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Background and objective: Peak width of skeletonized mean di�usivity (PSMD),

a fully automated di�usion tensor imaging (DTI) biomarker of white matter

(WM) microstructure damage, has been shown to be associated with cognition

in various WM pathologies. However, its application in schizophrenic disease

remains unexplored. This study aims to investigate PSMD along with other

DTI markers in first-episode schizophrenia patients compared to healthy

controls (HCs), and explore the correlations between these metrics and

clinical characteristics.

Methods: A total of 56 first-episode drug-naive schizophrenia patients and 64

HCs were recruited for this study. Participants underwent structural imaging

and DTI, followed by comprehensive clinical assessments, including the Positive

and Negative Syndrome Scale (PANSS) for patients and cognitive function

tests for all participants. We calculated PSMD, peak width of skeletonized

fractional anisotropy (PSFA), axial di�usivity (PSAD), radial di�usivity (PSRD)

values, skeletonized average mean di�usivity (MD), average fractional anisotropy

(FA), average axial di�usivity (AD), and average radial di�usivity (RD) values

as well as structural network global topological parameters, and examined

between-group di�erences in these WM metrics. Furthermore, we investigated

associations between abnormal metrics and clinical characteristics.

Results: Compared to HCs, patients exhibited significantly increased PSMD

values (t = 2.467, p = 0.015), decreased global e�ciency (Z = −2.188, p =

0.029), and increased normalized characteristic path length (lambda) (t = 2.270,

p = 0.025). No significant di�erences were observed between the groups in

the remaining metrics, including PSFA, PSAD, PSRD, average MD, FA, AD, RD,

local e�ciency, normalized cluster coe�cient, small-worldness, assortativity,

modularity, or hierarchy (p > 0.05). After adjusting for relevant variables, both

PSMD and lambda values exhibited a significant negative correlation with

reasoning and problem-solving scores (PSMD: r = −0.409, p = 0.038; lambda:

r = −0.520, p = 0.006). No statistically significant correlations were observed

between each PANSS score and the aforementionedmetrics in the patient group

(p > 0.05). Multivariate linear regression analysis revealed that increased PSMD

(β = −0.426, t = −2.260, p = 0.034) and increased lambda (β = −0.490, t =

−2.994, p= 0.007) were independently associated with decreased reasoning and

problem-solving scores respectively (R2
adj

= 0.295, F = 2.951, p = 0.029). But

these significant correlations did not withstand FDR correction (p_FDR > 0.05).
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Conclusion: PSMD can be considered as a valuable neuroimaging biomarker

that complements conventional di�usion measurements for investigating

abnormalities in WM microstructural integrity and cognitive functions

in schizophrenia.

KEYWORDS

schizophrenia, peak width of skeletonized mean di�usivity (PSMD), white matter

integrity, di�usion tensor imaging, cognitive functions

1 Introduction

Schizophrenia is a severe psychiatric disorder characterized

by positive symptoms (including hallucinations, delusions,

and thought disorders), negative symptoms (including apathy,

emotional flattening, and social withdrawal), and cognitive

function deficits (involving working memory, social cognition,

executive ability, etc.) (Sui et al., 2012; van Os et al., 2010; Marder

and Cannon, 2019). Currently, there is no consensus on the

pathophysiology of schizophrenia. The hypothesis of myelin

dysplasia has had a profound impact, specifically, the abnormal

development, differentiation and function of oligodendrocytes

may be related to the pathogenesis of schizophrenia (Birur et al.,

2017). Myelin consists of oligodendrocytes surrounding axons

with myelinated nerve fibers primarily found in white matter

(WM) (Branson, 2013; Christine et al., 2019). Schizophrenia

can be considered as a disconnection syndrome resulting from

abnormalities in myelin formation (Pettersson-Yeo et al., 2011).

Advancements in neuroimaging techniques have facilitated the

assessment of WM structural integrity in vivo. Among various MRI

methods, diffusion tensor imaging (DTI) is particularly well-suited

for evaluating subtle WM damage (Raja et al., 2019). Specifically,

quantitative parameters derived from DTI technology can reflect

the abnormalities in microstructural integrity and directionality

of WM tracts, consistently associated with cognition and clinical

manifestation (Zanon Zotin et al., 2022). However, the widespread

application of DTI in routine clinical practice is hindered by labor-

intensive and time-consuming processing techniques. Recently,

a fully-automated and robust imaging marker called peak width

of skeletonized mean diffusivity (PSMD), calculated by the

combination of “skeletonization” and histogram analysis of DTI-

derived mean diffusivity (MD) images, has been proposed as an

improvement over traditional DTI measures (Baykara et al., 2016).

The utilization of skeletonized maps eliminates contamination

from cerebrospinal fluid (CSF) while the histogram-based approach

enhances the capability to characterize diffuse brain diseases (Deary

et al., 2018; Low et al., 2020). PSMD reflects heterogeneity in

MD values across major WM tracts and has demonstrated close

associations with cognitive performance in several neurological

conditions. To date, PSMD serves as a biomarker for WM

pathology and cognitive manifestations primarily among patients

with small vessel disease (SVD) and multiple sclerosis, yielding

promising results (Deary et al., 2019; Wei et al., 2019; Raposo

et al., 2021; Vinciguerra et al., 2021). A longitudinal study revealed

that compared to whole brain mean diffusivity peak height and

brain parenchymal fraction measurements, PSMD requires smaller

sample sizes (Wei et al., 2019). Furthermore, a study on the

WM of newborns revealed that, PSMD demonstrated the highest

accuracy in classifying gestational age between preterm and term

infants compared to other peak width of skeletonized DTI-derived

coefficients (Blesa et al., 2020). Therefore, PSMD may hold great

practical value for clinical research and application.

