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Introduction: Alzheimer’s disease (AD) is a progressive neurodegenerative

disease characterized by cerebral cortex atrophy. In this study, we used

sparse canonical correlation analysis (SCCA) to identify associations between

single nucleotide polymorphisms (SNPs) and cortical thickness in the Korean

population. We also investigated the role of the SNPs in neurological outcomes,

including neurodegeneration and cognitive dysfunction.

Methods: We recruited 1125 Korean participants who underwent

neuropsychological testing, brain magnetic resonance imaging, positron

emission tomography, and microarray genotyping. We performed group-wise

SCCA in Aβ negative (−) and Aβ positive (+) groups. In addition, we performed

mediation, expression quantitative trait loci, and pathway analyses to determine

the functional role of the SNPs.

Results: We identified SNPs related to cortical thickness using SCCA in Aβ

negative and positive groups and identified SNPs that improve the prediction

performance of cognitive impairments. Among them, rs9270580 was associated

with cortical thickness by mediating Aβ uptake, and three SNPs (rs2271920,

rs6859, rs9270580) were associated with the regulation of CHRNA2, NECTIN2,

and HLA genes.

Conclusion: Our findings suggest that SNPs potentially contribute to cortical

thickness in AD, which in turn leads to worse clinical outcomes. Our findings

contribute to the understanding of the genetic architecture underlying cortical

atrophy and its relationship with AD.

KEYWORDS

Alzheimer’s disease, sparse canonical correlation analysis, genetics, cortical thickness,
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder caused by the accumulation of β-amyloid (Aβ) plaques
and neurofibrillary tangles, with subsequent neurodegeneration
and cognitive decline (Serrano-Pozo et al., 2011). The amyloid
hypothesis of AD, which suggests that Aβ accumulations in the
brain are a central event in disease pathology, remains a dominant
theory of disease causation (Goate et al., 1991; Selkoe, 1991; Karran
et al., 2011). Neurodegeneration is the downstream pathologic
process of Aβ accumulation and can be detected by cerebral atrophy
or hypometabolism. Although neurodegeneration is not an AD-
specific process, it is closely associated with its clinical symptoms
and prognosis. Therefore, neurodegeneration is still recognized as
a nonspecific but important biomarker in the National Institute on
Aging-Alzheimer’s Association (NIA-AA) criteria for AD diagnosis
and staging (Jack et al., 2018).

Several imaging genetic association studies have identified
genetic biomarkers associated with cortical atrophy that serve
as typical surrogate markers for neurodegeneration (Bakken
et al., 2011; Wolthusen et al., 2015; Kim et al., 2020; Brouwer
et al., 2022). However, the genetic mechanisms underlying the
cortical atrophy in AD are complex. Further genetic studies
are necessary to elucidate the intricate genetic mechanisms that
contribute to cortical atrophy in AD. In recent years, advanced
imaging genetics approaches have utilized complex machine-
learning models (Kim et al., 2017, 2021; Arslan, 2018; Jacobs
and Voineskos, 2020). These approaches not only identify genetic
variants that affect brain structure and functional activities, but also
provide a comprehensive understanding of the genetic mechanisms
underlying these disorders using multivariate algorithms (Sim et al.,
2013; Fang et al., 2016; Lorenzi et al., 2016; Kim et al., 2022;
Kong et al., 2023).

Over the past few decades, several multivariate studies have
emerged that integrate multiple data modalities, including partial
least squares, parallel independent component analysis, and
canonical correlation analysis (CCA), which have been used
for genetic imaging studies (Witten and Tibshirani, 2009; Chi
et al., 2013; Pearlson et al., 2015; Beaton et al., 2016; Kim
et al., 2022). CCA has been widely used in the field of imaging
genetics as a multivariate approach (Chi et al., 2013; Du et al.,
2016; Fang et al., 2016; Liu et al., 2017). The fundamental
concept underlying CCA is transforming the embedding space to
maximize the cross-correlation between two sets of data (Hotelling,
1992). Researchers have employed L1 regularization in CCA,
referred to as sparse CCA (SCCA), to identify genetic variants
and address overfitting issues commonly encountered in high-
dimensional datasets (Waaijenborg et al., 2008; Chu et al., 2013;
Fang et al., 2016).

Cortical thickness is one of the sensitive markers of cortical
atrophy and global and regional abnormality of cortical thickness
in AD compared with cognitive unimpaired subjects have been
widely reported (Lerch et al., 2005; Du et al., 2007; Dickerson
et al., 2009). The pattern of brain atrophy in AD is different
from that observed in normal aging, and cortical atrophy due
to aging may be locally severe as in AD (Pini et al., 2016).
Numerous studies support that Aβ pathophysiology may function
as a trigger/facilitator of downstream molecular pathways that leads

to cortical neurodegeneration (He et al., 2018; Busche and Hyman,
2020; Hampel et al., 2021) and cortical thinning is regarded as an
indicator of the burden of neurofibrillary tangles and plaques, and
neuronal loss that are related to AD (Dickerson et al., 2009).

