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Background: Cerebral Microbleeds (CMBs) serve as critical indicators of cerebral 
small vessel disease and are strongly associated with severe neurological 
disorders, including cognitive impairments, stroke, and dementia. Despite 
the importance of diagnosing and preventing CMBs, there is a significant 
lack of effective predictive tools in clinical settings, hindering comprehensive 
assessment and timely intervention.

Objective: This study aims to develop a robust predictive model for CMBs by 
integrating a broad range of clinical and laboratory parameters, enhancing early 
diagnosis and risk stratification.

Methods: We analyzed extensive data from 587 neurology inpatients using 
advanced statistical techniques, including Least Absolute Shrinkage and 
Selection Operator (LASSO) and logistic regression. Key predictive factors 
such as Albumin/Globulin ratio, gender, hypertension, homocysteine levels, 
Neutrophil to HDL Ratio (NHR), and history of stroke were evaluated. Model 
validation was performed through Receiver Operating Characteristic (ROC) 
curves and Decision Curve Analysis (DCA).

Results: The model demonstrated strong predictive performance with 
significant clinical applicability. Key predictors identified include the Albumin/
Globulin ratio, homocysteine levels, and NHR, among others. Validation metrics 
such as the area under the ROC curve (AUC) and decision curve analysis 
confirmed the model’s utility in predicting CMBs, highlighting its potential for 
clinical implementation.

Conclusion: The comprehensive predictive model developed in this study offers 
a significant advancement in the personalized management of patients at risk for 
CMBs. By addressing the gap in effective predictive tools, this model facilitates 
early diagnosis and targeted intervention, potentially reducing the incidence of 
stroke and cognitive impairments associated with cerebral microbleeds. Our 
findings advocate for a more nuanced approach to cerebrovascular disease 
management, emphasizing the importance of multi-factorial risk profiling.
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Introduction

Cerebral Microbleeds (CMBs), as prominent indicators of small 
vessel disease, are closely associated with a spectrum of severe 
neurological disorders, including cognitive impairments, stroke, and 
dementia (Lau et al., 2017; Gorelick and Farooq, 2016; Martinez-
Ramirez et al., 2014), particularly in the context of cerebral amyloid 
angiopathy (CAA) and Alzheimer’s disease (Janelidze et al., 2016; 
Charidimou et  al., 2017; Greenberg and Charidimou, 2018). The 
presence of CMBs not only significantly elevates the risk of both 
hemorrhagic and ischemic strokes (Wilson et al., 2019; Smith et al., 
2017) but also plays a crucial role in unveiling and understanding the 
pathophysiology of cerebrovascular diseases (Wardlaw et al., 2013; Shi 
and Wardlaw, 2016; Lu et al., 2021). CMBs often remain asymptomatic 
in their initial stages. The diagnostic capability of Magnetic Resonance 
Imaging (MRI) in early lesion detection is limited, posing challenges 
in early identification and intervention of CMBs in clinical practice.

Accurate prediction of CMBs is essential for early intervention 
and improving the management of Cerebral Small Vessel Disease 
(CSVD) and its complications. However, an effective predictive model 
for CMBs is notably lacking in clinical settings, limiting comprehensive 
assessment and timely intervention of this critical neuro-
radiological marker.

This study presents a novel predictive model for CMBs by 
integrating multidimensional clinical and biochemical markers into 
the prediction framework. Compared to conventional models that 
primarily rely on imaging features and clinical variables, this approach 
offers a more comprehensive assessment. Traditional predictive 
models typically emphasize standard risk factors, such as age and 
hypertension (Cannistraro et  al., 2019; Gottesman and Seshadri, 
2022), but often lack systematic incorporation of biochemical markers. 
In this model, biomarkers such as sex, hypertension, homocysteine 
levels, neutrophil-to-HDL ratio (NHR), history of stroke, and 
albumin-to-globulin (A/G) ratio were incorporated, all of which have 
been shown to correlate significantly with the occurrence of CMBs 
(Cao et al., 2021; Dobrynina et al., 2018; Casimir and Duchateau, 
2011; Koep et al., 2023; Guo et al., 2023; Wang et al., 2023; Shoamanesh 
et al., 2015). Specifically, NHR is widely used to assess inflammatory 
status and has been linked to increased risk of cerebrovascular events 
(Yu et  al., 2023; Wang et  al., 2022). The A/G ratio, reflecting 
inflammation and nutritional status, is associated with ischemic event 
outcomes (Wang et al., 2023; Yao et al., 2023) and may offer insights 
into cerebrovascular health. Additionally, elevated homocysteine 
levels and history of stroke have been consistently identified as major 
risk factors for CSVD in multiple studies (Cao et al., 2021; Nam et al., 
2019; Ji et al., 2020). Other factors, such as sex and hypertension, are 
critical for CMB prediction due to their roles in vascular function 
regulation (Shoamanesh et al., 2015). Including these factors in the 
model enhances the ability to detect CMBs early and offers a new tool 
for personalized risk assessment, addressing the limitations of existing 
prediction tools that lack biochemical marker integration.

