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Introduction

Using mathematical analyses, Penrose proposed a relation between consciousness

moments and quantum computations occurring in the microtubules (MTs) of the brain. It

was suggested that there is a link between brain MTs and consciousness via the entangled

stage of delocalized π electrons present in the brain MTs (Hameroff and Penrose, 2014).

Then, we will attempt to comment on this hypothesis step by step, looking for a possible

future experimental approach that probes the hypothesis.

Brain microtubules

We should indicate that MT assembly–disassembly dynamics requires the binding

of tubulin (the main component of MTs) to GTP and the hydrolysis of this Guanosine

triphsophate (GTP) to Guanosine diphosphate (GDP) (for a review, see, for example Avila,

1990; Beckett and Voth, 2023).

Brain tubulin contains a specific β-subunit isotype, which is almost exclusively

present in the neurons of chordates (Sullivan and Cleveland, 1984). In addition, there is

specific post-translational phosphorylation of that neuronal β subunit, whereas no such

modification was found in other β-tubulin isotypes (Diaz-Nido et al., 1990).

MTs, composed of tubulin, are very abundant in the brain. By measuring tubulin

levels in the cytosol of different porcine organs, including the brain, using a sensitive

radioimmunoassay, it was found that tubulin accounts for 20 ± 5% of the total soluble

proteins from the porcine brain (Hiller and Weber, 1978; Diez et al., 1984). Remarkably,

the amount of tubulin found in peripheral tissues is∼10 to 20 times lower than the amount

found for tubulin in the brain.

Furthermore, brain MTs contain several MT-associated proteins (MAPs) that stabilize

those polymers, including the tau protein (Avila, 1990). There are three specific features

for brain MTs that distinguish them from MTs from other sources: (a) they are present in
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a higher relative amount, (b) they can nucleate in a non-

centrosome/basal body-directed way, and (c) they could favor the

formation of subcellular neuronal structures, such as dendrites

(Figure 1).

A huge amount of tubulin is assembled into MTs from

centrosomal- or non-centrosomal-directed growth (Piehl et al.,

2004). Indeed, potential types of MT assembly independent of the

well-known models (Margolis and Wilson, 1978; Mitchison and

Kirschner, 1984; Piehl et al., 2004) may also occur. In mature

neurons, MTs can nucleate randomly throughout the whole cell

(Stiess et al., 2010), which could be the source of the sophisticated

morphologies found in neurons that may be related to some brain-

specific functions, such as consciousness.

Indeed, the number and arrangement of MTs and how closely

they extend to a specific zone may play critical roles in synaptic

vesicle delivery and, thus, in signal transmission. The trillions

of synapses could differ not only in shape and synapse area but

in a multitude of differences in MT arrangement that could be

responsible for the altered vesicular arrangement in Alzheimer’s

disease (AD) (Wang et al., 2023). Furthermore, the reduced

MT density due to aging and AD may fundamentally change

consciousness as we age and explain consciousness decline in these

conditions (Cash et al., 2003; Zhang et al., 2015).

FIGURE 1

Brain microtubule dynamics, Tubulin GTP/GDP, and consciousness. (A) Tubulin accounts for ∼20% of the total soluble brain protein. (B) Brain
tubulin–GTP can assemble into microtubules. Upon GTP hydrolysis, brain tubulin–GDP depolymerizes from microtubules. We should indicate the
presence of 10 π electrons in the guanine of GTP/GDP and the presence of nuclear spin in the phosphor of GTP/GDP. (C) There is a very dynamic
microtubule assembly/disassembly in which microtubules can nucleate randomly through the whole neuron (Stiess et al., 2010), yielding di�erent
neuron morphologies. The role of subatomic phenomena in that process, like changes in the nuclear spin of the phosphorus present in GTP/GDP
bound to tubulin, is unknown but should be analyzed if it is possible. (D) Proposed association of consciousness with microtubule (MT) dynamics.

Consciousness

Consciousness could be defined as the state of being aware

of something (an environment) within oneself. However, other

theories indicate that consciousness and awareness are different

concepts since consciousness involves several stages, such as

perceiving, feeling, and thinking, and those stages may require

memory activity (Searle, 2000). Furthermore, consciousness may

develop a memory system to create plans for the future (Budson

et al., 2022), which is related to decision-making and planning

(Budson et al., 2022). These definitions of consciousness may

facilitate the search for its mechanisms based on biological

and physical bases, including the most prominent theories of

consciousness: higher-order landscape, global workspace, re-entry

and predictive processing, integrated information, and other

emerging theories (Seth and Bayne, 2022; Lenharo, 2024).

