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There is a growing interest in understanding the factors that influence a

user’s perception and preferences for video quality. This study specifically

focuses on how various factors, including video content, display settings,

viewer characteristics, and the ambient environment, a�ect the subjective video

quality assessment (VQA) of TV displays. To investigate these factors, two

psychophysical experiments were conducted, and the results indicate that all

four factors have a significant impact on video quality perception in di�erent

ways. This study is beneficial for researchers and developers who aim to improve

display and environmental settings to provide viewers with the best possible

viewing experience.
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1 Introduction

Researchers have been exploring ways to enhance video and image quality since the

television became a staple in everyday life. In the early 1980s, the work by Schreiber

(1984) delved into enhancing video quality by leveraging insights from the human vision

system (HVS), examining how its characteristics, such as spatial and temporal vision

and adaptation, influence perceived video quality. As high-definition television (HDTV)

gained popularity in the early 2000s, researchers explored the interplay between viewer

characteristics (e.g., gender) and image quality, concluding that the sense of presence is

significantly affected by image quality (Bracken, 2005).

With the advancement in video and display technologies, the demand for high-quality

video has increased markedly over recent years. In this context, assessing the video quality

to ensure the optimal user viewing experience has become crucial. VQA involves analyzing

various factors that affect the overall human-perceived visual quality of video content,

such as image resolution, content genre, viewer characteristics, and many others. Overall,

these factors are categorized into four main domains: video content, display, viewer

characteristics, and ambient environment. Below we summarize representative studies in

each domain.

1.1 Video content

Research has shown that viewer perception of image quality varies with the content.

Park et al. studied how people perceive image quality differently depending on the type of
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content. Through the experiments, they concluded that content

genre-based image quality adjustment, such as enhanced saturation

for sports scenes, is necessary (Park, 2021). Some studies have

also investigated the impact of the type of content on viewer

preferences for video enhancement algorithms and have introduced

datasets like the “LIVE” for evaluating video distortion through

both subjective and objective methods (Seshadrinathan et al.,

2010; Moorthy et al., 2012; Satgunam et al., 2013). Moreover,

García Castiella (2020) explored the effects of the dynamic range

in the video content.

1.2 Viewer characteristics

Studies focusing on viewer demographics have revealed insights

into how such characteristics as gender and age may influence

quality perception. Sinno and Bovik (2018) did an online

experiment and found only minor differences in quality ratings

between male and female viewers, however age did have an impact

on ratings. Human vision changes with age, resulting in differences

in video quality perception. In this regard, Park and Park (2018)

divide the viewers into the adult group and elderly group and

examine the image quality preference of the elderly group. This

study confirms that it is necessary to increase the brightness of the

image in order for the elderly group’s image quality preference to

be at an equivalent level to that of the younger adult group. Nam

et al. (2005) also provide methods for adapting visual content to

accommodate color vision deficiency and low-vision capabilities.

These studies underscore the necessity of considering a wide range

of viewer characteristics, including age and visual ability, in the

optimization of image quality.

1.3 Ambient environment

The influence of the ambient environment on image and video

quality has been a significant focus of the research area. Liu et al.

(2014) discussed the effect of ambient light intensity on hand-

held displays. The quantitative analysis suggests that differences

in display reflection coefficients do not affect the low illumination

performance of the device but rather the performance at higher

levels of illumination. Wetzel and Hernandez (2010) conducted

an experiment evaluating six factors related to ambient light and

concluded that the intensity of ambient light significantly affects

the accuracy of determining the stimuli but not the response

time. Chubarau et al. (2020) delved into how ambient illumination

levels and display luminance affect image quality. They found

that humans preferred the illumination range near the “ideal”

conditions, around 200–600 lux. They also came up with a model.

These studies highlight the critical role of ambient environmental

conditions, especially lighting, in viewer experience.

1.4 Display

The Display domain includes display settings and display

technologies. Kufa et al. investigated the perceptual quality of

video content presented in Full HD and Ultra HD resolutions

at different viewing distances. This research highlighted

VQA is directly correlated with resolution and bitrate (Kufa

and Kratochvil, 2019). Baek et al. (2021) investigated how

the correlated color temperature (CCT) of the TV and

ambient light influences perceived image quality. Their study

suggests a preference for adjusting the CCT of television

displays to resemble the ambient light’s CCT, noting that

the optimal display intensity is typically lower than the

surrounding light.

VQA also involves the use of subjective and objective

methods. Objective methods use mathematical or statistical tools

to analyze the technical aspects of the image or video content

itself, and they are highly efficient and easy to deploy. Over the

years, more advanced objective methods have been developed,

including spatial domain methods such as deep similarity index

(DeepSim), based on a deep neural network (Gao et al., 2017).

Chikkerur et al. (2011) and Zhai and Min (2020) provided a

thorough review of the objective VQA methods. The human

vision system is significantly related to the perceived image

and video qualities. Some researchers have connected objective

methods with HVS. Varga introduced an innovative quality-

aware feature extraction method for no-reference image quality

assessment by applying various sequences of HVS-inspired

filters (Varga, 2022). Gao et al. (2010) summarized the state-

of-the-art of HVS-inspired IQA methods; they introduce the

basic theories and development histories of HVS-based IQA

methods in their work. Panetta et al. (2015) proposed HVS-

inspired enhancement of the underwater images. However,

some of these methods are generally pixel-by-pixel based and

do not consider the actual user-perceived visual quality that

other factors, such as ambient environment, can influence.