The purpose of this study is to identify genetic variants related
to cortical thickness in the Korean population. In addition, we
hypothesized that genetic mechanisms affecting cortical atrophy
may differ depending on Aβ accumulation. Thus, we performed
SCCA with genetic variants and cortical thickness independently in
Aβ positive (Aβ (+)) and negative (Aβ (−)) and identified cortical
thickness related SNPs in each group. Next, we evaluated whether
selected single nucleotide polymorphisms (SNPs) contribute to
improving the predictive performance of cognitive function. In
addition, we performed functional effects of selected SNPs and
evaluated the indirect effect of SNPs on the cortical thickness
through Aβ (Figure 1).

2 Materials and methods

2.1 Study participants

The study participants were enrolled from the Korea-
Registries to Overcome and Accelerate Dementia Research
Project (K-ROAD). The K-ROAD aims to develop a genotype–
phenotype cohort to accelerate the development of novel diagnostic
and therapeutic techniques for Alzheimer’s and concomitant
cerebrovascular diseases, and the 25 university-affiliated hospitals
in South Korea have participated. All participants underwent
neuropsychological testing, high-resolution T1-weighted magnetic
resonance imaging (MRI), and microarray genotyping. The 1125
participants consisted of individuals diagnosed with dementia
of Alzheimer’s type (DAT) (n = 447), amnestic mild cognitive
impairment (aMCI) (n = 368), and the cognitively unimpaired
(CU) (n = 310). All participants with CU met the following criteria:
(1) no medical history that was likely to affect cognitive function
based on Christensen’s health screening criteria; (2) no objective
cognitive impairment in any cognitive domain on a comprehensive
neuropsychological test battery (at least −1.0 SD above age-
adjusted norms on any cognitive test); and (3) independence in
daily living activities. All participants with aMCI met the criteria
for aMCI with the following modifications (Albert et al., 2011): (1)
subjective cognitive complaints by the participants or caregivers;
(2) objective memory impairment below −1.0 SD on verbal or
visual memory tests; (3) no significant impairment in daily living
activities; and (4) non-demented status. The participants with
dementia of the Alzheimer’s type met the NIA-AA criteria of
probable AD (McKhann et al., 2011).

Participants with significant white matter hyperintensities (cap
or band > 10 mm and longest diameter of deep white matter
lesion > 25 mm); structural lesions, including cerebral infarction,
intracranial hemorrhage, brain tumors, or hydrocephalus on MRI;
abnormal laboratory results on complete blood count; electrolyte,
vitamin B12, or folate levels; syphilis serology; or abnormal liver,
kidney, or thyroid function tests were excluded from the study.

The Institutional Review Board of the Samsung Medical Center
approved this study. Written informed consent was obtained from
all the participants.
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FIGURE 1

The schematic diagram of methodology. After filtering SNPs with p-value from IGAP summary statistics, SCCA was applied to each Aβ (–) and Aβ (+)
for SNP selection. Top 10 SNPs from each model were selected, followed by validation and post-hoc analyses.

2.2 Genotyping and imputation

SNP data were genotyped using the Illumina Asian Screening
Array BeadChip (Illumina, CA, USA). Quality control (QC)
steps were performed using PLINK software (Purcell et al.,
2007). The samples with call rate < 95%, sex-mismatch, excess
heterozygosity rate (five standard deviations from the mean), and
identify-by-descent ≥ 0.125 were excluded. The markers with call
rate < 98%, minor allele frequency (MAF) < 1% and Hardy-
Weinberg equilibrium p < 10−6 were excluded. After performing
QC, un-genotyped markers were imputed using Minimac4 and
reference haplotypes from HRC-r1.1 on the University of Michigan
Imputation Server (Das et al., 2016). After performing imputation,
SNPs with poor imputation quality r2

≤ 0.8 and MAF < 1%
were excluded. Finally, 4, 906, 407 biallelic SNPs in autosomal
chromosomes (sex chromosome, mitochondrial, and pseudo-
autosomal SNPs were excluded) were used for subsequent analyses.