This study aims to develop a comprehensive predictive model for 
CMBs by analyzing extensive clinical and laboratory data from 587 
inpatients in the neurology department. Incorporating a wide array of 
factors including cranial MRI findings, age, gender, history of 
hypertension, diabetes, along with blood biochemical indicators, 
we  endeavor to construct an efficient tool for assessing the risk 
of CMBs.

We employed advanced statistical methods, including Least 
Absolute Shrinkage and Selection Operator (LASSO) and logistic 
regression techniques, to deeply analyze these data, aiming to identify 
risk factors closely associated with the development of CMBs. Our 
study not only reveals a series of significant predictive factors 
correlated with CMBs but also demonstrates their substantial value in 
clinical application. Furthermore, our model efficiently predicts the 
presence of CMBs, providing clinicians with a powerful tool for early 
diagnosis and intervention. These findings offer new perspectives for 
further research and the formulation of future therapeutic strategies.

The outcomes of this research signify a significant advancement 
in the field of personalized medicine and targeted intervention, 
particularly in neurology. Our model holds promise in improving the 
identification and management of patients at high risk for CMBs, 
potentially reducing the incidence of stroke and cognitive impairments 
associated with CMBs.

Methods

Study population and design

In this study, a retrospective approach was adopted, primarily 
informed by the necessity of analyzing pre-existing patient records. 
The research was conducted at the Neurology Department of the 
Affiliated Hospital of Hebei University, spanning from January 2020 
to June 2022. We meticulously compiled data from existing medical 
records, a methodological choice that facilitated an in-depth analysis 
of pre-collected data. The large sample size inherent to this 
retrospective analysis augmented the statistical robustness of our 
findings. To ensure a representative and relevant sample, 
we established specific inclusion and exclusion criteria based on MRI 
sequence quality and clinical conditions. Inclusion criteria were: (1) 
patients aged 55 years or older; and (2) availability of comprehensive 
cranial MRI sequences, including T1-weighted axial, T2-weighted 
axial, T2-weighted fluid-attenuated inversion recovery (FLAIR), and 
axial susceptibility-weighted images. Exclusion criteria were: (1) cases 
with suboptimal MRI image quality; (2) patients with significant 
stroke events potentially affecting accurate CMB assessment; (3) 
patients with severe comorbidities, such as acute myocardial 
infarction, advanced heart failure, critical infections, severe respiratory 
insufficiency, end-stage renal or hepatic disease, or active tumors, 
which could skew laboratory results; (4) patients with conditions of 
non-vascular origins of CSVD, including multiple sclerosis, 
intracranial tumors, or demyelinating diseases of the central nervous 
system; and (5) instances of insufficient clinical or laboratory data. 
This retrospective study was conducted with rigorous adherence to 
ethical research practices. Emphasizing the meticulous collection and 
analysis of pre-existing patient data and records, we  ensured the 
privacy and confidentiality of all participants. All patient records were 
anonymized prior to analysis, with personal identifiers removed to 
uphold strict confidentiality. Furthermore, considering the study’s 
retrospective nature and the use of de-identified data, the Institutional 
Review Board (IRB) of the Affiliated Hospital of Hebei University 
granted an exemption from informed consent. This decision was 
based on the absence of direct patient interaction and alignment with 
ethical and legal standards, ensuring compliance with national and 
international data protection regulations, including the principles of 
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the Declaration of Helsinki. The IRB thoroughly reviewed and 
approved our data protection measures (Approval Number 
HDFYLL-KY-2023-060), affirming that the study met the highest 
standards of patient data security and ethical research practices. This 
commitment to data security and ethical compliance highlights our 
dedication to maintaining participant privacy while contributing to 
cerebral small vessel disease research.