Conversely, subjective methods rely on human observers to

perceive and evaluate the quality of video content based on

their personal preferences and opinions. Series (2012) is a

standard that introduces subjective evaluation methods. Pinson

and Wolf summarized different subjective evaluation methods

while providing valuable insights into the strengths and limitations

of different methodologies (Pinson andWolf, 2003). Both objective

and subjective methods can help evaluate video quality. Although it

is more time-consuming than the objective method, the subjective

VQA method is more suitable for measuring observers’ image

quality preferences while considering user-specific and situational

factors.

This study extends earlier work (Pei et al., 2024). The

aim is to empirically uncover and examine TV users’ video

quality preferences and impacting factors. Factors from four

categories were carefully chosen, namely, observer characteristics,

display, ambient environment, and viewing content. The

analysis delves deeper into these factors, particularly focusing

on observer characteristics. We investigated demographic

factors, which were not previously discussed. The subjective

method was adopted as the initial investigation, and the

objective method was implemented to gain more insight.

Additionally, a comparison of color spaces is included to enhance

understanding and predictive modeling. Two psychophysical

experiments were designed with different considerations of

selected factors.
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2 Experimental methodology

The goal of the experiments is to determine how users perceive

picture quality on TV displays and what latent factors affect human

visual perception. Toward this end, two experiments were designed

to evaluate the impact of varied combinations of select factors on

specific video quality, implemented by a TV display’s picture setting

configurations and an image processing algorithm. Both of these

experiments involved the same participants, TV displays, lighting

environment, and similar contents.

2.1 The participants

Individuals with normal color vision were recruited as

participants in the experiments. Each participant provided

informed consent after being briefed on the study procedures. RIT’s

Human Subjects Research Office has approved this experiment

(approval FWA #00000731). 37 observers participated in both

of the experiments. All of the participants were paid volunteers.

Among all the observers, there were 30% women, 64% men, and

6% others. 32% of them were from North America/ Europe, and

68%were from other countries. 38% of the participants had domain

knowledge of color or image science. 70% of them preferred

watching TV during the night time. And 65% were younger than

25 years old. The demographic factors are depicted in Figure 1.

2.2 Experiment factors

The experiments comprised evaluation of six distinct visual

stimuli, as depicted in Figure 2. The contents represented various

video categories, including bright and dark scenes, diverse skin

tones, and animated and real-life footage. Each stimulus was

prepared as an 8-second-long 4K SDR video clip per selected

content. The original video format was Apple’s QuickTime (MOV),

and HEVC was used as an encoder for easy content playback

on TVs.

The experiments were conducted in the Munsell Color Science

Laboratory Dynamic Visual Adaptation Lab, which features a

ceiling-mounted, five-channel tunable LED system. Various desired

lighting conditions can be achieved by adjusting the weights for

these channels. Under the guidance of the report from the U.S.

Department of Energy (Secretary, 2012), this study employed

four distinct lighting conditions: (1) Dark Warm, (2) Bright

Warm, (3) Dark Cool, and (4) Bright Cool (see Table 1). The

ambient lighting characteristics were measured using an MK350N

spectroradiometer.

The display setting was chosen as one of the factors. It is also

known as Picture Mode on TV displays. In the first experiment

(Experiment I), the observers were asked about their preferences

regarding specific Picture Modes, which were developed based on

TV usage log data (Lee and Park, 2021; Lee, 2023). These settings

differed from the factory default, mainly on brightness, contrast,

and sharpness levels that were actually preferred by the users. To

be more specific, our log data analysis indicated that some users

prefer to customize the default Standard and Movie Picture Mode.

For Standard Mode, some users tend to lower the TV display’s

brightness level by 22%, compared to the default (namely, Dark

Standard Mode). Different preferences exist for Movie Mode, like

increasing the brightness setting by 37% more than the default

(namely, BrightMovieMode).We configured the default and newly

identified Picture Modes on the reference and control TVs and

asked subjects to mark their preferences for new Picture Modes.

The second experiment (Experiment II) focused on the video’s

colorfulness. Here, we defined three different levels of colorfulness

based on a proprietary perceptual color enhancement algorithm

(Su et al., 2023) and collected subjects’ preferred colorfulness levels

accordingly. The display was calibrated for each mode under a dark

condition to ensure accurate color rendering on the test TV.

In the experiment, the test TV implemented a different color

enhancement algorithm than the reference TV, which impacted

its apparent colorfulness. It was configured to show (1) low, (2)

medium, and (3) high levels of colorfulness for separate trials, while

the baseline colorfulness of the reference TV was held constant.

The test TV’s lowest colorfulness level was roughly equivalent to

the colorfulness of the reference TV. Through the experiment, we

aimed to determine how people react to different colorfulness levels

depending on select factors.