2.3 Amyloid positron emission
tomography (PET) acquisition and visual
assessment

All participants underwent either 18F-florbetaben (FBB) or 18F-
flutemetamol (FMM) PET at the SMC using a Discovery STe

PET/CT scanner (GE Medical Systems, Milwaukee, WI, USA)
in 3-dimensional (3D) scanning mode that examined 47 slices
of 3.3 mm thickness spanning the entire brain (Jang et al.,
2019). A visual assessment was performed to determine Aβ

peptide deposition positivity, and the detailed process has been
described previously (Cho et al., 2020). Briefly, tracer uptake
was assessed according to the regional cortical tracer uptake
system in four brain regions (frontal cortex, posterior cingulate
cortex/precuneus, parietal cortex, and lateral temporal cortex) for
FBB scans and in five regions (frontal, temporoparietal/insula,
posterior cingulate/precuneus, lateral temporal, and striatum) for
FMM scans. Aβ positivity was defined as whether tracer uptake was
observed in any of these regions (Cho et al., 2020).

2.4 MRI acquisition and processing

Three-dimensional T1-weighted MR images were acquired
using a 3.0T MRI scanner (Philips 3.0T Achieva; Philips Healthcare,
Andover, MA, USA), as previously described (Kang et al., 2022).
Images were processed using the CIVET anatomical pipeline to
measure cortical thickness (Zijdenbos et al., 2002). The detailed
processing pipeline has been described previously (Kang et al.,
2022). Briefly, T1-weighted MR images were registered to the MNI-
152 template (Collins et al., 1994) and corrected for intensity
non-uniformities (Sled et al., 1998). Tissue classification was then
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performed (Zijdenbos et al., 2002), and the hemispheric inner and
outer cortical surfaces were extracted using constrained Laplacian-
based automated segmentation with a proximity algorithm
(MacDonald et al., 2000; June et al., 2005). Cortical thickness
was measured by calculating the Euclidean distance between the
corresponding vertices on the inner and outer cortical surfaces
(Lerch and Evans, 2005).

2.5 SNP identification based on SCCA

For genetic biomarker identification, we performed SCCA.
Given datasets X ∈ Rn × p, Y ∈ Rn × q with n samples, X denotes
p features of SNP data, and Y denotes q features of imaging data.
Witten et al. proposed the SCCA model. The model aims to identify
the best association between two datasets, and is defined as follows:

min
u,v
−uTXTYv

s.t.||u| |22 = 1, ||v| |22 = 1, ||u| |1 ≤ τ1, ||v| |1 ≤ τ2,

where u and v denote the corresponding canonical vectors.
The l1 regularization was applied to control model sparsity
(Witten and Tibshirani, 2009).

In our experiments, we first selected candidate SNPs and brain
regions to mitigate overfitting. For the genotyping data, we filtered
SNPs with p value < 1 × 10−4 in the International Genomics
of Alzheimer’s Project (IGAP) summary statistics (Lambert et al.,
2013), a meta-analysis of genome-wide association (GWA) data
for AD. Additionally, we applied a clumping technique to prune
redundant correlated effects resulting from linkage disequilibrium
among the SNPs. For imaging data, the average cortical thickness
in the temporal, frontal, parietal, and occipital lobes and the
global mean cortical thickness adjusted for age, sex, education, and
intracranial volume (ICV) were used. Then, we performed SCCA
implemented in the Python package ‘cca-zoo’ (Parkhomenko et al.,
2009) to identify genetic variants associated with cortical thickness.
This analysis was performed separately for the Aβ (+) and Aβ

(−) groups, as well as for the total samples. We selected a total
of 20 SNPs (i.e., 10 SNPs from each of the Aβ (+) and Aβ (−)
groups) in terms of the absolute weight of the canonical vectors
for further analysis. The identified SNPs were used for subsequent
analyses.

2.6 Validation of SNP selection model

The clinical efficacy of the identified SNPs was evaluated
by examining their ability to predict global cortical thickness
and cognitive function. First, the focus of the prediction tasks
was to validate the clinical efficacy of the SNPs across different
amyloid positivity groups (Aβ (+) and Aβ (−)). To accomplish
this, the predictive models were trained for one group with
repeated 5-fold cross-validation 10 times and tested on the
other group. The elastic net regression was initially trained
using the top 10 SNPs identified from SCCA within the Aβ

(−) group and tested on the Aβ (+) samples. Subsequently,
the model was trained using the same set of 10 SNPs from
SCCA within the Aβ (+) groups and tested on Aβ (−)

samples. Secondly, we evaluated the performance of SNPs in
predicting cortical thickness and cognitive function for the Aβ

(+) and Aβ (−) groups, as well as for the total samples, using
elastic net regression.