MRI acquisition and assessment for CMBs

In this study, participants underwent brain MRI examinations 
using a 1.5 T MRI scanner (Siemens, Munich, Germany) to assess the 
presence of CMBs. The standardized MRI protocol was tailored to 
optimize the detection of CMBs and included axial T1-weighted, 
T2-weighted fluid-attenuated inversion recovery (FLAIR), and most 
importantly, axial susceptibility-weighted imaging (SWI) sequences. 
Imaging parameters were meticulously set to maximize the visibility 
of CMBs: a slice thickness of 5 mm with a 1-mm interslice gap was 
used across sequences. The SWI sequence, critical for identifying 
CMBs, had repetition time (TR)/echo time (TE) parameters set at 
49/40 ms.

Participants were categorized into CMBs and non-CMBs groups 
based on SWI sequence results, ensuring both groups were assessed 
under identical imaging criteria. CMBs are identified as small, 
rounded, well-defined hypointense lesions on SWI sequences, 
contrasting with the surrounding brain parenchyma (Wardlaw et al., 
2013; Duering et al., 2023). These lesions, typically less than 10 mm in 
diameter, are indicative of hemosiderin deposits resulting from 
microhemorrhages. To minimize misclassification, CMBs were 
distinguished from other hypointense lesions (e.g., iron deposits, 
calcifications, or vascular structures) based on location and 
morphological features. Lesions in areas prone to artifact, such as near 
the skull base or sinuses, were carefully reviewed to ensure accurate 
identification. The identification and precise localization of CMBs 
were independently conducted by two experienced neuroimaging 
specialists, Yan Hou and Huan Zhou, who were blinded to the clinical 
data of the participants. This was to minimize assessment bias. The 
interrater reliability of their assessments was quantified using the 
intraclass correlation coefficient (ICC). The achieved ICC value of 0.85 
indicated a substantial agreement, reflecting a high level of consistency 
between the raters in identifying CMBs. The ICC of 0.85 demonstrates 
robust interrater reliability, underscoring the reproducibility of our 
CMB identification approach. This reliability is critical to ensure that 
group classification is consistent and valid for subsequent analysis. 
This comprehensive approach to MRI acquisition and assessment 
ensures an accurate identification of CMBs, thereby contributing 
significantly to the understanding of cerebral small vessel disease in 
the studied population.

Clinical blood biochemistry analysis

Our retrospective evaluation involved compiling an extensive 
array of clinical blood biochemistry markers from our patient cohort. 
This comprehensive dataset included a wide range of indicators such 
as full blood counts, markers of renal function, electrolytes, 
coagulation profiles, both random and fasting glucose levels, liver 

enzymes, lipid panels, cardiac markers, thyroid function tests, and 
homocysteine levels. In total, 81 diverse laboratory parameters were 
analyzed, providing a detailed insight into each patient’s health status 
and offering a holistic view of their clinical profiles.

Comprehensive clinical evaluation

Each participant in this study underwent a thorough clinical 
evaluation, encompassing the collection of demographic data like age 
and gender, coupled with an exhaustive medical history review. The 
assessment particularly focused on key health indicators, notably 
hypertension, diabetes, hypercholesterolemia, along with histories of 
carotid artery disease and stroke. The definitions for these conditions 
were stringently applied as follows: Hypertension was classified as a 
systolic blood pressure ≥ 140 mmHg, diastolic pressure ≥ 90 mmHg, 
or current antihypertensive medication use. Diabetes was identified 
by fasting glucose levels ≥7.0 mmol/L, 2-h postprandial glucose 
>11.1 mmol/L, or active treatment with antidiabetic drugs. 
Hypercholesterolemia was determined by total or LDL cholesterol 
levels exceeding normal limits. Carotid atherosclerosis was defined 
based on a history of the disease or evidence of plaque or increased 
intima-media thickness in carotid ultrasound imaging.

Statistical methodology

Our analysis encompassed a patient cohort of 587 individuals, 
randomly divided into a training set (412 patients) and a validation 
set (175 patients), following a 7:3 allocation ratio. This division 
facilitated a robust model development and subsequent validation 
process. In line with established practices for predictive modeling in 
medical research, continuous variables were transformed into 
categorical ones. This standard conversion enhances interpretability 
and bolsters the model’s applicability across various clinical settings 
(Bennette and Vickers, 2012; Barrio et al., 2017).

Missing data were handled based on the extent of missingness in 
each variable. Variables with a high proportion of missing values were 
excluded from analysis. For variables with low proportions of missing 
data, multiple imputation was used to fill in missing values, 
maintaining dataset integrity and minimizing potential bias.