As discussed in the Introduction, observer characteristics

significantly affect the VQA and could offer insights into the

individual differences in the video/image preference. Thereby, we

considered five factors under the observer characteristics category

for the current study. This includes (1) age, (2) gender, (3) expertise

in color or image science, (4) habituation of watching TV, and (5)

country of origin. The details are listed in Table 2.

2.3 Experiment I: procedure

Two identical 65-inch Samsung 4K QLED TVs (Model:

QN85C) were installed side-by-side and used as the displays for

Experiment I. The double stimulus simultaneous quality scale

(DSSQS) method was adopted. The reference stimulus with default

Picture Mode on the left TV was assigned a preference score of 50,

and observers rated the video quality of the control stimulus with

newly identified Picture Mode (e.g., Bright Movie Mode) on the

right TV on a scale as low as 0 but without upper limits compared

to the reference. This experiment was divided into four blocks,

each representing one of the specific lighting conditions explained

above. Within each block, the stimuli were presented in a random

order to prevent memory effects. A MATLAB program was used to

control the experimental procedures, and a Bluetooth keypad was

used as the input device for observers to submit their responses.

A 15-minute warm-up period was allowed for the TVs and

the LED ceiling lights. During the experiment, observers sat

nine feet from the center of two TV displays, as shown in

Figure 3. The viewing angles for both TVs were identical. A one-

minute adaptation period between the blocks was required for the

observers, allowing them to adapt to the ambient light changes

adequately. The video stimuli were set as full-screen. Observers

responded to the same content twice within each block.

Considering four ambient lighting conditions, two Picture

Mode categories, five visual stimuli, and two repetitions, each
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FIGURE 1

Demographic factors.

observer performed 80 video quality assessments. This required

approximately 25 minutes of experimental time per observer.

2.4 Experiment II: procedure

The second experiment largely mirrored Experiment I, except

that the picture settings were on the colorfulness scale and an

additional stimulus was included (a bright movie scene; see

Figure 2F). Both TVs were configured with identical picture

settings but differed in their colorfulness level. The reference TV

employed a baseline (default) colorfulness, while the comparison

TV was set to (1) low, (2) medium, and (3) high levels of

colorfulness for separate trials.

This experiment consisted of four blocks of different lighting

conditions, three distinct colorfulness levels on TV displays,

and six stimuli with two repetitions. This section was divided

into 12 segments, encompassing 144 trials. The duration of this

experiment was approximately 40 minutes per observer. The

MATLAB program controlled the entire experimental procedure,

similar to the first experiment.

After completing both experiments, we performed a survey

to collect observer characteristics (e.g., age, gender) and study

participants’ qualitative feedback about the experiments.

3 Results and discussion

The conducted experiments generated two datasets: 2,960

observations for Experiment I and 5,328 observations for

Experiment II.

3.1 Analysis of factors

3.1.1 Experiment I
An ANOVA test was conducted on the data using JMP software

to analyze the impact of various factors under each experimental

condition. These conditions were grouped based on demographic

factors, with observer variations considered random. Drawing

conclusions from the Pvalue, the significant factors included TV’s

picture setting, luminous intensity, video content, age, country,

and habit. The interactions between picture setting & intensity and

picture setting & video content were significant in Experiment I.

(The statistical results of Experiment I are in Appendix).

The observer was asked to compare the default picture settings

to newly identified, user-preferred ones under two presets (i.e.,

Standard andMovie Picture Mode). Here, our aim is to understand

how people perceive user-preferred Picture Mode compared to

the default. To determine the overall preferences of observers

toward the given Picture Mode, Experiment I data was segmented

by Picture Mode: Standard and Movie. A response exceeding

50 signifies a preference for the user-preferred Picture Mode

(e.g., Bright Movie Mode). Other indicates a preference for the

reference (default) Picture Mode. A response equal to 50 indicates

no preference between the two Picture Modes. Then, two one-

sample t-tests were separately applied to the Standard and Movie

Mode data. The null hypothesis was that the user-preferred Picture

Mode is equivalent to or worse than the default. The t-test results

indicated we failed to reject the null hypothesis at the significance

level of 0.05 for Standard Mode. However, for Movie Mode,

the test suggested to reject the null hypothesis. Therefore, the

conclusion is that observers preferred the default picture settings

under Standard Mode but preferred the user-preferred settings

(increased brightness) for Movie Mode.

The Experiment I data was further divided by ambient lighting

conditions and content. There were four lighting conditions: (1)

Dark Warm, (2) Bright Warm, (3) Dark Cool, and (4) Bright

Cool, and five different visual stimuli: (1) Animation, (2) Game,

(3) Movie (Dark), (4) Nature, and (5) Sports. The observers’

responses for each video content under specific lighting conditions

are presented in Figure 4. Regarding Movie Picture Mode, mean

responses consistently exceed 50 regardless of ambient lighting

and content (see Figure 4B). This suggests that observers generally

preferred the user-preferred (bright) Movie Mode. In contrast,

most of the means fall below 50 for the Standard Mode, indicating
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FIGURE 2

Video stimuli (content). (A) Animation. (B) Game video. (C) Dark movie scene. (D) Nature scene. (E) Soccer scene. (F) Bright movie scene. Adapted

with permission from Pixabay (A), American Society of Cinematographers (C, F), and Adobe Stock (B, D, E).