2.7 Pathway analysis

We examined the biological concordance of specific SNPs
identified through the aforementioned analysis by performing
pathway analysis using Enrichr1 (Xie et al., 2021). For our
pathway analysis, we utilized comprehensive and well-curated
annotations provided by the Gene Ontology (GO) resources.2

By integrating information from the GO annotations, we
aimed to gain deeper insights into the potential biological
pathways and functional relationships implicated by the selected
SNPs.

2.8 Statistical analysis

We performed statistical analyses to examine the impact
of specific SNPs in two distinct aspects: (1) examination of
the effects of the selected SNPs on AD (i.e., CU and AD)
using logistic regression after controlling for age, sex, and
education, and (2) examination of the effects of selected SNPs
on cortical atrophy, with amyloid positivity as a mediator.
Specifically, we employed structural equation modeling adjusted
for potential confounding variables, including age, sex, education,
and ICV, as implemented in R (mediation package). The
significance of the results was determined using a p-value
cutoff of< 0.05.

2.9 Expression quantitative trait loci
(eQTL) analysis

We performed expression quantitative trait loci (eQTL)
analysis to determine the functional effects of SNPs on gene
expression using the GTEx database.3 To investigate whether any of
the variants were eQTLs in brain tissues and whole blood, we used
GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2)
with default parameters.

3 Results

3.1 Study participants

The demographic information and genotype characteristics of
the participants are listed in Table 1. The age (mean [ ± standard
deviation]) of the participants was 70.2 ( ± 8.5) years. The
proportions of female and APOE ε4 carriers were 58.4% and 44.6%,

1 https://maayanlab.cloud/Enrichr/

2 http://geneontology.org

3 https://gtexportal.org
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TABLE 1 Demographics of study participants.

Total Aβ− Aβ + p-value

N 1125 478 647

Age, mean
(SD)

70.2 (8.5) 70.7 (7.8) 69.8 (9.0) 9.55× 10−2

Sex (female /
male)

658 / 467 275 / 203 383 / 264 6.18× 10−1

APOE ε4 count
(0/1/2)

635 / 387 /
103

379 / 92 /
7

256 / 295 /
96

4.04× 10−41

Diagnosis
(CU / aMCI /
DAT)

310 / 368 /
447

255 / 173 /
50

55 / 195 /
397

6.89× 10−84

MMSE, mean
(SD)

24.0 (5.5) 26.8 (3.6) 22.0 (5.7) 9.74× 10−59

CDR-SB, mean
(SD)

2.9 (3.1) 1.4 (1.9) 4.0 (3.3) 9.73× 10−81

CU, cognitively unimpaired; aMCI, amnestic mild cognitive impairment; DAT, dementia of
Alzheimer’s type; Aβ, amyloid beta. Note: The APOE ε4 count represents the number of ε4
copies in rs429358 and rs7412 single nucleotide polymorphisms.

respectively. Among 1125 participants, 647 (57.5%) were Aβ (+)
and 478 (42.5%) were Aβ (−).

3.2 SNP identification based on SCCA

The SNP data were filtered based on the p value obtained
from the summary statistics of the IGAP (Lambert et al., 2013).
Furthermore, linkage disequilibrium clumping was performed,
resulting in the selection of 344 uncorrelated SNPs. The selected
SNPs were used for subsequent analyses (Supplementary Table 1).
The cortical thickness of 12 ROIs and cortical thickness after
adjusting for covariates are displayed in Supplementary Figure 1.
Both measures showed a significant difference between Aβ (+) and
Aβ (−) groups, with p values< 0.001.

Next, we used SCCA to select genetic variants associated with
cortical thickness. The SCCA has been trained for the Aβ (−) and
Aβ (+) groups and evaluated in terms of canonical correlation
coefficients. The canonical correlation coefficients of those selected
variants were 0.55 and 0.45 in the Aβ (−) and Aβ (+) groups,
respectively. For the Aβ (−) group, we identified rs6743470 located
near the BIN1 gene on chromosome 2 (i.e., a canonical weight
of −0.13), and rs141622900 located near the APOC1 gene on
chromosome 19 (i.e., a canonical weight of −0.14) as associated
with imaging features. For the Aβ (+) group, rs157580 located near
the TOMM40 and rs7550917 and rs9270850, located near the HLA-
DQA1 gene, have been identified as genetic variants associated
with imaging features. Detailed canonical loading weights and
identified SNPs are shown in Figure 2 and Table 2. Among the
top 20 SNPs selected from the two groups, five (rs73281586,
rs6859, rs35879138, rs157580, and rs141622900) showed marginal
associations with CU-AD diagnosis in our cohort (p < 0.05,
Supplementary Table 2). The SCCA was trained on the total
samples, and the canonical correlation was 0.42. Detailed canonical
loading weights and identified SNPs are shown in Supplementary
Figure 2 and Supplementary Table 3.

