-time autonomous learning features (requires a control processor support), (B) senso-motoric event

detection and synapse locking features without exploration reseeding, (C) senso-motoric event detection and synapse locking with exploration

reseeding.

3 Results

Full RL system architecture, which consists of the datapath

and control units illustrated in Figures 5, 6, respectively,

is implemented using SystemVerilog hardware description

language and synthesized for Intel MAX10 Dual-Supply FPGA

10M08DAF256C8GES. A simulation testbench is utilized to

evaluate the time it takes to explore and discover all possible

triplet combinations from the sensor inputs. A replay phase is

launched once the exploration results in a rewarding or non-

rewarding dig action to train the associated neurons. After all

triplet combinations are discovered, 100 trials of random sensory

inputs are executed to investigate RL accuracy. After the testbench

detects 100 occurrences of motor (dig or move) events, half of the

rewarding outcomes are changed in the context, and 100 more

random trials are run to verify the system’s ability to adapt to

changes in context.

3.1 Senso-motoric event detection and
synapse locking

Figure 8A depicts the system with no real-time autonomous

bio-inspired learning features. The system is able to discover

different sensory scenarios to learn, but is unable to retain the

learning without support from an external processor. Figure 8B

excludes exploration reseeding and clock gating features. However,

senso-motoric event detection and synapse locking are included

to retain short and long-term memory of observed rewards. Once

the system trains itself for the current context in about 1,350 clock

cyles, 100% accuracy is achieved for all triplets afterwards. There are

delays in resolving new sensory events during the trial runs. This is

marked in Figure 8B as the period of exploration with no significant

event. Due to a lack of reseeding in the network, the system cannot

generate meaningful sensory and motoric spike sequences during

this period. Once the significant context change occurs in cycle
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FIGURE 9

Example simulation with added clock gating. (A) First ∼10,000 cycles, including one major context change, (B) convergence to 100% in the absence

of further context changes.

TABLE 1 Simulated feature analysis of cost, execution time, average power, and energy dissipation.

Design metric Baselinea

no autonomy
SED & SLb SED & SL+ ERc AF &CCGd AF &CFCGe

Cost (No. of LEs /registers) 2,706/630 4,574/948 4,587/948 4,564/948 4,731/1050

Accuracy (%) after 12 100 100 100 100

init. context learning

Execution time (µs) 39.2 21.6 21.8 21.8 21.8

init. context learning

Execution time (µs) 66.2 192.5 84.6 108.7 108.7

with 100 trials

Power cons. (mW) 21.59 44.9 43.81 41.73 30.04

Energy cons. (nJ) 846 968 954 909 655

init. context learning

Energy Cons. (nJ) 1,430 8,644 3,706 4,536 3,265

with 100 trials

aLogic-optimized (Rasheed et al., 2024) with no real-time learning features.
bSenso-motoric event detection and synapse locking.
cSensomotoric event detection and synapse locking + exploration reseeding.
dAll previous features + coarse clock gating.
eAll previous features + coarse and fine clock gating.

12,250, the system retrains itself to slowly approach 100% accuracy

again. Overall accuracy in the figure includes the firing of non-

rewarding motor actions during the learning phase. When the

simulation cycles are extended, initial errors become negligible, and

this curve approaches 100% as well.

3.2 Addition of exploration reseeding

Exploration reseeding allows faster resolution of different

sensory inputs in the network, as shown in Figure 8C. There are

100 trials before and 100 trials after context change. The operations,
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TABLE 2 Comparison across recent synaptic strength based STDP

learning rule implementation for 16-node reinforcement learning system.

Asgari
et al.
(2020)

Rasheed
et al.
(2024)

This work

Autonomy RT + SAα External

control

RT + SAα

FPGA used in

implementation

Kinetix7 Cyclone IV GX MAX10 DSβ

Process technology

(nm)

28 60 55

Core supply voltage

(V)

1 1.2 1.2

Synapse cost (F/Lδ) 38/172 6/24 12/57

RL system cost (F/Lδ) 8,096/19,059 538/2,648 1,050/4,731

Synapse clock, fmax

(MHz)

151 355 126

RL system clock, fmax

(MHz)

148.4 71 62.5

Cycle countγ , CC 30,000 2,000 1,887

Average power

consumptionγ (W)

1.81 0.198 0.078

Energy consumptionγ

(µJ)

2,257 6 2.4

αRT, real time; SA, stand-alone; βDS, dual supply; δF =# slice flipflops; L:# slice LUTs.
γ Task includes initial context learning + 30 trials.

which last up to 15,500 cycles (Figure 8B) when learning evaluation

with exploration reseeding is not available, complete by clock cycle

8,870. As will be further discussed later, this results in significant

energy reduction in the operation of the edge RL system.