TABLE 1 Select factors.

CCT (2) Illuminance (2) Stimuli (6) Demographic factors (6) Picture settings (5)

2700K (warm) 15lux (dark) Animation Age Dark standard mode∗

5500K (cool) 350lux (bright) Game Gender Bright movie mode∗

Movie (dark) Expertise Low colorfulness∗∗

Nature Habit Medium colorfulness∗∗

Sports Country High colorfulness∗∗

Movie (bright)

∗ and ∗∗ were used for Experiment I and II, respectively.
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a preference for the default setting. However, in the case of warm

and low-intensity lighting conditions (Dark Warm), observers

tended to favor the user-preferred setting (darker than the default

Standard) except for Animation content.

Multiple comparison t-tests were applied to the Experiment I

data to better understand the inter-relationships between ambient

lighting and content genre. Table 3 demonstrates the results of

the multiple comparison t-tests across different lighting conditions

with varying content pairs. Since each lighting condition consists

of ten comparison content groups, Bonferroni correction were

conducted with αcorrected =
0.05
10 = 0.005.

As can be seen, several circumstances indicate users prefer

customized picture settings other than the default. Specifically,

our study subjects were more likely to prefer the dark version

of Standard Mode when watching Nature content compared to

Animation content under the dark and warm room lighting

condition (see Animation vs. Nature and Dark Warm in Table 3;

p < 0.005). The Nature content was a sunset scene with warm

colors, so this might be related to the perceived darkness and

the observer favoring a darker image tone. The opposite goes for

the Movie Mode. The observers preferred the bright Movie Mode

TABLE 2 Demographic factors.

Habit (2) Expertise
(2)

Country
(2)

Gender
(3)

Age
(2)

Night time Color expert North

America/Europe

Men <25

Other time Non-color

expert

Others Women ≥25

Other

when watching cinematic content over game content under the

bright and cool room lighting condition (see Game vs. Movie and

Bright Cool in Table 3; p < 0.005). This finding aligns with some

literature: people prefer brighter images on a display device (e.g.,

TV) in a bright environment and vice versa (Lee and Park, 2021;

Lee, 2023).

The same analysis was applied between four different lighting

conditions in order to investigate the illumination level and CCT

factors. The results are listed in Table 4. There are statistically

significant differences between Dark Warm and Bright Warm,

Dark Warm, and Bright Cool, and Bright Warm and Dark Cool

(p < 0.0083, Bonferroni-corrected for six comparisons). The

results indicate that the room illuminance level has a more

substantial effect than the CCT.

The significant demographic factors were age, country, and

habit. For the age factor, the older group gave significantly higher

scores than the younger group toward the newly discovered Picture

Mode. The analysis of the interaction effect of PictureMode and age

suggested that the older group preferred the Dark Standard Mode,

while the younger group did not like the Dark Standard Mode. For

the Movie Mode, both groups preferred the Bright Movie Mode.

Participants with North American/European backgrounds had a

lower preference score for new Picture Modes than participants

from other regions. The night-time watchers also gave lower scores

for non-default Picture Modes than other time watchers.

3.1.2 Experiment II
An ANOVA test was applied to the data collected for

Experiment II. The test results indicate the video content, age,

country, habit, and gender were the significant factors. The

interaction of picture setting & CCT was significant, too. We

implemented and installed specialized software on the control

FIGURE 3

Experimental setup.
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FIGURE 4

Overall preferences of TV’s picture settings. (A) Mean responses for

user-preferred Dark Standard Mode. (B) Mean responses for

user-preferred Bright Movie Mode.

TV to show distinct levels of colorfulness (low, medium, high)

while controlling other image quality attributes (e.g., brightness).

However, while preparing Experiment II, we realized that the

perceptual difference between the reference and control TVs

was relatively less noticeable compared to Experiment I. This

might yield slightly different results about impacting factors. (The

statistical results of Experiment II are in Appendix).

The observers’ responses grouped by the video content factor

are shown in Figure 5. Animation and Game content were

significantly different from other content; they were both animated

scenes, which might make them stand out. It also indicates that

Movie (Dark), Sports, and Movie (Bright) content were similar to

each other and distinct from others. The commonality between

these videos was that they all included skin tones.

To probe whether the genre itself or the specific video

content was the driving factor, the Bright Movie clip was included

in Experiment II. A two-sample t-test was used to investigate

differences in viewer preferences toward Movie (Dark) and Movie

TABLE 3 Multiple t-tests on content/lighting (Experiment I).

Content\
lighting

Dark
warm

Bright
warm

Dark
cool

Bright
cool

Animation vs.

game

0.0097 0.0039 0.2665 0.0721

Animation vs.

movie

0.0057 0.9898 0.7966 0.4061

Animation vs.

nature

0.0045 0.3747 0.5387 0.3190

Animation vs.

sports

0.0336 0.0518 0.2821 0.2499

Game vs. movie 0.9784 0.0089 0.1558 0.0045

Game vs. nature 0.8116 0.0668 0.6810 0.3127

Game vs. sports 0.7313 0.5710 0.9949 0.4755

Movie vs. nature 0.7771 0.4175 0.3811 0.0364

Movie vs. sports 0.7336 0.0716 0.1698 0.0306

Nature vs. sports 0.5665 0.2852 0.6924 0.8021

We used dark scenes under the movie genre for Experiment I. Significant p-values instances

are emphasized (bold-faced).