3.3 Prediction of AD biomarkers

To validate the efficiency of the SNPs, a model based on elastic
net regression was constructed to predict AD biomarkers. First, we
validated the efficiency of SNPs across different amyloid positivity
groups (Aβ (+) and Aβ (−)). The prediction model employing the
top 10 SNPs from SCCA within the Aβ (−) group showed high
predictive performance for cortical thickness (r = 0.76) in Aβ (−)
samples, whereas the low predictive performance of r = 0.18 in Aβ

(+) samples. Similarly, the prediction model employing the top 10
SNPs from SCCA within the Aβ (+) group showed high predictive
performance for cortical thickness (r = 0.50) in Aβ (+), whereas the
low predictive performance of r = 0.36 in Aβ (−) (Table 3).

Subsequently, we compared the prediction performances of the
models trained with the identified SNPs from SCCA and randomly
selected SNPs. The prediction model with the top 10 SNPs (model
2) from SCCA within Aβ (−) group showed highest predictive
performance in Aβ (−) samples (cortical thickness r = 0.72, MMSE
r = 0.57, CDR-SB r = 0.36), whereas the model with randomly
selected SNPs (model 3) (cortical thickness r = 0.68, MMSE r = 0.56,
CDR-SB r = 0.35) and model with age, sex, and APOE ε4, ICV
(model 1) (cortical thickness r = 0.67, MMSE r = 0.54, CDR-
SB r = 0.31) exhibit relatively lower performance. Similarly, the
prediction model employing the top 10 SNPs from SCCA within Aβ

(+) showed the highest predictive performance in Aβ (+) samples
compared to models 1 and 3 (Table 4). When evaluating the
predictive performance in the total samples using the top 10 SNPs
from each Aβ positivity group, for a total of 20 SNPs, the correlation
coefficients were as follows: cortical thickness r = 0.44, MMSE
r = 0.40, CDR-SB r = 0.31. In addition, the prediction performance
of models with selected SNPs from total samples were shown in
Supplementary Table 4. The prediction model employing the top
10 selected SNPs showed highest predictive performance.

3.4 Pathway analysis

Pathway analyses were conducted using Enrichr, resulting in
the enrichment of 134 and 106 gene sets in Aβ (−) and Aβ (+)
groups, respectively. Table 5 presents the top 10 enriched gene
sets in each group with a q value threshold of < 0.05. In the Aβ

(−) group, the enriched gene sets included those associated with
the regulation of synaptic transmission, postsynaptic potential, and
dendrites. In the Aβ (+) group, enriched gene sets were related to
MHC class protein binding and assembly. The results of gene set
enrichment analysis for the selected SNPs in total samples were
shown in Supplementary Table 5.

3.5 Mediation analysis

To assess the mediating effects of Aβ on the association
between the identified SNPs and cortical atrophy, we performed
a mediation analysis with Aβ positivity (Aβ (−) or Aβ (+)) as a
mediator variable. Twenty SNPs (the top 10 SNPs in each amyloid
positivity group) selected from SCCA were included in this analysis.
Figure 3 shows that seven SNPs (rs2271920, rs1949100, rs9270850,
rs35879138, rs157580, rs6859, and rs7550917) had significant direct
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FIGURE 2

The stem plot of SNPs and regions of interest (ROIs) weights estimated by group-wise SCCA. (A,C) are weights of 344 SNPs and cortical thickness
ROIs in the Aβ (–) group. (B,D) are the weights of 344 SNPs and cortical thickness ROIs in the Aβ (+) group. The y-axis represents the weights of
variables, and the x-axis represents SNP indices (A,B) or the names of ROIs (C,D).

TABLE 2 Top 10 SNPs and canonical weights in SCCA.

SNP CHR BP Gene Weight

Aβ− rs4622634 19 1043864 ABCA7 −0.15

rs77988388 6 27620034 RP1-15D7.1 (nearest) 0.15

rs141622900 19 45426792 APOC1P1 (nearest) −0.14

rs6743470 2 127868435 BIN1 (nearest) −0.13

rs17612068 5 141883061 AC005592.2 −0.13

rs1949100 5 118136826 CTC-448D22.1 (nearest) −0.12

rs190982 5 88223420 MEF2C-AS1 0.12

rs858952 2 50875879 NRXN1 −0.12

rs2271920 8 27316117 PTK2B 0.12

rs12067173 1 41083947 RIMS3 (nearest) 0.12

Aβ + rs7550917 1 193634651 RP11-21J7.1 (nearest) 0.24

rs6859 19 45382034 PVRL2 −0.21

rs17878252 19 46234155 FBXO46 −0.20

rs157580 19 45395266 TOMM40 0.19

rs73281586 7 26272643 CBX3 (nearest) 0.19

rs35879138 19 45383139 PVRL2 −0.18

rs115675626 6 32669833 MTCO3P1 (nearest) −0.17

rs9270850 6 32570717 HLA-DRB1 (nearest) −0.17

rs1328194 1 193702274 U3 (nearest) 0.17

rs34141382 6 32608478 HLA-DQA1 0.16

SNP, single nucleotide polymorphism; CHR, chromosome; BP, base pair; Gene, mapped or nearest genes.
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TABLE 3 Comparison of correlation coefficients (r) of predication models
with top 10 SNPs for Aβ (+) and Aβ (−) groups.