For initial data analysis, categorical variables were summarized 
as frequencies and percentages, and baseline characteristics between 
groups were compared using χ2 or Fisher’s exact tests, as appropriate. 
Variable selection within the training dataset was conducted via the 
LASSO regression, using the “glmnet” package in R software 
(version 4.3.0). Variables entered into the LASSO model were 
pre-selected based on clinical relevance and prior literature linking 
them to cerebrovascular health and CMB risk. This approach 
ensured that only markers with demonstrated associations were 
included, making the selection process both data-driven and 
evidence-based. The optimal regularization parameter (lambda) 
was determined using the lambda.1se criterion, balancing model 
simplicity and predictive accuracy.

Subsequently, the variables identified by the LASSO model as 
significant were further analyzed using binary logistic regression to 
determine independent predictors, which were then incorporated into 
a nomogram. The nomogram visually represents CMB risk by 
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assigning weighted scores to each predictor based on its logistic 
regression coefficient, allowing clinicians to estimate a patient’s risk of 
developing CMBs.

The efficacy of the nomogram was assessed through Receiver 
Operating Characteristic (ROC) Curve analysis, focusing on the Area 
Under the Curve (AUC) as a measure of the model’s predictive capacity. 
Calibration plots were generated to compare predicted probabilities 
with actual outcomes, evaluating the model’s precision, while Decision 
Curve Analysis (DCA) was conducted to assess the clinical utility of the 
model by examining net benefits across different threshold probabilities.

All statistical analyses were conducted using R software (version 
4.3.0), with a predefined significance threshold of p < 0.05 (two-tailed) 
for inferential statistics, aligning with standard practices in 
medical research.

Results

Baseline characteristics

From the onset of our study in January 2020 until its conclusion 
in June 2022, an initial group of 683 participants, meeting the set 
inclusion criteria, was assembled. Subsequent meticulous evaluation 
led to the exclusion of 96 individuals who met our exclusion criteria. 
Consequently, this refined the study population to 587 eligible patients 
for comprehensive data analysis, as graphically represented in 
Figure 1. Within this cohort, 412 participants were allocated to the 
training set and 175 to the validation set, as detailed in Table 1, which 
outlines their baseline characteristics, segregating them into CMBs 
and non-CMBs groups.

In our study, we compared two groups: the CMBs group (n = 213) 
and the non-CMBs group (n = 374). We found significant differences 
(p < 0.05) in 30 out of the 88 analyzed variable between these two 
groups, with the remaining 58 variables showed no significant 
differences. These significant variables include demographic factors, 
clinical conditions, and specific biomarkers relevant to cerebrovascular 
health, as detailed in Table 1. This comprehensive enumeration of 
biomarkers, both differing and non-differing, offers a holistic 
understanding of the factors linked to CMBs.

Selection of key variables

We analyzed an array of 88 diverse variables, including 
demographic data, clinical history, and a range of laboratory test 
results. Using LASSO regression, nine significant variables emerged 
as pivotal predictors in our model: Albumin to Globulin Ratio, 
Creatinine, Gender, Homocysteine, Hypertension, Low-Density 
Lipoprotein, Neutrophil to HDL Ratio, Stroke, and Total Cholesterol 
(Table 2). This selection process, illustrated in Figures 2A,B, effectively 
identified variables with strong associations with CMBs, underscoring 
their relevance within the context of our study.

Multivariable logistic regression analysis

In our subsequent analysis using binary logistic regression, 
we incorporated the nine variables that emerged as significant in the 
LASSO regression. This rigorous analysis pinpointed six variables: 

Albumin to Globulin Ratio, Gender, Homocysteine, Hypertension, 
Neutrophil to HDL Ratio, and Stroke, which demonstrated a 
statistically significant correlation (p < 0.05) with CMBs, as 
comprehensively illustrated in Table 3. These findings suggest that 
these six factors independently contribute to the likelihood of CMBs 
occurrence. However, the inclusion of Creatinine, Low-Density 
Lipoprotein, and Total Cholesterol in the model did not yield 
statistically significant associations in this particular analysis, 
indicating their limited predictive value for CMBs in our study cohort.

Development of a predictive model for 
CMBs

Our study utilized a multivariable logistic regression framework to 
pinpoint crucial variables that influence the risk of CMBs. These 
variables, specifically Albumin to Globulin Ratio, Gender, Homocysteine, 
Hypertension, Neutrophil to HDL Ratio, and Stroke, were integral in 
crafting a comprehensive predictive nomogram (Figure  3). The 
nomogram functions by allocating weighted scores to each variable, with 
the total score for each patient corresponding to a likelihood of 
developing CMBs. This tool integrates biochemical indices and clinical 
characteristics to provide a comprehensive evaluation of CMBs risk, 
enhancing decision-making for healthcare providers.