TABLE 4 Multiple t-tests on lighting conditions (Experiment I).

Lighting condition pairs pvalue

Dark warm vs. bright warm 0.00

Dark warm vs. dark cool 0.3577

Dark warm vs. bright cool 0.0058

Bright warm vs. dark cool 0.0011

Bright warm vs. bright cool 0.1923

Dark cool vs. bright cool 0.0582

Significant p-values instances are emphasized (bold-faced).

(Bright) content under a single, bright TV viewing environment.

The null hypothesis was that there exist no differences in user

preferences toward dark and bright scenes from the same movie

content (see Figures 2C, F). The test rejected the null hypothesis

at the 0.05 significance level. Therefore, people perceive picture

quality differently, even in the same video, so the current

genre categorization may not effectively capture people’s actual

perceptions and preferences.

Similar to Experiment I, the demographic factors of age,

country, and habit were again found to be significant. Moreover,

adding colorfulness manipulation revealed the significance of

the demographic factor of gender. The interaction between

colorfulness and gender, along with the gender factor itself, was

examined. Recall that the test TV was equipped with a color

enhancement algorithm. The lowest colorfulness level for this

TV was reasonably equivalent, although not a match, to the

colorfulness of the reference TV. For the medium level of the

colorfulness setting, both genders gave scores above 50 indicating

that the participants generally prefer more colorful rendering.

Overall, women gave lower scores than men observers, who gave

scores higher than 50, regardless of the colorfulness level. The

younger group gave a higher score than the older group showing
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a consistent preference for the enhanced colorfulness, while the

older group showed a preference for the default. The North

America/Europe group also showed a preference for the reference

TV, but the other group preferred higher colorfulness levels. Night-

time watchers gave lower scores toward the enhanced colorfulness

than others.

4 Appearance based analysis

The observers’ feedback was collected to review how they

evaluated the videos. According to the feedback, the descriptors

commonly used were brightness, chroma, naturalness, skin tone,

and grass color. These words suggested that some observers judged

by overall scene color attributes, and others were more focused

on object colors, such as skin tone and grass colors. Two color

appearance-based analyses were conducted to get insight into

the correlation between preferences and these factors. The color

attributes and the representative colors of the objects in the videos

were analyzed.

4.1 Color attributes analysis

The keyframes of the videos were selected and saved in RGB

format. Then, a display characterization model was used to convert

the display value (RGB) to the tristimulus values (XYZ). With the

aid of the image appearance model, the tristimulus values were

converted to color attributes, which were used for further analysis.

4.1.1 Display characterization models
This project examined TV displays with eight distinct settings

along an ambient environment variation containing four unique

lighting conditions. This resulted in a total of 32 combinations

for the analysis of TV settings and ambient conditions. For

the display characterization, the PR655 spectroradiometer was

used to measure the radiance of different color ramps, and

afterward, these measurements were converted into absolute XYZ

values. Consequently, 32 distinct display characterization models

were created for different conditions. The detailed transformation

sequence can be found in Berns (1996). Each display model

corresponds to a specific combination of picture settings and

ambient light, ensuring the capture of the display’s color rendering

capabilities under varied environmental lighting. For display

characterization, the display model was applied, which is based on

the principles of additivity and scalability. For each display model,

the test results showed that the model could predict color with the

mean error in the range of 2 to 5 units of 1E2000. Additionally,

the display uniformity was assessed by measuring a set of colors,

specifically red, green, blue, and a randomly chosen color, lime.

There were five measurements for each color: one at the center and

four at the corners of the display. The calculated DE00 values for

these measurements were 1.27, 0.84, 0.56, and 0.89, respectively,

with an average of 0.89. The uniformity of the display was within

the satisfactory level. The display model conducted around the

center area of the display could represent the whole display.

FIGURE 5

Responses per content.

4.1.2 Image appearance attributes
In Experiment I, five videos were used for analysis (see

Figure 2). Keyframes from these videos were extracted and saved

as RGB PNG files. The RGB values were then converted to

XYZim values using the display models. The XYZim values obtained

were the absolute values and were used as the basis for further

transformations or normalization.

To standardize the data, a chromatic adaptation model was

used to convert these XYZim values under a XYZD65 white point.

Given that the experimental setup involved two TVs side-by-side

with ambient lighting, three distinct white points were present:

one for each TV and one for the ambient light. The white point

for adaptation was chosen based on the brightest one for each

combination. The chromatic adaptation is as follows:

XYZD65 = M−1
16 ×Madp ×M16 × XYZim (1)

where M16 is from CIECAM16 (Li et al., 2017), Madp =

diag(D65./Whitescene), represents the adaptation matrix to convert

scene white point(Whitescene) to D65. Full adaptation is assumed.