The human brain is a complex network consisting of

numerous brain regions and interconnected WM axonal pathways,

collectively known as the structural network connectome (Sporns,

2011). The framework of the structural connectome facilitates

the investigation of the underlying widespread WM abnormalities

associated with diseases (Wei et al., 2018; Cui et al., 2019).

DTI-based tractography constructs curves representing maximal

diffusion coherence and facilitates estimation of heterogeneous

fiber bundles. Based on the identified fiber bundles, the structural

connections among brain regions can be estimated to establish

the WM connectome. Connectomes allow for inferences about the

structural organization and integrity through graph theory analysis

using parameters that reflect topological network features (He and

Evans, 2010). For instance, measures of integration provide insights

into the network’s ability to combine information from distributed

processes, while measures of segregation offer hints about the

brain’s capacity for parallel information processing (Fornito and

Bullmore, 2015; Frey et al., 2021). Graph theory analysis can detect

subtle alterations in the WM network that may be overlooked by

traditional measures (Drakesmith et al., 2015).

Recent DTI researches have revealed alterations in WM

integrity among individuals with schizophrenia. A comprehensive

collaborative meta-analysis investigating differences in WM

microstructure found that schizophrenia patients generally exhibit

decreased fractional anisotropy (FA), particularly in the anterior

radiation corona, corpus callosum, and genu (Kelly et al., 2018).

Two studies have consistently indicated that schizophrenia patients

exhibit notably elevated MD values in the superior longitudinal

fasciculus (Clark et al., 2011; Waszczuk et al., 2022). Additionally,

it has been reported that schizophrenia patients show significantly

increased axial diffusivity (AD) and radial diffusivity (RD) values

within regions of interest compared to healthy controls (HCs)

(Haigh et al., 2019; Du et al., 2013; Kelly et al., 2018). With

regard to the WM network of schizophrenia patients, several

studies have indicated that rich club organization of connectome

was significantly disrupted, the node-specific path lengths in the

frontal and temporal lobe regions were significantly increased, and

the global integration function was weakened (Cui et al., 2019;

Heuvel et al., 2010; Wang et al., 2012; Wei et al., 2020). While

findings across different studies may not be entirely consistent, they
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collectively support the conclusion that WM network connections

in schizophrenia patients exhibit abnormalities. The relationship

between WM integrity and specific neurocognitive function is

significant, suggesting that WM abnormalities may contribute to

cognitive dysfunction in schizophrenia (Wozniak and Lim, 2006).

These findings indicate that cerebral function and structure are

already altered in patients with schizophrenia compared to healthy

individuals, with disruptions in WM playing a relatively critical

role. However, to our knowledge, no studies have yet reported on

the peak width of skeletonized diffusion metrics of WM among

patients with schizophrenia.

In this study, we recruited first-episode drug-naive

schizophrenia patients and HCs. Our objective was to investigate

the overall microstructural integrity of WM using peak width of

skeletonized diffusion metrics and conventional DTI parameters

as well as structural network global topological parameters.

Additionally, we aimed to assess the relationship between these

metrics and clinical scales of disease. This cross-sectional study

reveals that PSMD may serve as a potential neuroimaging

biomarker for evaluating WM microstructural abnormalities and

cognitive impairment in patients with first-episode schizophrenia.

2 Materials and methods

2.1 Subjects

This study received approval from the local ethics committee,

and all participants signed written informed consent prior to

undergoing MR examination. A total of 70 individuals with

first-episode schizophrenia were prospectively enrolled between

December 2022 and November 2023. Diagnostic evaluation was

conducted by a psychiatrist using the Structural Clinical Interview

for Diagnostic and Statistical Manual of Mental Disorders, Fifth

Edition (DSM-V), ensuring that all patients met the diagnostic

criteria for schizophrenia as outlined in DSM-V. The severity of

mental symptoms in patients was quantified using the Positive and

Negative Syndrome Scale (PANSS). Neurocognitive functions were

assessed using the Chinese version of the MATRICS Consensus

Cognitive Battery (MCCB) (Shi et al., 2015). The MCCB subtests

included: (1) Trail Making Test A; (2) Brief Assessment of

Cognition in Schizophrenia: Symbol coding; (3) Category Fluency

Test; (4) Continuous Performance Test-Identical Pairs; (5) Spatial

Span Wechsler Memory Scale; (6) Letter Number Span; (7)

Hopkins Verbal Learning Test-Revised; (8) Brief Visuospatial

Memory Test-Revised; (9) Neuropsychological Assessment Battery

(NAB): Mazes; (10) Mayer-Salovey-Caruso Emotional Intelligence

Test (Nuechterlein et al., 2008). The cognitive evaluation results

were inputted into MCCB cognitive statistical software and

subsequently transformed into the corresponding scores for seven

domains, namely speed of processing (SOP), attention/vigilance

(AV), working memory (WM), verbal learning and memory

(Vrbl_Lrng), visual learning and memory (Vis_Lrng), reasoning

and problem-solving (RPS), and social cognition (SC).

None of the patients received antipsychotic medication.