Train Test

Design 1: train (Aβ−group) test (Aβ +
group)

0.76
(0.75−0.77)

0.18
(0.17–0.19)

Design 2: train (Aβ + group) test
(Aβ−group)

0.50
(0.48–0.52)

0.36
(0.33–0.39)

Correlation coefficients (r) and 95% confidence intervals (CI).

TABLE 4 Correlation coefficients (r) of predication models
for AD biomarkers.

Cortical
thickness

MMSE CDR-SB

Aβ −

Model 1 0.67 0.54 0.31

Model 2 (model 1 + top 10
SNPs)

0.72*† 0.57* 0.36*

Model 3 (model 1 +10
random SNPs)

0.68 0.56 0.35

Aβ +

Model 1 0.36 0.33 0.20

Model 2 (model 1 + top 10
SNPs)

0.42*† 0.37* 0.24

Model 3 (model 1 +10
random SNPs)

0.38 0.36 0.27

Model 1 used age, sex, APOE ε4, and, if appropriate, ICV or education. Asterisks (*)
represents the significant results when comparing the two correlation coefficients (model
1 and model 2) and dagger (†) represents the significant results when comparing the two
correlation coefficients (model 2 and model 3). Statistical tests were performed to compare
the two correlation coefficients using Hittner’s method (Hittner et al., 2003).

or indirect effects on cortical thickness. Among these seven,
rs9270850 selected from SCCA in the Aβ (+) group had significant
indirect effects (Figure 3B).

3.6 eQTL analysis

We investigated whether the seven identified SNPs have
eQTLs in brain tissues and whole blood using data from the
GTEx eQTL database. Three of the seven SNPs, rs2271920,
rs6859, and rs9270850, significantly affected the regulation of gene
expression. The eQTL plots of the four SNPs were downloaded
from the GTEx portal (Figure 4). The rs2271920 on chromosome
8 significantly regulated the expression of CHRNA2 in the
cerebellum (p value = 2.10 × 10−6). The rs9270850 significantly
regulated HLA-DRB5 (p value = 1.80 × 10−18) and HLA-DRB1 (p
value = 2.50 × 10−15) expressions in the brain cortex and rs6859
on chromosome 19 regulated the expression of NECTIN2 in whole
blood (p value = 7.50× 10−15).

4 Discussion

In this study, we conducted an imaging genetic association
analysis to identify the genetic biomarkers associated with cortical
thickness. Our major findings are summarized as follows: First,

through the implementation of the SCCA algorithm, we identified
SNPs that demonstrated strong associations with cortical thickness.
Second, our results indicate that the identified SNPs exhibit
promising predictive performance for neurodegeneration and
cognitive outcomes. This suggests their potential role as genetic
markers associated with disease progression in AD. Third, our
pathway enrichment analysis indicated that identified SNPs from
the Aβ (−) and Aβ (+) groups were enriched for different gene
sets. Additionally, one SNP identified in the Aβ (+) group exhibited
associations with cortical thickness mediated by Aβ accumulation
in the brain. These suggest that the genetic mechanisms that
affect cortical atrophy may differ between the Aβ (−) and Aβ (+)
groups. Overall, our findings highlighted the potential significance
of the identified SNPs as novel genetic targets for understanding
neurodegeneration in AD. These findings contribute to a growing
body of research on genetic biomarkers associated with cortical
thickness and their implications in AD pathology.

From the SCCA analysis, the global mean cortical thicknesses of
the left and right hemispheres were the most prominent, followed
by that of the frontal and parietal cortex. Global atrophy of
the cortex, as well as regional atrophy, has been widely studied
and demonstrated an abnormal reduction in patients with AD
compared to cognitively normal control subjects (Braak and Braak,
1991; Lerch et al., 2005; Dickerson et al., 2009; Querbes et al., 2009).
For the genetic data, we identified the top 10 SNPs for each Aβ (−)
and Aβ (+) group. Twenty identified SNPs have been reported to be
associated with the risk of clinically diagnosed AD in a European
population (Lambert et al., 2013), but only five of them have a
potential relationship with AD (p < 0.05). These results may be
attributed to insufficient statistical power and ethnic differences.
Recent genetic studies of AD have highlighted ethnic differences
that may have affected our results.