4.1.3 Image appearance analysis
Traditional image-based analysis considers the pixel-wised

values, and frequently, it does not directly incorporate any of

the spatial or temporal properties of human vision and the

perception of the image. This might miss some important concepts

in image/video quality perception. Winkler (1999) discussed the

importance of the video quality related to vision. Soundararajan

and Bovik (2012) considered the spatial factors to qualify the video

qualities, which shows promising results. The image appearance

model (iCAM; Fairchild, 2013) was used to aid the analysis. The

image appearance parameters were assessed by using an iCAM

in IPT space, which included lightness (I), chroma (C), and hue

(h). The contrast sensitivity function (CSF) was utilized to filter

the images. Three filters were applied to the luminance and two

chromatic channels. The filters are calculated as follows:

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1426195
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Pei et al. 10.3389/fnins.2024.1426195

csflum = a× f c × e−b∗f (2)

csfchroma = a1 × e−b1∗f
c1
+ a2 × e−b2∗f

c2
(3)

The filters are operated in IPT color space. Fourier

transformations are used. csflum is applied to I channel, and

two csfchroma are applied to P and T channels. The parameters’

value can be found in Fairchild (2013). And f is defined in terms of

cycles per degree of visual angle (cpd), which is

f =
ppi

190
π

× tan−1( 1
dis
)

(4)

where ppi is pixels per inch of the display, and dis is the distance

between the observer and the display.

In the keyframe analysis, two TVs were assessed: one as

a reference and the other as the test display. Differences

in appearance attributes were quantified, including lightness

difference (1I) and chroma difference (1C).

4.2 Color attributes in CIELAB

A comparison was conducted between the IPT-based image

appearance model and CIELAB space. In CIELAB space, the

L∗a∗b∗ values were calculated after chromatic adaptation, with the

same XYZD65 as were used for the IPT calculations with D65 as

the white point. Both the lightness (L) and chroma (C) values were

derived from these coordinates. Similar to the approach with IPT,

differences in lightness (1L) and chroma (1C) were calculated and

then compared to the mean preference.

4.2.1 Results
Figures 6A, B present the results obtained from Experiment

I. Each data point represents the mean preference response of a

specific video content assessed under a particular lighting condition

(see Table 5). In these plots, the y-axis represents the mean

preference response of the observer, while the x-axis indicates the

1 values for various appearance attributes. The data points in

these plots tend to be clustered into two distinct groups: Standard

and Movie Picture Mode. Notably, in the Movie Mode, observers

generally show a preference for the test configuration (i.e., Movie

Mode with increased brightness), whereas in the Standard Mode,

the default one tends to be favored.

The regression analysis is applied to determine how lightness

and chroma influence preference. The regression models and

their confidence bounds are plotted in Figures 6A, B. The models

have a reasonable performance with R2 values of 0.86 and 0.71,

respectively. Importantly, the coefficients for both models are

positive, implying a linear relationship between lightness and

chroma and preference so that as the lightness and chroma within

the range of our data increase, preference appears to increase

correspondingly.

The analysis based on the image appearance model shows

a clear trend. The conclusion drawn from this analysis is that

observers tend to prefer images that are brighter and more

chromatic. This preference pattern is consistent across the different

picture settings in Experiment 1. Resulting in given videos under

four unique lighting conditions following a similar preference

order: Dark Warm, Dark Cool, Bright Warm, and Bright Cool

conditions. As an example, data points 3, 13, 8, and 18, which

are the Movie (Dark) content under the four lighting conditions.

The results are aligned with the Bonferroni test in terms

of lighting conditions, in which observers prefer the dimmer

ambient lights.

As shown in Figure 6, the comparison of color spaces reveals

that the lightness difference and preference plots between the two

spaces are almost identical. However, the chroma plots, while

overall trending similarly, differ significantly in the order of chroma

differences (IPTdC and LABdC). As an example, the third image

under warm and dim lighting (Index: 3) has the lowest chroma

difference in CIELAB, but not in IPT. In comparing IPT and

CIELAB, it is evident that the IPT image appearance model

accounts for the contrast sensitivity of human vision, whereas

CIELAB evaluates color on a pixel-by-pixel basis, which is closer

to traditional image difference calculations. The chroma difference

and preference plots indicate that as chroma difference increases,

so does preference. The IPT model more effectively captures this

trend; data point 3 specifically shows a relatively higher preference

and aligns more closely with the regression line in IPT than in

CIELAB. Thus, while the preference trend relative to lightness

changes is similar between the two spaces, IPT better captures

chroma variations.

4.3 Representative color analysis

Image segmentation has been used for the analysis of the

image’s features, including classification or color enhancement

(Comaniciu and Meer, 1997; Naccari et al., 2005). In this section,

image segmentation was used to analyze the visual appearances

of the test content. Initially, each image was transformed into

the CIELAB color space. Following this, a K-means clustering

algorithm was applied to segment the images in CIELAB space,

setting K to four. This segmentation aims to isolate four principal

colors in each image. They are aligned with the objects’ colors

that the observers used for evaluating their preferences. The

presentation sequence started with the original image, followed

by the four representative colors, which were computed by

averaging the colors within their respective areas. The subsequent

four images display the individual areas associated with each

of these representative colors. As an example, Figure 7 shows

four segmented areas representing the grass, skin tones, and two

uniforms. The other images follow the same fashion.