Moreover, 65 age- and gender-matched healthy volunteers were

recruited as HCs during the same period. Inclusion criteria

for all subjects included right-handedness and an age range of

15 to 40 years. The duration of the disease was <3 years,

with an intermission of <6 months. General exclusion criteria

encompassed MRI contraindications, central nervous system

disease, pregnancy, head trauma, histories of substance abuse or

systemic medical diseases, and electroconvulsive therapy records.

Additional exclusion criteria for HCs comprised a history of

any Axis I disorder in the DSM-V and having a first-degree

relative with a mental disorder. Demographic information and

medical history were systematically collected for each participant.

All subjects underwent a standardized neurocognitive test battery

as previously described. Following image quality inspection, 14

patients and 1 HC with severe motion artifacts in MR images

were excluded, thus, this study ultimately included 56 patients

and 64 HCs.

2.2 MRI data acquisition

The participants’ images were acquired using a 3.0T MRI

system (Discovery MR750, GE Healthcare) equipped with an 8-

channel head coil. Foam padding was applied during scanning

to minimize head movement, and earplugs were provided to

reduce noise interference. A sagittal 3D T1-weighted dataset was

obtained through a spoiled gradient echo BRAVO sequence with

the following parameters: repetition time (TR)= 8.2ms; echo time

(TE) = 3.2ms; inversion time = 450ms; flip angle = 12◦; field of

view (FOV)= 256mm× 256mm; acquisition matrix= 256× 256;

slice thickness = 1.0mm; number of slices = 188. Diffusion tensor

images were acquired using a single-shot spin-echo EPI sequence

with the following parameters: TR = 7,100ms; TE = 60.5ms;

FOV = 256mm × 256mm; acquisition matrix = 128 × 128; slice

thickness = 2.0mm; number of slices = 70; diffusion weighting in

64 directions with b-value of 1,000 s/mm2, along with 10 b0 images

without diffusion weighting. Conventional MR images, including

T2-weighted fluid-attenuated inversion recovery sequence and

T2-weighted fast spin echo sequence, were also obtained for

the purpose of excluding brain structural abnormalities and

cerebrovascular diseases.

2.3 PSMD and DTI metrics processing

DTI data analysis was utilized tools from the FMRIB

Software Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/) (Jenkinson

et al., 2012). After conversion from DICOM format to NIfTI

format with dcm2niix (https://www.nitrc.org/projects/dcm2nii/)

(Li et al., 2016), the raw DTI data underwent initial correction for

susceptibility-induced distortions using topup (Andersson et al.,

2003), followed by correction for eddy currents and head motion

using eddy (Andersson and Sotiropoulos, 2016). Subsequently,

brain tissues were extracted using BET (Smith, 2002), and finally

entered into the tensor fitting program to obtain FA, MD, AD,

and RD images using dtifit. PSMD was automatically calculated

across the brain via a shell script without user intervention

(available at https://www.psmd-marker.com). The script included

processing steps such as skeletonization of WM tracts with Tract

Based Spatial Statistics (TBSS) (Smith et al., 2006) and diffusion
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FIGURE 1

Schematic overview of the pipeline for PSMD value and topological metrics analysis. (A) Preprocessing steps included susceptibility, motion and eddy

currents correction, brain extraction, and tensor fitting. (B) Skeletonization was performed using tract-based spatial statistics by non-linear

registering the FA map to FMRIB FA template and projecting it onto the skeleton derived from the mean of all registered FA images. The

transformation matrices also used for MD, AD, and RD maps to obtain a skeletonized map. (C) The skeletonized MD map was further masked using a

custom-made mask. PSMD value was calculated as di�erence between 95th and 5th percentiles of voxel-based MD values within masked

skeletonized MD map. (D) Non-linear registration was conducted on T1 weighted data after a�ne transformation to preprocessed DTI data, aligning

it with T1 template in MNI space resulting in a non-linear transformation. Inverse transformation was then applied to AAL116 template for

subject-specific parcellation in native space, which combined fasciculus estimated by deterministic tractography to construct structural white matter

connectome. (E) Graph theory analysis was subsequently performed to estimate topological metrics of the connectome. PSMD, peak width of

skeletonized mean di�usivity; FA, fractional anisotropy; MD, mean di�usivity; AD, axial di�usivity; RD, radial di�usivity; FMRIB, functional MRI of the

brain; MNI, Montreal Neurological Institute; AAL, automated anatomical labeling.

histogram analysis (Baykara et al., 2016). Firstly, all participants’

FA images were non-linearly registered to the standard space

FMRIB 1-mm FA template using the non-linear registration tool

FNIRT (FMRIB Non-linear Image Registration Tool) (Andersson

et al., 2007). A WM skeleton was created from the mean of

all registered FA images by searching for maximum FA values

in directions perpendicular to local tract direction in the mean

FA image. Each subject’s FA map was then projected onto this

skeleton, creating individual skeletonized FA image that could

be used for voxel-wise statistics. Secondly, the MD image was

projected onto the mean FA skeleton to generate the MD skeleton,

utilizing projection parameters derived from each participant’s

individualized registration process. To avoid contamination of CSF

partial volume effects on the WM skeleton, MD skeletons were

further masked with a standard skeleton at an FA threshold value

of 0.3 and a custom mask provided within the PSMD toolbox to

exclude regions adjacent to ventricles. Finally, PSMD value was

calculated as difference between 95th and 5th percentiles of voxel-

based MD values within WM skeleton (McCreary et al., 2020).