Nomogram validation

The CMB risk prediction nomogram was validated using Receiver 
Operating Characteristic (ROC) curves, calibration plots, and 
Decision Curve Analysis (DCA) in both the training and validation 
cohorts. In ROC analysis, the training set demonstrated an AUC of 
0.803 (95% CI: 0.759–0.847), and the validation set an AUC of 0.781 
(95% CI: 0.732–0.865), indicating strong discriminative ability. 
Sensitivity and specificity were 80.5 and 65.7% in the training set, and 
65.7 and 79.5% in the validation set, respectively (Figures  4A,B). 
Calibration analysis revealed close alignment between predicted and 
observed outcomes, with Brier scores of 0.166 for the training set and 
0.185 for the validation set, supporting the model’s predictive accuracy 
(Figures 5A,B). Decision Curve Analysis (Figures 6A,B) demonstrated 
the nomogram’s clinical benefit across a range of threshold 
probabilities. Collectively, these results affirm the nomogram’s 
accuracy and reliability in predicting CMBs, confirming its potential 
utility in clinical settings.

Discussion

The predictive model for CMBs developed in this study represents 
an innovative advancement in the current research domain. We have 
comprehensively integrated a range of key factors: the Albumin/
Globulin ratio, gender, hypertension, homocysteine levels, Neutrophil 
to High-Density Lipoprotein Ratio, and history of stroke. These 
elements collectively construct an all-encompassing risk assessment 
model that not only focuses on biomarkers and clinical characteristics 
but also considers the individual history of the patients. Notably, 
NHR, as a critical indicator reflecting inflammation and lipid 
metabolism, emerges as particularly significant in the risk assessment 
of CMBs.
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In our predictive model for CMBs, the Neutrophil to HDL Ratio 
emerges as a significant predictive factor. NHR is known to reflect 
systemic inflammatory responses, which are closely linked to vascular 
endothelial dysfunction and subsequent small vessel fragility (Chen 
et al., 2020; Liu et al., 2022). This association is particularly relevant in 
cerebrovascular conditions, where chronic inflammation may 
accelerate vascular damage, increasing the likelihood of CMB 
formation. This model’s inclusion of the A/G ratio, traditionally a 
marker of nutritional and systemic health, aligns with recent findings 
in cerebrovascular research. Studies have indicated its association with 
functional outcomes in ischemic stroke, suggesting a broader 
applicability in cerebrovascular conditions, including CMBs (Maeda 
et al., 2019; Li et al., 2022; Yang et al., 2022). The A/G ratio’s role in 
ischemic stroke recovery, as reported in recent research (Yang et al., 
2022; Wang et al., 2023), further substantiates its relevance in the 
context of CMBs. Therefore, the A/G ratio in our model reflects not 
only systemic health but also its potential in cerebrovascular risk 
stratification. The inclusion of male gender as a risk factor 
acknowledges gender-specific variations in cerebrovascular disease 
prevalence and outcomes. Studies have highlighted differences in 
CMBs occurrence between males and females, suggesting hormonal 
and biological factors might influence these disparities (Lu et al., 2021; 
Jensen et al., 2023). Hypertension is a critical factor in the development 
of cerebrovascular abnormalities, including CMBs. Our model’s 
emphasis on hypertension aligns with findings that consistently link 
elevated blood pressure with increased CMBs risk (Lu et al., 2021; 
Jensen et al., 2023; van Dooren et al., 2014), underscoring the need for 
stringent blood pressure control in high-risk individuals. Elevated 
homocysteine, a marker of vascular health, has been associated with 
an increased risk of cerebrovascular diseases. By including 
homocysteine levels, our model addresses the biochemical aspect of 
CMBs risk, reflecting findings that link homocysteine with 
cerebrovascular damage (Nam et al., 2019; Sudduth et al., 2013). The 

inclusion of past stroke history as a predictor is crucial. Previous 
cerebrovascular events are a strong indicator of an individual’s 
susceptibility to CMBs. Research has consistently shown that a history 
of stroke significantly elevates the risk of subsequent cerebrovascular 
incidents, including CMBs (Jensen et al., 2023; Shoamanesh et al., 
2017). This underscores the importance of considering past 
cerebrovascular events in predictive modeling for CMBs. Compared 
to models such as Liu et al. (2024), which primarily focus on renal 
function indicators like blood urea nitrogen and cystatin C, our model 
integrates a broader range of biochemical and clinical markers to 
capture multiple dimensions of cerebrovascular health. Additionally, 
unlike automated detection models like CMB-HUNT by Suwalska 
et al. (2022), which rely solely on imaging data for CMB detection, our 
model combines imaging with clinical history and biochemical 
markers, addressing a critical gap in current CMB research by offering 
a multifaceted tool for risk prediction. In summary, our CMBs 
predictive model combines these factors to offer a robust tool for 
identifying individuals at high risk. It highlights the importance of a 
holistic approach in cerebrovascular risk assessment and the need for 
targeted interventions based on comprehensive risk profiling.