For this study, a total of 32 display models were generated, each

corresponding to a unique combination of the TV’s picture setting

and ambient lighting conditions. These display models converted

the representative colors from RGB to XYZ. Subsequently,

CIECAM16 was applied to convert these XYZ values to the D65

white point. The white luminance was the absolute white in cd/m2,

and adapting luminance was set to 20% white luminance and

the average condition in CIECAM16 with full adaptation. The

average condition was used because the luminance of the white

in the scene was always above 200 cd/m2. The color appearance

attributes were then calculated, and the differences in the attributes
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FIGURE 6

Mean chroma and lightness with the mean preference response in IPT color space and CIELAB. (A) Mean IPTdC and mean response (R2 = 0.86). (B)

Mean IPTdI and mean response (R2 = 0.71). (C) Mean LABdC and mean response (R2 = 0.85). (D) Mean LABDL and mean response (R2 = 0.73).

were determined. The CIELAB color space was used to analyze

color appearance attributes, with calculations based on the XYZD65
tristimulus values, which used chromatic adaptation to the D65

white point. Following this, differences in color attributes were

determined. The results from CIELAB were then compared with

those from CIECAM16. The analysis then focused on correlating

these appearance attributes with the viewers’ preference responses

for each unique experimental condition.

The attributes of the represented colors were calculated using

CIECAM16 and CIELAB and used for analysis. Since each video

features distinct representative colors, the data were categorized

and analyzed according to the individual videos. Figure 8 depicts

how the preference rating changes according to the lightness and

chroma of four representative colors in Sports content (soccer

scene). The index numbers remain consistent with those used

in the image appearance attribute analysis (see Table 5). To

enhance clarity and facilitate interpretation, the color of each

dot matches the actual color of the represented area within

the video. As confirmed in the appearance-based analysis, for

a given representative color, the brighter and more chromatic

the color, the more observers preferred the video. Overall, both

color spaces provide similar insights when comparing differences

in color attributes and preferences. However, the magnitudes

of four representative colors under the same lighting condition

show greater variance with CIECAM16 compared to CIELAB.

For example, for Index 5, which represents the image 5 under

warm and dark conditions, Figure 8C reveals that only one

representative color, the lightest color shown in Figure 7, displays

a larger magnitude of color differentiation in CIELAB, with the

rest grouped closely together. In contrast, CIECAM16 exhibits

better separation for all representative colors, likely due to its

more thorough consideration of environmental factors including

illumination level. Further investigation is needed to compare the

two spaces more extensively.

4.4 Common representative colors

There are several similar representative colors among the

content used in our experiments. Specifically, Animation, Movie

(Dark), and Sports content all has green as one of the representative
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FIGURE 7

Color segmentation results (sports content).

colors (see Figures 2A, C, E, respectively). The hue angles for

these greens were calculated in the CIECAM16. The hue angle

ranged between 113◦ and 131◦. The hue differences are within

20◦, as shown in Figure 9. The green hues in different items, an

animated green tree, grass in the soccer field, and a green block,

have similar color attributes (see Table 6), but the preferences of

these videos were very different. An interesting aspect to consider

is the context in which the green color appears. In movie (Dark)

and sports content, green is a part of real-life objects, while in

animation content, it is part of animated scenes. Even though

similar shades of green were presented to the observers, their

preferences significantly varied between real-life and animated

footage. Similarly, Animation, Game, and Nature content all

contain blue sky (see Figures 2A, B, D), but Animation and Game

content are both animated, and Nature content is a real scene. As a

result, the preference for Nature content was significantly different

from that for Animation and Game content. Even when blue was

ranked as the second prominent representative color for Game and

Nature content, their preferences are significantly different from

each other.
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FIGURE 8

Mean preference per lightness and chroma of representative colors in CIECAM16 and CIELAB. (A) Lightness plot of sports content in CIECAM16. (B)

Chroma plot of sports content in CIECAM16. (C) Lightness plot of sports content in CIELAB. (D) Chroma plot of sports content in CIELAB.

All the comparisons above indicate that the substantial

differences in content lie in whether the scene was animated or

captured in real life. Therefore, the naturalness of the videos

and observers’ memory color of specific objects (e.g., grass) affect

people’s video quality preferences.

5 General discussion

This project was designed to evaluate the influence of various

factors on people’s video quality preferences. Our findings suggest

that TV picture settings, the intensity of ambient light, the video

content, age, country, habit, and gender have significant effects on

TV viewers’ preferences.

In our experimental design, the illumination level of ambient

light compared to that of the TV was generally lower (15–350 lux).

This could potentially diminish the influence of correlated color

temperature (CCT) on the study subjects’ responses.

The appearance- and color-based image analyses per each

experimental condition were conducted to get a deeper insight into

video quality preference determinants. The results of the analysis

indicate that chroma, lightness, and memory colors are essential

TABLE 5 Video index table (Experiment I).