Similarly, by employing the aforementioned processing flow in

the FA/AD/RD images, the peak width of skeletonized fractional

anisotropy (PSFA), axial diffusivity (PSAD), radial diffusivity

(PSRD) values was obtained respectively. Besides, skeletonized

average MD, FA, AD, and RD values were calculated from

the corresponding skeletonized maps as the conventional DTI

metrics (Figure 1).
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TABLE 1 Comparison of demographic and clinical characteristics between first-episode schizophrenia patients and healthy controls.

Demographic and clinical
variable

FES
(n = 56)

(Mean ± SD)

HC
(n = 64)

(Mean ± SD)

t/χ2 P

Age (years) 21.48± 6.68 20.41± 4.61 1.036 0.302

Gender (male/female) 23/33 26/38 0.003 0.956

Education (years) 10.56± 2.69 11.64± 2.90 1.324 0.287

TIV (cm3) 1,568.79± 135.86 1,563.42± 138.33 0.214 0.831

MCCB

SOP 28.52± 12.59 40.42± 10.05 −6.41 <0.001
∗

AV 31.48± 13.75 46.58± 12.24 −7.68 <0.001
∗

WM 40.55± 9.68 46.10± 6.71 −3.12 0.003
∗

Vrbl_Lrng 34.52± 8.34 41.07± 10.34 −4.20 <0.001
∗

Vis_Lrng 39.83± 11.79 44.67± 9.99 −3.02 0.003
∗

RPS 33.93± 9.27 36.68± 7.12 −2.66 0.008
∗

SC 40.52± 17.92 43.77± 9.47 −2.12 0.025
∗

PANSS

Positive 23.51± 5.13 / / /

Negative 22.55± 6.01 / / /

General 41.16± 8.05 / / /

Total score 85.66± 19.24 / / /

FES, first-episode schizophrenia; HC, healthy control; SD, standard deviation; TIV, total intracranial volume; MCCB, MATRICS Consensus Cognitive Battery; SOP, speed of processing; AV,

attention/vigilance; WM, working memory; Vrbl_Lrng, verbal learning and memory; Vis_Lrng, visual learning and memory; RPS, reasoning and problem-solving; SC, social cognition; PANSS,

Positive and Negative Syndrome Scale; ∗P < 0.05 was considered significant. Bold, statistical and P-values were considered significant.

2.4 Connectome topological metrics
processing

The Pipeline for Analyzing Brain Diffusion Images toolkit

(PANDA, https://www.nitrc.org/projects/panda) (Cui et al., 2013)

was utilized to process the DTI images. For network construction,

the brain parcellation framework in PANDA was employed to

segment the entire brain into 116 regions of interest. Specifically,

the structural T1-weighted image of each subject was initially

coregistered to the corresponding non-diffusion image in the DTI

native space using an affine transformation. Subsequently, the

registered structural image was non-linearly transformed in the

ICBM152 T1 template in Montreal Neurological Institute space.

Finally, the automated anatomical labeling (AAL) 116 atlas was

wrapped from standard space to each native space by inversing

the non-linear transformation from previous step and defining

each region as one node (Gong et al., 2009). The whole-brain

WM fiber bundles were constructed using Fiber Assignment by

Continuous Tracking (FACT) algorithm. Streamline terminated if

fibers turned at an angle >45◦ or encountered a voxel with FA

< 0.2 due to low likelihood of belonging to bundle of interest

under these conditions. The fiber number (FN) between a pair

of nodes was defined as the inter-regional structural connectivity.

Structural brain network was ultimately established through a

subject-specific 116 × 116 FN-weighted matrix. Moreover, we

utilized the brain connectivity toolbox (BCT) (Rubinov and Sporns,

2010) to process the acquired networks, involving computation and

normalization of graph theoreticmetrics. In this study, we extracted

several global topological metrics including global efficiency (Eg),

local efficiency (Eloc), normalized cluster coefficient (gamma),

normalized characteristic path length (lambda), small-worldness

(sigma), assortativity, modularity, and hierarchy (Sporns, 2013)

(Figure 1). The total intracranial volume (TIV) for each participant

was derived from T1-weighted structural images using the

Computational Anatomy Toolbox (CAT 12, http://dbm.neuro.uni-

jena.de/cat12/).

2.5 Statistical analysis

The statistical analyses were conducted using IBM SPSS

software version 22. A p value of <0.05 was considered statistically

significant. The independent two-sample t-test and the Chi-

square test were performed to assess the inter-group differences

in age, gender, education level, and TIV, respectively. Normality

of data was examined with the Kolmogorov-Smirnov (KS) test

to determine appropriate parametric and non-parametric tests.

Continuous variables were presented as mean± standard deviation

(SD) or median (first quartile, third quartile), depending on

their distribution characteristics. Comparisons between the two

groups for these metrics involved either independent two-sample

t-tests (for parametric tests) or Mann-Whitney U-tests (for non-

parametric tests). The receiver operating characteristic (ROC)

curves were utilized to quantitatively evaluate the discriminative
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TABLE 2 Comparison of DTI and topological metrics between first-episode schizophrenia patients and healthy controls.

