AUTHOR=An Yuan , Yang Chunyu , Zhang Shuo TITLE=A lightweight network architecture for traffic sign recognition based on enhanced LeNet-5 network JOURNAL=Frontiers in Neuroscience VOLUME=18 YEAR=2024 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1431033 DOI=10.3389/fnins.2024.1431033 ISSN=1662-453X ABSTRACT=

As an important part of the unmanned driving system, the detection and recognition of traffic sign need to have the characteristics of excellent recognition accuracy, fast execution speed and easy deployment. Researchers have applied the techniques of machine learning, deep learning and image processing to traffic sign recognition successfully. Considering the hardware conditions of the terminal equipment in the unmanned driving system, in this research work, the goal was to achieve a convolutional neural network (CNN) architecture that is lightweight and easily implemented for an embedded application and with excellent recognition accuracy and execution speed. As a classical CNN architecture, LeNet-5 network model was chosen to be improved, including image preprocessing, improving spatial pool convolutional neural network, optimizing neurons, optimizing activation function, etc. The test experiment of the improved network architecture was carried out on German Traffic Sign Recognition Benchmark (GTSRB) database. The experimental results show that the improved network architecture can obtain higher recognition accuracy in a short interference time, and the algorithm loss is significantly reduced with the progress of training. At the same time, compared with other lightweight network models, this network architecture gives a good recognition result, with a recognition accuracy of 97.53%. The network structure is simple, the algorithm complexity is low, and it is suitable for all kinds of terminal equipment, which can have a wider application in unmanned driving system.