The model shows notable predictive power, which appears to 
be  enhanced by incorporating both conventional risk factors like 
hypertension and novel biomarkers like NHR. This dual approach offers 
a more holistic understanding of the risk landscape for CMBs. In clinical 
practice, this model can be instrumental in identifying high-risk patients 
for early intervention, potentially mitigating the severe outcomes 
associated with CMBs. Despite its strengths, our study has limitations, 
primarily stemming from its retrospective design, which inherently 
limits causal inference and introduces the potential for selection bias. 
This limitation affects the model’s generalizability to broader populations, 
and prospective validation in diverse clinical settings and independent 
cohorts will be crucial to further confirm its robustness and applicability. 
Future work will focus on external validation studies with independent 

FIGURE 1

This flowchart depicts the patient selection process for the study.
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TABLE 1 Baseline characteristics: comparing CMBs patients with non-CMBs patients.

Variables Total (n = 587) Non-CMBs (n = 374) CMBs (n = 213) p

Age, n (%) 0.003

≤63 303 (52) 211 (56) 92 (43)

>63 284 (48) 163 (44) 121 (57)

Hypertension, n (%) <0.001

Normal 189 (32) 161 (43) 28 (13)

Level 1 109 (19) 73 (20) 36 (17)

Level 2 38 (6) 22 (6) 16 (8)

Level 3 251 (43) 118 (32) 133 (62)

Gender, n (%) <0.001

Female 307 (52) 229 (61) 78 (37)

Male 280 (48) 145 (39) 135 (63)

Stroke, n (%) <0.001

No 443 (75) 319 (85) 124 (58)

Yes 144 (25) 55 (15) 89 (42)

Carotid Atherosclerosis, n (%) <0.001

No 245 (42) 181 (48) 64 (30)

Yes 342 (58) 193 (52) 149 (70)

Creatinine (μmol/L), n (%) <0.001

≤77 474 (81) 330 (88) 144 (68)

>77 113 (19) 44 (12) 69 (32)

Homocysteine, n (%) <0.001

≤20 449 (76) 311 (83) 138 (65)

>20 138 (24) 63 (17) 75 (35)

Neutrophil to HDL Ratio, n (%) <0.001

≤4.60 380 (65) 269 (72) 111 (52)

>4.60 207 (35) 105 (28) 102 (48)

White Blood Cell Count (×109/L), n (%) 0.003

≤6.73 294 (50) 205 (55) 89 (42)

>6.73 293 (50) 169 (45) 124 (58)

Neutrophil Count (×109/L), n (%) 0.02

≤4.36 295 (50) 202 (54) 93 (44)

>4.36 292 (50) 172 (46) 120 (56)

Monocyte Count (×109/L), n (%) 0.02

≤0.44 295 (50) 202 (54) 93 (44)

>0.44 292 (50) 172 (46) 120 (56)

Uric Acid (μmol/L), n (%) 0.019

≤298 298 (51) 204 (55) 94 (44)

>298 289 (49) 170 (45) 119 (56)

Calcium (mmol/L), n (%) 0.002

≤2.32 310 (53) 179 (48) 131 (62)

>2.32 277 (47) 195 (52) 82 (38)

International Normalized Ratio, n (%) 0.012

≤0.98 306 (52) 210 (56) 96 (45)

>0.98 281 (48) 164 (44) 117 (55)

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 587) Non-CMBs (n = 374) CMBs (n = 213) p

Fibrinogen (g/L), n (%) 0.027

≤2.88 296 (50) 202 (54) 94 (44)

>2.88 291 (50) 172 (46) 119 (56)

Apolipoprotein A1 (g/L), n (%) 0.003

≤1.03 296 (50) 171 (46) 125 (59)

>1.03 291 (50) 203 (54) 88 (41)

Apolipoprotein B100 (g/L), n (%) 0.001

≤0.79 297 (51) 170 (45) 127 (60)

>0.79 290 (49) 204 (55) 86 (40)