Metric FES
(n = 56)

HC
(n = 64)

t/Z P

PSMD (×10−4mm2/s) 1.76± 0.18 1.67± 0.12 2.467 0.015
∗

PSFA 0.44± 0.01 0.44± 0.01 −0.846 0.399

PSAD (×10−4mm2/s) 7.28± 0.38 7.27± 0.35 0.104 0.917

PSRD (×10−4mm2/s) 3.11± 0.16 3.08± 0.17 0.901 0.369

Average MD (×10−4mm2/s) 7.82± 0.21 7.79± 0.18 0.718 0.474

Average FA 0.48± 0.02 0.49± 0.01 −1.387 0.168

Average AD (×10−4mm2/s) 12.48± 0.23 12.49± 0.20 −0.357 0.722

Average RD (×10−4mm2/s) 5.49± 0.24 5.45± 0.19 1.134 0.259

Eg 12.07 (11.11, 12.88) 12.76± 1.82 −2.188 0.029
∗

Eloc 18.67 (16.81, 20.39) 19.48± 2.75 −1.136 0.256

Gamma 4.11± 0.36 4.04± 0.36 0.990 0.324

Lambda 1.20± 0.05 1.18± 0.05 2.270 0.025
∗

Sigma 3.42± 0.30 3.34 (3.24, 3.56) −0.626 0.531

Assortativity 0.12± 0.06 0.12± 0.06 0.037 0.970

Modularity 0.60± 0.02 0.59± 0.02 1.308 0.193

Hierarchy −0.29± 0.06 −0.28± 0.07 0.460 0.646

Data were presented as the mean± SD or median (first quartile, third quartile). FES, first-episode schizophrenia; HC, healthy control; PSMD, peak width of skeletonized mean diffusivity; PSFA,

peak width of skeletonized fractional anisotropy; PSAD, peak width of skeletonized axial diffusivity; PSRD, peak width of skeletonized radial diffusivity; MD, mean diffusivity; FA, fractional

anisotropy; AD, axial diffusivity; RD, radial diffusivity; Eg, global efficiency; Eloc, local efficiency; Gamma, normalized cluster coefficient; Lambda, normalized characteristic path length; Sigma,

small-worldness; ∗P < 0.05 was considered significant. Bold, statistical and P-values were considered significant.

capacity of peak width of skeletonized diffusion metrics and

conventional diffusion markers in distinguishing patients with

first-episode schizophrenia from HCs. The Delong test was

employed for comparing the area under the ROC curves

(AUC). To investigate associations with clinical scales, univariate

and multivariate correlation analysis models adjusted for age,

gender, education level, and TIV were employed to examine the

relationships between PANSS scores, cognitive scores, and metrics

demonstrating significant inter-group differences, respectively. In

univariate analysis, partial correlation coefficient was employed.

In multivariate analysis, the multivariate linear regression model,

specifically hierarchical regression model, was utilized to mitigate

the impact of covariates. The false discovery rate (FDR) method

was applied to adjust for multiple comparisons in the correlation

analyses. Results from the regression models were reported as

beta (β) coefficients with statistical values. The adjusted coefficient

of variation (R2
adj

) was used to assess the adequacy of the

statistical model’s fit. The presence of multicollinearity among

predictors can confound estimates of individual predictor weights,

therefore, variance inflation factors (VIFs) were calculated to assess

collinearity between independent variables.

3 Results

3.1 Demographic and clinical
characteristics

A total of 56 first-episode schizophrenia patients and 64 HCs

were included in this study. The demographic characteristics,

cognitive scores for all participants, and PANSS scores for the first-

episode schizophrenia patients are summarized in Table 1. There

were no significant differences observed between the patient and

HC groups in terms of age (t = 1.036, p = 0.302), gender (χ2

= 0.003, p = 0.956), educational level (t = 1.324, p = 0.287), or

TIV (t = 0.214, p = 0.831). However, the patient group exhibited

significantly lower cognitive scores across all cognitive domains

compared to the HC group (p < 0.05).

3.2 Comparison of DTI and topological
metrics between groups

The DTI and topological metrics of the first-episode

schizophrenia patients and HCs are summarized in Table 2.

In comparison to HCs, a statistically significant increase in PSMD

values was observed in the patient group (t = 2.467, p = 0.015).

However, no significant differences were found between the

two groups regarding PSFA, PSAD, PSRD, skeletonized average

MD, average FA, average AD, or average RD values (p > 0.05).

With respect to topological metrics, the patient group exhibited

significantly decreased Eg values (Z = −2.188, p = 0.029) and

increased lambda values (t = 2.270, p = 0.025) compared to those

in HCs. No significant differences were observed between the

groups for the remaining metrics. The results of the ROC curve

analysis are summarized in Table 3. The AUC for PSMD (AUC

= 0.705, 95% CI = 0.602–0.808) exceeds that of the other peak

width of skeletonized diffusion metrics (PSFA/PSAD/PSRD: AUC

= 0.564—0.647) and the skeletonized average diffusion coefficients
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TABLE 3 Results of the ROC curve analysis in DTI and topological metrics.