3.3 Power management through clock
gating

The learning time of the initial context does not extend with

coarse clock gating, but the total execution time of running the

trials is extended as depicted in Figure 9A. This is because the

evaluation of new sensory inputs in the RL network is disrupted

with clocks turning on and off as the machine switches between

states. One would need to investigate the average power reduction

benefit of the coarse clock gating against the extended execution

time in scenarios with more realistic idle time to determine the

impact on energy consumption from this feature fully. Fine clock

gating at the level of synapses does not add any penalties to the

execution time. Figure 9B illustrates an example of an extended set

of trials where the overall accuracy approaches 100% as learning

(training and retraining) periods become negligible.

3.4 Quantification of feature benefits

MAX10 Dual-Supply FPGA supports a core supply voltage

of 1.2 V for lower power consumption. Different design versions

comfortably run at 62.5MHz clock frequency at this supply voltage.

Sleep modes available on this FPGA have not been turned on, but

can be utilized in energy-aware applications where the RL network

stays idle for extended periods. Therefore, the comparisons in

Table 1 only concern active modes of operation.

The cost of implementation grows with added features, as

expected. Real-time self-driven implementation of a 26-node

RL network roughly doubles compared to the simple (baseline)

RL network with no online autonomous learning capacity

(first column in Table 1). Energy reduction features add to

implementation cost by about 5%. Clock cycle count during the

learning of initial context reduces significantly with added bio-

inspired features, as observed in the third row of the table. However,

resolving of sensory inputs for determining action takes much less

time when there is support for exploration reseeding (fourth row

of the table). The exploration reseeding feature reduces average

power consumption due to reduced switching activity. However,

the actual impact on power dissipation comes with the fine-grain

clock gating feature represented by the last column of Table 1. The

coarse clock gating feature does not reduce energy consumption

due to increased execution time while running trials, although

energy consumption is reduced during learning activity. As the idle

time between consecutive sensory inputs increases, coarse clock

gating may start showing further advantage. Energy consumption

of the baseline during the 100 trials should be ignored due to

extreme inaccuracy in resolving the sensory inputs in the absence

of an external processor support. Implementing fine clock gating

improves energy consumption by 33%.

4 Discussion

When the learning is finished, (locked) synapses disable local

clock switching. Therefore, the fine clock gating feature contributes

to energy efficiency during the trial runs. However, as noted in

Table 1, other features also contribute to improvement of different

design “goodness” measures such as context learning execution

time (event detection and synapse locking), execution time after

learning during trial runs (exploration reseeding), and power

dissipation during context learning (coarse clock gating).

The optimized real-time and stand-alone RL system

implementation is summarized in Table 2, in comparison to

state of the art, to provide insights into the benefits of the features

presented in this work. The proposed system architecture enables

fully autonomous reinforcement learning to detect and learn

context changes. This is functionally equivalent to the work by

Asgari et al. (2020), whereas our previous work (Rasheed et al.,

2024) requires an external processor to control the RL network.

Special energy-saving synapse features such as locking/unlocking

and fine clock gating significantly increase the synapse cost

regarding flip-flop and LUT count compared to Rasheed et al.

(2024). However, the power-managed synapse cost is still lower

than that reported by Asgari et al. (2020). In this work, the cost

of supporting an energy-optimized, fully stand-alone real-time

RL system is roughly doubled when compared to the simple

RL network driven by an external processor (Rasheed et al.,

2024). Added energy-saving features degrade the speedpath in

this work, which explains the lower clock frequency. However,
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significantly lower average power dissipation combined with

reduced clock cycle count results in significant energy saving

that is 940x lower than the one reported by the more complex

system in Asgari et al. (2020), and is less than half of our

previous non-autonomous implementation (Rasheed et al.,

2024).

5 Conclusions

Next edge sensor systems will have simple recognition

intelligence integrated to their operations. Although neuromorphic

hardware designs can step up to the task, many general purpose

neuromorphic processors do not meet the energy budgets of

wireless sensors. This research demonstrates that there are many

opportunities for inspiration from neurosciences that can help

optimize hardware architectures to achieve far better energy

efficiency than the state of the art. We particularly focus

on four biological features, namely synapse locking, synaptic

tagging, change of exploration schemes and localized activation

with energy conservation perspective. Integration of these ideas

directly to an existing RL network implementation on an FPGA

provides an order of magnitude average power savings and

close to three orders of magnitude energy savings in performing

the task. The presented architecture can potentially be scaled

to a custom VLSI design to fit into the microWatt sensor

system. Most importantly, the research results reveal brain-

inspired computation ideas should be revisited with a new

energy-awareness perspective to address the particular needs of

real-time edge AI in wireless sensor nodes. The future work

will include more complex learning benchmarks for pattern

recognition applications.
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