Content\
lighting

Dark
warm

Bright
warm

Dark
cool

Bright
cool

Animation 1, 21 6, 26 11, 31 16, 36

Game 2, 22 7, 27 12, 32 17, 37

Movie (dark) 3, 23 8, 28 13, 33 18, 38

Nature 4, 24 9, 29 14, 34 19, 39

Sports 5, 25 10, 30 15, 35 20, 40

1–20 were shown under standard picture mode. 21–40 were shown under movie picture

mode.

in understanding people’s preferences. In general, people prefer

brighter and more chromatic images. Moreover, memory colors,

such as grass and skin tones, significantly influence their perception

and preferences of the visual quality of displayed content.

For display characterization, a display model based on the

principles of additivity and scalability was applied. Under the same

picture setting, the assumption of additivity and scalability was not

strictly valid, but acceptable. Additionally, the display uniformity

was assessed and found to be within a satisfactory level. Overall,
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FIGURE 9

Preference per hue. Green represents the color of animation, movie

(dark), and soccer content under the same picture setting and

lighting condition. The x-axis is the hue of di�erent shades of green

on the test display.

TABLE 6 Di�erences in attributes of green representative color.

Video 1Lightness 1Chroma 1Saturation 1hue

Animation 5.20 1.94 0.43 -2.82

Movie (dark) 1 5.55 3.92 0.37 -0.38

Movie (dark) 2 2.15 2.87 0.64 -0.24

Sports 3.02 0.08 -0.73 -2.42

The calculation is based on the CIECAM16.

the variations observed were unlikely to influence our results

significantly.

The gender factor was significant in Experiment II, but

not in I. The difference between the two experiments was

the magnitude of changes in color attributes (i.e., colorfulness

level). The two experiments’ color differences (DE00) and mean

preference results are shown in Figure 10. By analyzing the content

used in Experiment I, regarding the differences in lightness and

chroma, we state that people prefer brighter and more chromatic

scenes, in general. We focused on colorfulness in Experiment

II. Even if we experimented with three different colorfulness

levels, the perceptual differences between the reference and

control TV (enhanced colorfulness) were smaller than that of

Experiment I. Still, some observers reported that they perceived

noticeable changes in the naturalness of skin tones for content

involving human faces. These analyses suggest that there exist no

meaningful gender differences in perceptual visual quality in terms

of substantial lightness and chroma changes that were employed

in Experiment I. In contrast, viewers’ gender could impact their

perception of video content formatted with smaller changes in the

colorfulness levels (Experiment II). Moreover, our data shows that

the preference for larger differences is similar for all genders, but

varies for small color differences, potentially indicating a gender-

based difference in preference sensitivity to small changes in color

rendering.

FIGURE 10

Mean preference and DE00 variation. This figure illustrates the

preference di�erences among various TV modes: Standard, Movie,

and Colorful. The ellipses represent the variance-covariance of

preferences. While clear di�erences are observed between the

Standard, Movie, and Colorful modes, the preferences within the

various levels of colorful mode show significant overlap.

The image-based analysis provided a comparison of color

spaces, specifically between the IPT image appearance model

and CIELAB. The IPT model accounts for contrast sensitivity of

human vision, while CIELAB calculates differences on a pixel-

by-pixel basis. While the lightness difference and preference

scores are similar in both color spaces, IPT is promising in

representing chroma and other color attributes, capturing the

trends more effectively in displayed images. Conversely, CIELAB,

though more straightforward to implement and performing well

with chromatic adaptation, does not represent chroma as effectively

as IPT. Therefore, the IPT image appearance model offers better

representation of certain color attributes, such as chroma. Further

research is needed to explore the differences in color attributes

and preference scores more thoroughly. Moreover, a color space

comparison between CIECAM16 with CIELAB was conducted

as part of the representative color analysis. The results indicate

that while both spaces showed very similar results for the

preference data, CIECAM16 demonstrated better differentiation.

This might be due to CIECAM16’s consideration of environmental

factors. This aspect requires further exploration to understand the

implications more thoroughly.

The effectiveness of using genre to categorize video types needs

to be examined. For instance, our results indicate a discernible

difference in viewer preferences between animated and real-life

scenes. This suggests that the content within these scenes is

significantly independent from the genre itself. Another example

is the presence of skin tones (Anku and Farnand, 2020; Farnand

and Fairchild, 2014), which emerged as a critical feature in video

content regardless of the genre. Observers’ memory of the grass and

the sunset, which in this case are from different genres, is the key to

the preference—how the naturalness of these colors aligns with the

viewer’s memory.
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6 Conclusion

In this article, we conducted a comprehensive analysis of how

individuals perceive visual quality on television (TV) displays. Our

study took into account various factors such as ambient lighting,

display settings, viewing content, and personal characteristics. Our

findings indicate that the intensity of room illumination, type of

video content, and picture settings significantly affect TV viewers’

picture quality perceptions and preferences. User-specific factors

like age, country of origin, TV viewing habits, and gender also

play a role in determining video quality perception, highlighting

the need for personalized image/video rendering. Our research also

suggests that the conventional categorization of content genres

may not be a reliable basis for content-based video enhancement.

We found that people perceive video quality differently based on

the characteristics of each scene, even within the same content.

Furthermore, our results indicate that people generally prefer

brighter and more chromatic videos, with natural object colors and

memory colors (such as skin tones and grass) having a significant

impact on their preferences.
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