Apolipoprotein E (mg/L), n (%) 0.002

≤37 296 (50) 170 (45) 126 (59)

>37 291 (50) 204 (55) 87 (41)

Lactate Dehydrogenase (U/L), n (%) 0.017

≤158 307 (52) 210 (56) 97 (46)

>158 280 (48) 164 (44) 116 (54)

Albumin (g/L), n (%) 0.005

≤39 377 (64) 224 (60) 153 (72)

>39 210 (36) 150 (40) 60 (28)

Direct Bilirubin (μmol/L), n (%) 0.025

≤3.60 302 (51) 206 (55) 96 (45)

>3.60 285 (49) 168 (45) 117 (55)

Systemic Inflammation Response Index, n (%) 0.028

≤1.23 293 (50) 200 (53) 93 (44)

>1.23 294 (50) 174 (47) 120 (56)

Urea (mmol/L), n (%) <0.001

≤5.40 303 (52) 213 (57) 90 (42)

>5.40 284 (48) 161 (43) 123 (58)

Total Cholesterol, n (%) <0.001

≤4.50 295 (50) 166 (44) 129 (61)

>4.50 292 (50) 208 (56) 84 (39)

High-Density Lipoprotein (mmol/L), n (%) 0.002

≤1.13 306 (52) 176 (47) 130 (61)

>1.13 281 (48) 198 (53) 83 (39)

Low-Density Lipoprotein (mmol/L), n (%) <0.001

≤2.89 295 (50) 166 (44) 129 (61)

>2.89 292 (50) 208 (56) 84 (39)

Lipoprotein(a) (mg/L), n (%) 0.031

≤185 295 (50) 201 (54) 94 (44)

>185 292 (50) 173 (46) 119 (56)

Albumin to Globulin Ratio, n (%) <0.001

≤1.50 304 (52) 170 (45) 134 (63)

>1.50 283 (48) 204 (55) 79 (37)

Lymphocyte-to-Monocyte Ratio, n (%) 0.028

≤3.47 294 (50) 174 (47) 120 (56)

(Continued)
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TABLE 3 Binary logistic regression analysis.

B SE OR CI Z p

Albumin to Globulin Ratio −1.097 0.269 0.33 0.2–0.57 −4.077 <0.001

Creatinine 0.521 0.321 1.68 0.9–3.16 1.623 0.105

Gender 0.915 0.278 2.5 1.45–4.3 3.293 0.001

Homocysteine 0.578 0.299 1.85 1.03–3.32 2.068 0.039

Hypertension 0.513 0.102 1.67 1.37–2.04 5.036 <0.001

Low-Density Lipoprotein −0.291 0.463 0.75 0.3–1.85 −0.629 0.529

Neutrophil to HDL Ratio 0.55 0.268 1.73 1.02–2.93 2.053 0.04

Stroke 0.719 0.274 2.05 1.2–3.51 2.625 0.009

Total Cholesterol −0.318 0.462 0.73 0.29–1.8 −0.688 0.491

Outlines the results of a binary logistic regression analysis aimed at identifying key predictors for Cerebral Microbleeds (CMBs), using nine variables identified by LASSO regression. Six of 
these variables demonstrated statistical significance and were integral to the final diagnostic model: Albumin to Globulin Ratio, Gender, Homocysteine, Hypertension, Neutrophil to HDL 
Ratio, and Stroke. In contrast, Creatinine, Low-Density Lipoprotein, and Total Cholesterol were not statistically significant and were excluded from the model. The odds ratios (ORs) indicate 
the increased or decreased risk of CMBs associated with each variable, providing crucial insights for clinical assessment and intervention.

cohorts from diverse clinical and demographic backgrounds. Such 
studies will help ensure that the model’s predictive power and reliability 
extend beyond the current study population, providing a stronger 
foundation for its broader clinical application. Additionally, future 
research should integrate more biomarkers and explore genetic factors 
in CMBs risk, further enhancing the model’s predictive accuracy and 
clinical utility. While traditional risk factors like hypertension are directly 
actionable, novel biomarkers such as NHR and the A/G ratio, though 
promising, may require further investigation to establish effective 
intervention strategies. Unlike previous studies that have predominantly 
focused on imaging findings, our model offers a more comprehensive 
risk assessment by combining imaging with clinical history and 
biochemical markers. This multidimensional approach not only 

addresses a critical gap in current CMB research but also aligns with 
recent research highlighting the role of inflammatory markers and 
vascular health indicators in cerebrovascular disease prediction (Lu et al., 
2021; Quick et  al., 2021; Wan et  al., 2023). By incorporating these 
markers alongside traditional risk factors, our model provides a more 
dynamic tool for risk prediction, offering a nuanced understanding of 
the complex interactions between systemic health, inflammation, and 
cerebrovascular risk.