We found that the identified SNPs improved the predictive
performance for cortical thickness and cognitive function.
Furthermore, we observed divergent patterns of these SNPs
between the two groups. Specifically, the identified SNPs exhibited
robust predictive capabilities for global cortical thickness in one
group while facing challenges in achieving accurate predictions
in the other group. These findings suggest that the genetic
mechanisms affecting cortical atrophy may differ depending on
amyloid accumulation. Our hypothesis was supported by the
following observations: (1) The top 10 SNPs selected in each Aβ

(−) and Aβ (+) group were not shared between groups. (2) The top
10 SNPs selected in one group showed poor predictive performance
for cortical thickness and cognitive function in the other group. (3)
These SNPs selected from the two groups were clustered into gene
sets with different functional roles.

eQTL analysis revealed that these SNPs were significantly
involved in the regulation of four genes (CHRNA2, NECTIN2,
HLA-DRB5, and HLA-DRB1). Previous studies have reported that
these genes are associated with AD pathophysiology. In particular,
CHRNA2 (cholinergic receptor nicotinic alpha 2 subunit) encodes
neuronal acetylcholine receptor subunit alpha-2 (nAChRα2).
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion
channels that produce neuronal receptors widely found in the
central nervous system and are involved in synaptic transmission.
CHRNA2 is expressed in brain tissues and hippocampal CA1 region
and previous studies have reported the effect of nAChRα2 on
hippocampus-dependent learning and memory (Lotfipour et al.,
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TABLE 5 Top 10 enriched pathway with the selected SNPs in Aβ (−) and Aβ (+) groups.

Term Ontology OR P-value

Aβ− Positive regulation of synaptic transmission BP 493.3 1.51× 10−5

Negative regulation of potassium ion transport BP 444.0 1.81× 10−5

Positive regulation of synaptic transmission, glutamatergic BP 221.9 6.31× 10−5

Positive regulation of excitatory postsynaptic potential BP 221.9 6.31× 10−5

Modulation of excitatory postsynaptic potential BP 211.3 6.91× 10−5

Regulation of amyloid-beta formation BP 153.0 1.27× 10−4

Positive regulation of actin filament polymerization BP 143.1 1.44× 10−4

Regulation of synaptic transmission, glutamatergic MF 119.8 2.02× 10−4

Positive regulation of protein polymerization BP 113.7 2.23× 10−4

Regulation of actin filament polymerization CC 27.7 3.71× 10−4

Aβ + MHC class II receptor activity MF 713.7 8.08× 10−6

MHC class II protein complex binding MF 217.0 6.71× 10−5

Peptide antigen assembly with MHC class II protein complex BP 416.2 2.04× 10−5

MHC class II protein complex assembly BP 416.2 2.04× 10−5

Peptide antigen assembly with MHC protein complex BP 312.1 3.43× 10−5

Immunoglobulin production involved in immunoglobulin-mediated immune response BP 293.7 3.83× 10−5

MHC class II protein complex CC 384.2 2.35× 10−5

MHC protein complex CC 262.8 4.70× 10−5

Lumenal side of endoplasmic reticulum membrane CC 199.7 7.85× 10−5

Antigen processing and presentation of exogenous peptide antigen via MHC class II BP 208.0 7.27× 10−5

BP, biological process; MF, molecular function; CC, cellular component; GO, gene ontology; OR, odds ratio.

2017) and plasticity of CA1 hippocampal synapses (Demontis et al.,
2019). In addition, a variant of CHRNA2 has been reported to be
relevant to Alzheimer’s disease in the Chinese population (Ding
et al., 2023), and CHRNA2 is currently one of the targets of AD
drug research (Xu et al., 2021). NECTIN2 (nectin cell adhesion
molecule 2) is expressed in astrocytes and neurons in the brain and
plays important roles in the homeostasis of astrocytes and neurons
and the formation of synapses (Mizutani et al., 2022). In addition,
previous genetic association studies in European, Japanese, and
African Americans reported that variations in NECTIN2 are
associated with AD (Harold et al., 2009; Takei et al., 2009; Logue
et al., 2011), MCI to AD conversion in APOE ε4 non-carriers
(Xiao et al., 2022), and cognitive trajectory (Rajendrakumar et al.,
2024). Human leukocyte antigen (HLA) is a family of genes that
encodes cell-surface proteins that play vital roles in immune system
regulation (Shiina et al., 2009). The activities involved in immune
responses, including infection, brain development, and plasticity,
in AD pathogenesis may be determined by HLA genes (Wang et al.,
2020). Moreover, the expression of HLA-DRB1 and HLA-DRB5 in
microglia is positively correlated with measures of AD pathology
(Mathys et al., 2019). Furthermore, many previous GWA and
haplotype studies have suggested an association between variations
in HLA genes and AD risk (Neill et al., 1999; Lambert et al., 2013;
Mansouri et al., 2015; Zhang et al., 2022). HLA-DRB1 has protective
effects in APOE ε4 carriers against AD susceptibility (Ding et al.,
2023), and CpGs of the HLA-DRB5 gene are associated with AD
pathological diagnosis (Yu et al., 2015). Although previous studies
have reported associations between genes and the risk of AD, to
date, no study has shown an association between the SNPs mapped