Regarding consciousness and brain localization, regions such

as the thalamus or claustrum (Crick and Koch, 2003) connecting

several cortical and subcortical areas could be involved.

Faster MT vibrations (Hameroff, 2012) could be a possible

source of the observed EEG activity in consciousness that is found

as a sequence of discrete events in synchrony with γ EEG, although

this point has been discussed. It is suggested that there are 40
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consciousness moments per second, related to fractal-like patterns

of MTs (Hameroff and Penrose, 2014). These 40-Hz (γ waves)

consciousness moments could be located in some cortex regions

(Hameroff and Penrose, 2014) and are related to a very fast MT

assembly–disassembly dynamic. Furthermore, it has been reported

that MTs have inside the cell endogenous frequency oscillations

in the range of 100Hz (“high γ”) EGG (Cantero and Cantiello,

2020), in the other interneuronal γ connections (Singh et al., 2021).

Furthermore, EEG γ waves may not be generated by axonal firing

but by dendritic and soma interneuronal connections, suggesting

that consciousness may be related to those changes in MTs present

in dendrites and cell somas (Hameroff, 2010).

Indeed, in neurodegenerative disorders such as AD, resulting

in progressive awareness (consciousness), the dynamics features of

MT assembly-disassembly also are decreased (Peris et al., 2022),

together with a decrease in γ waves (Mably and Colgin, 2018).

Thus, the possible correlation of MT assembly dynamics, γ waves,

and lack of consciousness could be compatible with the proposed

Penrose’s hypothesis.

The entangled stage

The entangled stage could be defined as an ensemble of particles

that cannot be described through individual particles but as a set.

The ensemble is the result of the entanglement of two or more

components, even if they are separated in space. The entanglement

could occur through qubits. A qubit is a subatomic particle, like

the spins of electrons or the spins of nuclear components such as

protons or neutrons. The spin of all of those fermions (electrons,

protons, or neutrons) could contain, in individual particles, a

positive or negative charge. Upon entanglement of two of those

particles with different charges, the result is a null charge. Spin

changes could be used to look at an entangled stage. Furthermore,

qubit is the basic unit in quantum computing, showing two relevant

features: superposition and entanglement (Horodecki et al., 2009).

Delocalized π electrons

Electrons aremoving around the nucleus of an atom in different

orbitals located at different distances of the nucleus, with π

electrons present in π orbital. As previously described, π electrons

have spin configurations (Fang et al., 1995) that could act as qubits.

However, spins of π electrons are difficult to measure since they

can entangle with the surrounding wet environment, causing de-

phasing of any putative quantum coherent phenomena. However,

an exception was suggested for a subatomic particle: the nuclear

spin in phosphate atoms (Fisher, 2015).

Thus, we have a subatomic level with π electrons and

atomic nuclei. These elementary particles have intrinsic quantum

properties, for example, they have their spins. It was described

that spin is the intrinsic angular momentum associated with these

particles (Uhlenbeck and Goudsmit, 1925). For example, spin-up

or spin-down states of these subatomic particles could be present,

and quantum bits (qubits) can exist in both states simultaneously,

permitting simultaneous answers to the computation they encode.

Recently, there has been a dawn of quantum biology in different

biological processes (Ball, 2011). Although traditionally nuclear

spin was not considered to play a role in biological processes, this

view has changed more recently (Vardi et al., 2023). For brain

studies, it has been proposed that only elements with a nuclear spin

I = 1/2 (traditionally labeled like spin up and spin down) should be

used (Fisher, 2015), with phosphorus nucleus being the only brain

element with that particular spin (Fisher, 2015), a putative qubit.1

Wewill discuss below that GTP/GDPmolecules are involved inMT

assembly/disassembly. GTP/GDP is composed of guanine, ribose,

and phosphates. Guanine contains 10 π electrons and phosphates

have their nuclear spin (Figure 1). Nevertheless, there are some

difficulties in using phosphorus (nuclear spin) as a suitable qubit

transporter when memory storage is required. Phosphate ion (as

qubit transporter) spreads out ∼10µm in 10−2 s (Nicholson and

Sykova, 1998), but for qubit memory storage measurements, it may

require times of seconds (or longer ones) as indicated by Fisher

(2015).