Our model could be expanded by considering additional variables, 
such as genetic predispositions, lifestyle factors like diet and exercise, 
and environmental influences. For example, genetic polymorphisms, 
such as the APOE ε4 allele associated with an increased burden of 
cerebral microbleeds, as well as those related to lipid metabolism or 

TABLE 1 (Continued)

Variables Total (n = 587) Non-CMBs (n = 374) CMBs (n = 213) p

>3.47 293 (50) 200 (53) 93 (44)

Monocyte-to-HDL Ratio, n (%) 0.004

≤0.39 293 (50) 204 (55) 89 (42)

>0.39 294 (50) 170 (45) 124 (58)

TABLE 2 Coefficients and lambda.1SE value of the LASSO regression.

Variable Coefficients Lambda.1SE

Albumin to Globulin Ratio −0.0755735 0.04678

Creatinine 0.07313743

Gender 0.07403888

Homocysteine 0.04624465

Hypertension 0.03754653

Low-Density Lipoprotein −0.0046682

Neutrophil to HDL Ratio 0.05028032

Stroke 0.11447028

Total Cholesterol −0.0185793

This table presents the LASSO regression analysis outcomes, displaying coefficients for key variables like Albumin to Globulin Ratio, Creatinine, Gender, Homocysteine, Hypertension, Low-
Density Lipoprotein, Neutrophil to HDL Ratio, Stroke, Total Cholesterol. It also includes the lambda.1SE value, crucial in model selection, indicating the model’s robustness and predictive 
reliability. This analysis forms a vital part of our predictive model’s development, underscoring these variables’ significance in determining the risk of CMBs.
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FIGURE 2

Screening of variables based on LASSO regression model in a training set of 412 patients. (A) Illustration of coefficient profiles for 88 potential CMBs 
predictors using the LASSO model. The plot shows the change in each feature’s coefficient against the log (lambda), highlighting LASSO’s shrinkage 
effect. (B) Graphical representation of LASSO regression’s cross-validation performance. The model’s effectiveness is assessed at different lambda 
values. λmin marks the model with optimal performance, while λ1SE indicates a more compact model.

FIGURE 3

A nomogram designed to predict CMBs risk, utilizing six key indicators. Points are assigned for each factor and totaled. This total corresponds to a 
CMBs risk percentage on the nomogram.
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FIGURE 4

(A,B) ROC curves demonstrating the sensitivity and specificity of the CMBs prediction model in the training (A) and validation (B) sets.

inflammation could modulate the impact of NHR or the Albumin to 
Globulin ratio on CMBs risk. Similarly, lifestyle factors might have a 
direct or indirect effect on these biomarkers and clinical features, 
influencing the overall risk profile. Integrating these additional 
elements into the model could provide a more comprehensive risk 
assessment tool. This approach aligns with the current trend in 
personalized medicine, where the goal is to consider the whole 
spectrum of individual differences in disease prediction and 
management. Future research should aim at developing multifactorial 

models that incorporate these broader aspects, enhancing the 
predictive accuracy and clinical utility of CMBs risk assessment tools.

Our study successfully develops a novel predictive model for CMBs 
by integrating diverse clinical and laboratory parameters, including the 
Neutrophil to HDL Ratio, Albumin/Globulin ratio, gender, hypertension, 
homocysteine levels, and history of stroke. This model stands out for its 
holistic approach to assessing CMBs risk, highlighting the interplay 
between systemic health, vascular risk factors, and individual patient 
histories. The inclusion of both traditional and novel biomarkers, 

FIGURE 5

(A,B) Calibration plots for the CMBs predictive model in the training (A) and validation (B) sets. These plots compare the model’s predicted probabilities 
against actual CMBs occurrence rates.
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especially the Neutrophil to HDL Ratio, offers a more nuanced 
understanding of CMBs pathophysiology. This model represents a 
significant stride in personalized medicine, providing a potent tool for 
early identification and intervention in individuals at high risk for 
CMBs. While our findings are promising, they underscore the need for 
further research, particularly prospective studies, to validate and refine 
this model for broader clinical application. In clinical settings, the 
nomogram derived from this model offers a practical tool for patient risk 
stratification, allowing clinicians to quickly identify high-risk individuals 
and initiate early intervention with minimal workflow disruption.
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