to these genes and cortical thickness. Our findings can help achieve
a better understanding of AD pathophysiology and uncover novel
therapeutic targets for AD.

Pathway analysis revealed that genes identified in the Aβ

(−) group were enriched for pathways related to dendrites,
synaptic transmission, potassium ion transport, and Aβ formation.
Meanwhile, genes identified in the Aβ (+) group were enriched for
pathways related to the immune response, which are related to AD
pathophysiology. Dendritic abnormalities in AD are widespread
and occur in the early stages of the disease (Weigeldt, 1922;
Cochran et al., 2014). Synaptic loss may lead to brain atrophy
and the abnormalities in synaptic transmission and postsynaptic
function are associated with cognitive decline (Ardiles et al., 2012;
Subramanian et al., 2020; Tzioras et al., 2023). It is interesting that
Aβ-related pathways were identified from SNPs identified in Aβ

(−) group. This could be because subthreshold Aβ pathology is
associated with worse pathological and clinical outcomes (Bischof
and Jacobs, 2019). We also identified the potassium transport
pathway. Potassium channels play an important physiological
role in signaling mechanisms and are linked to the development
of neurodegenerative diseases (Colom et al., 1998; Annunziato
et al., 2002; Cordaro et al., 2022), and dysfunction of calcium-
activated potassium ion channel activity is related to memory
impairment (Trombetta-Lima et al., 2020). The peripheral and
central immune systems are dysregulated in AD and are related
to cognitive function and AD pathology (Bettcher et al., 2021;
Wu et al., 2021). The pathological proteins of AD, such as Aβ

peptides, can be swallowed by the microglia, which are presented
to T lymphocytes after combination with particular HLA classes I
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FIGURE 3

The results of mediation analysis for the relation of SNP with cortical thickness via Aβ positivity. The heatmaps of direct (A) and indirect (B) effects.
The x-axis represents the name of ROIs, and the y-axis represents the selected SNPs from Aβ positive and negative groups. The associations with a
p-value < 0.05 are indicated with an asterisk.

FIGURE 4

The violin plots of the eQTL results. The x-axis indicated the genotype of SNPs, and y-axis indicated the normalized expression levels of genes. All
eQTL plots are downloaded from the GTEx portal.

and II. Furthermore, B lymphocytes secrete antibodies against Aβ

peptides (Wang et al., 2020; Wu et al., 2021).
The strength of our study is the recruitment of participants

using a standardized diagnostic protocol, including detailed
neuropsychological tests, Aβ PET, and brain MRI. However, the
present study had some limitations. We identified SNPs related
to cortical thickness in AD using SCCA; however, the sample size
was moderate. Although we used candidate SNPs to overcome the
overfitting problem that leads to false-positive findings, replicating
our findings in a larger independent dataset is still required. In
addition, we used only a Korean population; further studies with
racially diverse samples are needed to generalize our findings.
Nevertheless, the fact that little research has been conducted on
Asian populations makes the current study notable. In this study,
we used candidate SNPs that showed higher associations with

AD in the European population. However, these SNPs showed
weaker associations in our study than in previous studies in the
European population. Our findings highlight the importance of
genetic association studies in diverse populations. In this study,
we investigated the role of SNPs in neurodegeneration and Aβ

neurological outcomes. However, because candidate SNPs were
used, the genetic mechanisms of each pathway could not be
fully elucidated.

In conclusion, using SCCA, we identified the SNPs that
contributed to the prediction of cortical thickness in a Korean
cohort. We investigated the involvement of these SNPs in AD by
examining their association with cortical atrophy and Aβ-mediated
cortical atrophy. AD is a complex multifactorial neurodegenerative
disorder. Genetic association studies using AD biomarkers are
needed to elucidate the complex genetic architecture of AD.
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Our findings contribute to our understanding of the
genetic architecture underlying cortical atrophy and its
relationship with AD.
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