Present in the interior of brain
microtubules

In Penrose’s hypothesis, a role of the interior of MTs was

proposed. Notably, in the interior of MTs, not only tubulin is

present. Furthermore, brain MTs associated with Tau protein are

located (Kar et al., 2003), independent of its presence in the outer

surface (Ackmann et al., 2000). In addition, Tau protein could

be modified by phosphorylation (Hanger et al., 2009) and the

phosphorus (nuclear spin) of modified hyperphosphorylated-Tau

may also play a role. Considering the role of Tau in consciousness,

a recent comment has been published (Kosik, 2023). In addition to

Tau, the phosphorylated neuronal β-tubulin subunit could play a

role in consciousness (Diaz-Nido et al., 1990) (Figure 1).

Discussion

The proposed role of the MT in consciousness–

unconsciousness could take place in other events, such as

anesthesia (see below). In unconsciousness or anesthesia, γ waves

are missing, and δ waves are present (Frohlich et al., 2021).

Inter- or intra-cellular wave changes may take place in processes

such as unconsciousness, reversible coma, or sleep, and there

are some similarities and differences among those processes.

Among similarities, there is a presence in those processes of δ

waves but not of γ waves (Frohlich et al., 2021). In addition, in a

model of unconsciousness, such as propofol-induced anesthesia

(Hameroff, 2021), δ waves are present (Frohlich et al., 2021). On

the other hand, it could be possible to be awake and unconscious.

As previously indicated, there is a neurological disorder, AD, that

has been considered as a disorder of consciousness (Salmon et al.,

2005; Huntley et al., 2021) found in awake persons. Indeed, a

characteristic of unconsciousness, such as anosognosia, can be

present in some AD patients in advanced stages (Prigatano, 2009).

1 A qubit is the basic unit in quantum computing, showing two relevant

features; superposition and entanglement (Horodecki et al., 2009).
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Regarding the possible relation between changes in

consciousness and intraneuronal changes, it was suggested,

as indicated, that MTs may play a role at the cellular-molecular-

quantum level in the consciousness process (Penrose, 2001). It was

described that neuron MTs could form functional assemblies with

specific frequencies (Frohlich et al., 2021) that can be regulated

by neuronal brain MAPs such as tau protein. Tau protein’s role in

consciousness disorders, such as AD, can be analyzed in ADmouse

models or in anesthetized mouse models. A correlation between

tau modifications and anesthesia has been described by Chen

et al. (2023). Propofol-induced anesthesia may activate protein

kinase-like GSK3β (Huang et al., 2016), also known as tau kinase I,

and the kinase will modify tau protein at specific residues that are

found in AD (Hanger et al., 2009), preventing the normal assembly

of MTs. Thus, tau protein may play a role in consciousness (see

also Kosik, 2023).

In addition, looking at the effect of phosphor-tau in a transgenic

mouse model overexpressing GSK3β, some features related to

unconsciousness were found (Debski, 1976; Engel et al., 2006;

Hooper et al., 2007). These features could be reversed by decreasing

the level of phosphorylated tau (Llorens-Martin et al., 2013), and

those mouse models could probably be used for further analysis of

consciousness–unconsciousness transitions in both directions.

In conclusion, the influence of brain MTs on consciousness can

be analyzed at different levels: (a) at the cellular (neuronal) level,

where MT dynamics is regulated by GTP, and/or by the presence of

MAPs, such as Tau protein; (b) at molecular level, exploring the role

of GTP hydrolysis and the GTP/GDP binding to tubulin (the main

component of MTs); (c) at molecular-atomic level, deciphering

the role of kinases and phosphates from GTP/GDP bound to

tubulin; and (d) at the subatomic level, by the proposed roles of

π electrons and phosphorus spin nucleus as qubit transporters.

The first three conclusions have been or could be further analyzed,

but the main difficulty at present is analyzing the subatomic

level. However, this is the main point for testing Penrose’s

hypothesis. A proposal that should be experimentally improved

(or forgotten?) using innovative multidisciplinary approaches and

novel instrumentation is available.
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