Metric AUC P 95% CI

PSMD 0.705 0.047
∗ 0.602–0.808

PSFA 0.564 0.497 0.460–0.668

PSAD 0.619 0.721 0.513–0.725

PSRD 0.647 0.380 0.543–0.750

Average MD 0.617 0.748 0.512–0.722

Average FA 0.527 0.168 0.423–0.630

Average AD 0.558 0.424 0.452–0.663

Average RD 0.646 0.388 0.542–0.750

Eg 0.716 0.029
∗ 0.615–0.817

Eloc 0.540 0.256 0.436–0.643

Gamma 0.680 0.132 0.576–0.784

Lambda 0.720 0.023
∗ 0.620–0.820

Sigma 0.633 0.531 0.528–0.738

Assortativity 0.602 0.975 0.498–0.706

Modularity 0.667 0.209 0.564–0.770

Hierarchy 0.603 0.958 0.498–0.707

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval;

PSMD, peak width of skeletonized mean diffusivity; PSFA, peak width of skeletonized

fractional anisotropy; PSAD, peak width of skeletonized axial diffusivity; PSRD, peak width

of skeletonized radial diffusivity; MD, mean diffusivity; FA, fractional anisotropy; AD,

axial diffusivity; RD, radial diffusivity; Eg, global efficiency; Eloc, local efficiency; Gamma,

normalized cluster coefficient; Lambda, normalized characteristic path length; Sigma, small-

worldness; ∗P < 0.05 was considered significant. Bold, AUC and P-values were considered

significant.

(skeletonized average MD/FA/AD/RD: AUC = 0.527—0.646).

Furthermore, PSMD’s performance is comparable to Eg (AUC =

0.716, 95% CI = 0.615–0.817) and lambda (AUC = 0.720, 95%

CI = 0.620–0.820), as evidenced by p values from the Delong

test between PSMD and these two metrics at 0.882 and 0.838

respectively; however, it outperforms those of the remaining

topological metrics (AUC= 0.540—0.680).

3.3 Correlational analysis between metrics
and clinical scale scores

The results of the correlational analysis between clinical scale

scores and the aforementioned abnormal metrics (PSMD, Eg, and

lambda) are presented in Table 4. In the first-episode schizophrenia

patient group, after adjusting for age, gender, education level and

TIV, it was found that both PSMD values, and lambda values

exhibited a significant negative correlation with reasoning and

problem-solving scores (PSMD: r = −0.409, p = 0.038; lambda:

r = −0.520, p = 0.006). However, following FDR correction for

the p values, these two significant findings did not withstand

multiple comparison correction (p_FDR > 0.05). No significant

correlation was found between other cognitive functions and the

aforementioned abnormal metrics, nor between PANSS scores and

the metrics (p > 0.05).

3.4 Multivariate linear regression

To investigate the potential of the metrics with inter-

group differences as independent imaging markers for clinical

manifestations, multivariate linear regression analysis was

conducted after adjusting for age, gender, educational level and

TIV. PSMD, Eg, and lambda were included as independent

variables, while cognitive function score in each domain and each

PANSS score served as dependent variable. In this study, all VIFs

were below 2, indicating no significant multicollinearity exist.

The regression analysis revealed that the constructed model had

statistical significance when the reasoning and problem-solving

score was considered as dependent variable (R2
adj

= 0.295, F

= 2.951, p = 0.029). An increase in PSMD was independently

associated with a decrease in reasoning and problem-solving score

(β = −0.426, t = −2.260, p = 0.034), an increase in lambda

was independently associated with a decrease in reasoning and

problem-solving score (β = −0.490, t = −2.994, p = 0.007),

while Eg showed no significant effect on reasoning and problem-

solving score (p > 0.05) (Table 5). However, this significant

multivariate linear correlation did not withstand FDR correction

(p_FDR > 0.05).

4 Discussion

To the best of our knowledge, this study represents the first

investigation into PSMD values in patients with first-episode

schizophrenia. In this pilot study, we utilized peak width of

skeletonized diffusion metrics and conventional diffusion metrics

alongside connectome global topological metrics as neuroimaging

markers to evaluate alterations in the microstructural integrity

of the entire WM in first-episode schizophrenia patients, while

also investigating the clinical relevance of these markers. Our

findings revealed significantly higher PSMD value and normalized

characteristic path length in the patient group compared to

controls, while global network efficiency was significantly lower

than that observed in controls. Although no significant correlations

were found between PSMD values or normalized characteristic

path length and PANSS scores, they exhibited a moderate-

to-close correlation with the cognitive domain of reasoning

and problem-solving.

Histogram analysis is a sensitive and robust method for

quantifying pathological changes, as it captures the distribution of

diffusivity values across the entire brain (Tofts et al., 2003). Previous

studies have demonstrated that measures of histogram peak

height are associated with cognitive function and can effectively

characterize disease burden in small vessel diseases (Tuladhar et al.,

2015; Wei et al., 2019). PSMD is a promising DTI metric that

leverages the advantages of integrating diffusion histogram analysis

with skeletonization of WM tracts. Calculation of this metric is

fully automated, rapid, and robust, meeting the requirements for

application to large sample sizes. A key characteristic of PSMD is its

restriction to voxels within the WM skeleton, efficiently excluding

areas more susceptible to CSF contamination and enhancing

statistical power (Baykara et al., 2016). The range between the 95th

and 5th percentiles on the histogram curve can provide a dispersion

tendency statistic that captures diverse sources of heterogeneity
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TABLE 4 Results of correlational analysis between abnormal metrics and clinical characteristics in first-episode schizophrenia patients.

Clinical scale PSMD Eg Lambda

r P P_FDR r P P_FDR r P P_FDR

MCCB

SOP −0.340 0.090 0.330 −0.169 0.409 0.807 −0.263 0.195 0.536

AV −0.005 0.980 0.980 0.173 0.397 0.807 −0.089 0.667 0.869

WM 0.084 0.685 0.980 0.006 0.976 0.979 −0.030 0.884 0.884

Vrbl_Lrng 0.393 0.047 0.258 0.158 0.440 0.807 −0.166 0.418 0.869

Vis_Lrng −0.018 0.932 0.980 0.012 0.954 0.979 −0.349 0.080 0.293

RPS −0.409 0.038
∗ 0.258 0.035 0.866 0.979 −0.520 0.006

∗ 0.066

SC 0.084 0.683 0.980 0.165 0.421 0.807 0.139 0.499 0.869

PANSS

Positive 0.026 0.871 0.980 0.085 0.598 0.865 0.291 0.065 0.283

Negative −0.033 0.838 0.980 −0.149 0.352 0.807 0.059 0.715 0.869

General 0.074 0.647 0.980 −0.178 0.265 0.807 0.067 0.676 0.869

Total score −0.035 0.828 0.980 −0.078 0.629 0.865 −0.043 0.790 0.869

r, correlation coefficient; PSMD, peak width of skeletonized mean diffusivity; Eg, global efficiency; Lambda, normalized characteristic path length; MCCB, MATRICS Consensus Cognitive

Battery; SOP, speed of processing; AV, attention/vigilance; WM, working memory; Vrbl_Lrng, verbal learning andmemory; Vis_Lrng, visual learning andmemory; RPS, reasoning and problem-

solving; SC, social cognition; PANSS, Positive and Negative Syndrome Scale; ∗P < 0.05 was considered significant; FDR, false discovery rate. Bold, correlation and P-values were considered

significant.

in diffusion parameters across the WM skeleton, making it more

sensitive to regional variability in MD (Beaudet et al., 2020).

Since the identical skeletonization procedure and custom mask are

applied to all individuals, the resulting histograms are inherently

normalized; specifically, they are derived from an equivalent

number of voxels and have comparable bin widths. This facilitates

direct comparison of PSMD values among patients with varying

brain volumes and contributes to explaining the consistency of

PSMD values across diverse populations (Zanon Zotin et al.,

2023). Consequently, compared to traditional histogram measures,

PSMDdemonstrates superiority in terms of processing speed, inter-

scanner reproducibility, and sample size estimations.

In this study involving drug-naive first-episode schizophrenia

patients, a significant increase in PSMD was observed while no

significant changes were detected in PSFA, PSAD, PSRD, average

MD, FA, AD, or RD values. The results of ROC curve analysis

also suggest a larger AUC value for PSMD, providing support

for the hypothesis that PSMD exhibits heightened sensitivity

to schizophrenia-related abnormalities in WM fiber tracts. The

finding that PSMD demonstrates superior discriminative ability

for WM microstructural abnormalities compared to other peak

width of skeletonized diffusion coefficients is consistent with

the conclusion drawn by Blesa et al. (2020), who attribute this

difference to variations in inter-group variability between the

5th and 95th percentiles of the histogram. Previous studies on

schizophrenia and SVD disease have demonstrated correlations

between MD and myelin density, tissue rarefaction, axon count,

and WM microinfarcts (van Veluw et al., 2019; Lee et al.,

2013). It is plausible that similar histopathologic alterations are

associated with PSMD, reflecting disruption of connectivity and

deceleration of synaptic transmission, thereby contributing to

cognitive impairment (Zanon Zotin et al., 2023). Higher PSMD

values were found to be associated with extensive damage to

structural connections and suggested diffuse damage to myelin

content and axon counts in the brain of patients, possibly indicating

decreased fiber integrity and pathological aggregation of free water

in the extracellular compartment (Vinciguerra et al., 2021). The

result highlights the potential value of using PSMD as an additional

neuroimaging metric beyond conventional DTI measures during

early stages of schizophrenia.

The topological alterations of the WM networks between the

patients and HCs were further investigated using deterministic

tractography and connectivity-based analysis methods. The WM

networks in the patient group exhibited typical small-world

properties, indicating that the small-world network can tolerate

disease-related structural alteration to some extent (He et al., 2009).

Small-worldness represents a balance between segregation, which

refers to distributed and specialized processing in specific brain

regions, and integration, which refers to the capacity to integrate

information from distribution processes (Frey et al., 2021).

However, compared with HCs, the patient group demonstrated

significantly decreased global efficiency and significantly increased

shortest path length. Global efficiency relies on intact long-

distance connections as they facilitate communication among

remote brain regions (Watts and Strogatz, 1998). The reduced

global efficiency indicated a decline in effective interaction and

neural information transmission across distant cortical areas. This

finding aligns with previous schizophrenia fMRI studies reporting

insufficient effective integration among distributed functional

cortical regions (Kambeitz et al., 2016; Wang et al., 2024).

Additionally, the increased shortest path length signifies prolonged

optimal interactions among neurons that are crucial for functional

cognitive processes within and across the brain regions. The

degeneration of fiber tracts is generally considered as a potential
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TABLE 5 Results of multivariate linear regression between abnormal metrics and clinical characteristics in first-episode schizophrenia patients.

Clinical scale PSMD Eg Lambda R
2adja Fa Pa P_FDRa

β t P β t P β t P

MCCB

SOP −0.413 −1.922 0.068 −0.313 −1.464 0.157 −0.264 −1.419 0.170 0.086 1.436 0.246 0.677

AV 0.035 0.159 0.875 0.175 0.787 0.440 −0.060 −0.310 0.759 0.013 1.060 0.416 0.677

WM 0.104 0.419 0.680 0.020 0.081 0.936 −0.037 −0.171 0.866 −0.216 0.170 0.982 0.982

Vrbl_Lrng 0.512 2.391 0.026 0.242 1.136 0.268 −0.178 −0.956 0.349 0.090 1.459 0.238 0.677

Vis_Lrng 0.014 0.059 0.953 −0.045 −0.199 0.844 −0.349 −1.760 0.092 −0.033 0.851 0.545 0.749

RPS −0.426 −2.260 0.034
∗

−0.127 −0.676 0.506 −0.490 −2.994 0.007
∗

0.295 2.951 0.029
∗ 0.319

SC 0.124 0.508 0.616 0.240 0.990 0.333 0.161 0.764 0.453 −0.178 0.296 0.932 0.982

PANSS

Positive –0.015 −0.092 0.927 0.101 0.700 0.488 0.291 1.911 0.064 0.131 2.080 0.079 0.435

Negative −0.032 −0.191 0.850 −0.135 −0.880 0.385 0.050 0.310 0.758 0.022 1.161 0.348 0.677

General 0.083 0.482 0.633 −0.174 −1.106 0.276 0.045 0.269 0.789 −0.037 0.745 0.617 0.754

Total score −0.037 −0.218 0.829 −0.068 −0.440 0.662 0.041 0.249 0.805 0.002 1.014 0.431 0.677

β , standardized beta coefficient; a , model statistics; R2
adj

, adjusted R squared value; PSMD, peak width of skeletonized mean diffusivity; Eg, global efficiency; Lambda, normalized characteristic path length; MCCB, MATRICS Consensus Cognitive Battery; SOP, speed

of processing; AV, attention/vigilance; WM, working memory; Vrbl_Lrng, verbal learning and memory; Vis_Lrng, visual learning and memory; RPS, reasoning and problem-solving; SC, social cognition; PANSS, Positive and Negative Syndrome Scale; ∗P < 0.05 was

considered significant; FDR, false discovery rate. Bold, statistical and P-values were considered significant.
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cause for the increase in shortest path length in the patient group.

The observed alterations of WM network topology suggest that

there is a decrease in patients’ brain capacity to effectively integrate

distributed information.

The present study revealed that among all cognitive domains,

only the scores in the reasoning and problem-solving domain

exhibited a significant independent negative correlation with

PSMD and lambda values. Although the negative correlation

loses statistical significance after correction, we still regard it as

a correlated trend worth discussing. Reasoning and problem-

solving function was assessed using the NAB maze tracking

task, which involves inductive reasoning—a crucial aspect of

generating predictions and one of the most significant problem-

solving activities (Wass et al., 2012). In terms of the relationship

between reasoning and problem-solving function and diffusion

indicators, Zahr et al. (2009) discovered a positive correlation

between problem-solving function and FA values in genu and

fornix. The discrepancy in the correlation between fiber bundle

FA from aforementioned study and PSMD reported in this paper,

regarding the reasoning and problem-solving scores, provides

convergent validity for the biological meaningfulness of tracked

fibers’ integrity (Zahr et al., 2009). The observed correlations

support the notion that degradation of WM fiber integrity serves

as a biological source of related functional compromise, potentially

limiting neural systems’ capability to compensate for impaired

function. Additionally, it has been suggested that the test employed

to assess the reasoning and problem-solving domain is speed-based

(Mohn and Rund, 2016). The increased lambda value observed

in this study indicates prolonged optimal interactions among

neurons—essential for functional cognitive processes within brain

regions as well as across them—may result in decreased processing

speed during cognitive tasks (Sporns, 2011).

Our study has certain limitations. Firstly, the relatively small

sample size of our cohort may account for the lack of significance in

cognitive correlates after applying multiple comparison correction.

Therefore, our findings should be considered as preliminary and

require external validation in larger cohorts. Secondly, the cross-

sectional design of our study restricts causal interpretation of

results and emphasizes the necessity for larger longitudinal studies.

Thirdly, the FACT streamlining algorithm utilized for network

construction has inherent limitations in tracking fibers within

complex white matter architecture, particularly in cases of crossing

fibers. A better alternative method is to obtain the advanced

white matter imaging techniques such as high angular resolution

diffusion imaging (HARDI) and diffusion spectrum imaging (DSI),

which can yield superior qualitative data pertaining to multiple

crossing fibers with high spatial orientation. Lastly, although

PSMD benefits a single global measurement, its limitations

lie in the absence of anatomical information which limits

specificity in identifying underlying pathological abnormalities.

Future investigation should incorporate comprehensive analyses

to confirm the efficacy of PSMD in terms of sensitivity to

microstructural changes over time and response to treatment.

In summary, this study investigated abnormalities in DTI

metrics and network topological metrics in individuals with

first-episode drug-naive schizophrenia, and introduced PSMD

as a diffusion indicator for schizophrenia for the first time.

Our findings revealed that PSMD was able to detect WM

microstructural integrity abnormalities that were not identified by

conventional diffusion metrics. Furthermore, PSMD demonstrated

consistency with the network topological metric lambda in

detecting correlations with reasoning and problem-solving

cognitive dysfunction. These results suggest that PSMD is an

effective neuroimaging biomarker for schizophrenia, which can

complement conventional diffusion measurements to investigate

cognitive impairment. Importantly, the evaluation of PSMD was

rapid and fully automated, while its robustness and accuracy have

been previously validated across multi-center datasets. Therefore,

PSMD holds promise as a valuable neuroimaging biomarker

for schizophrenia in future studies aiming to supplement

quantification of WM microstructural lesions or retrospectively

analyze existing DTI datasets.
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