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Introduction: Delirium, frequently experienced by ischemic stroke patients, is one 
of the most common neuropsychiatric syndromes reported in the Intensive Care 
Unit (ICU). Stroke patients with delirium have a high mortality rate and lengthy 
hospitalization. For these reasons, early diagnosis of delirium in the ICU is critical 
for better patient prognosis. Therefore, we developed and validated prediction 
models to classify the real-time delirium status in patients admitted to the ICU 
or Stroke Unit (SU) with ischemic stroke.

Methods: A total of 84 delirium patients and 336 non-delirium patients in 
the ICU of Ajou University Hospital were included. The 8 fixed features [Age, 
Sex, Alcohol Intake, National Institute of Health Stroke Scale (NIHSS), HbA1c, 
Prothrombin time, D-dimer, and Hemoglobin] identified at admission and 12 
dynamic features [Mean or Variability indexes calculated from Body Temperature 
(BT), Heart Rate (HR), Respiratory Rate (RR), Oxygen saturation (SpO2), Systolic 
Blood Pressure (SBP), and Diastolic Blood Pressure (DBP)] based on vital signs 
were used for developing prediction models using the ensemble method.

Results: The Area Under the Receiver Operating Characteristic curve (AUROC) for 
delirium-state classification was 0.80. In simulation-based evaluation, AUROC 
was 0.71, and the predicted probability increased closer to the time of delirium 
occurrence. We observed that the patterns of dynamic features, including BT, 
SpO2, RR, and Heart Rate Variability (HRV) kept changing as the time points 
were getting closer to the delirium occurrence time. Therefore, the model that 
employed these patterns showed increasing prediction performance.

Conclusion: Our model can predict the real-time possibility of delirium in patients 
with ischemic stroke and will be helpful to monitor high-risk patients.
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1 Introduction

Delirium, an acute neuropsychiatric syndrome, is characterized by a sudden loss of 
attention, change in consciousness level, and fluctuating cognitive impairments, including 
memory dysfunction (Inouye et al., 2014). It occurs in one-third of the hospitalized older 
adults aged ≥70 years and more than half of the patients requiring mechanical ventilation 
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(Marcantonio, 2017; Almeida et al., 2014). Clinically, delirium is an 
independent factor associated with poor outcomes in various study 
groups (Wilson et al., 2020) and is associated with higher mortality, 
longer hospital stay, worse functional outcomes, and sustained 
cognitive dysfunction even after discharge (Wilson et  al., 2020; 
Pandharipande et al., 2013; Kosar et al., 2017; Burry et al., 2019).

Early diagnosis of delirium is important because timely 
administration of relevant drugs is critical for delirium management 
(Flinn et al., 2009; Barr et al., 2013). Recent studies showed that several 
pharmacological agents including haloperidol and nonpharmacological 
multi-component interventions could be  useful for reducing the 
incidence, duration, recurrence, and mortality in ICU patients (Wang 
et al., 2012; van den Boogaard et al., 2013; Milbrandt et al., 2005; 
Schneider et al., 2005; Duan et al., 2018; Oliven et al., 2021; Rohatgi 
et  al., 2019). However, delirium is often misdiagnosed as pain or 
depression and the subtle changes in the initial stages of delirium are 
overlooked (Inouye et al., 2001; de la Cruz et al., 2015; Han et al., 2009).

Several delirium assessment tools, rather than diagnostic 
criteria, have been developed for accessibility and episodic use when 
delirium is suspected or for regular monitoring of new-onset 
delirium (American Psychiatric Association D, Association AP, 
2013; Sartorius et  al., 1993). The assessment tools include the 
Confusion Assessment Method (CAM), the Confusion Assessment 
Method for the ICU (CAM-ICU), 4A’s Test (4AT), and Intensive 
Care Delirium Screening Checklist (ICDSC) (Inouye et al., 1990; Ely 
et al., 2001; Bellelli et al., 2014). Furthermore, prediction models 
including delirium assessment tools such as prediction diagnostic 
tools (PRE-DELERIC) and early predication model (E-PRE-
DELERIC) have been developed for ICU patients (van den Boogaard 
et al., 2012; van den Boogaard et al., 2014; Wassenaar et al., 2015). 
In addition, the Lanzhou and the VR-PRE-DELIRIC models were 
developed using Machine Learning (ML) models based on 
prospective data. The R-PRE-DELIRIC model also proposed a 
prediction model using Logistic Regression (LR) (Green et al., 2019; 
van den Boogaard et  al., 2014; Lee et  al., 2017). However, these 
prediction models are clinically limited because they can predict 
occurrence of delirium at a specific time point such as admission.

The precise mechanism underlying the development of delirium 
is unclear. However, the postulated mechanisms include 
neurotransmitters, inflammation, physiological stressors, metabolic 
derangements, electrolyte disorders, and genetic factors (Inouye et al., 
2014; Wilson et al., 2020). Further, evidence shows that delirium is 
associated with Autonomic Nervous System (ANS) instability (Liem 
and Carter, 1991; Jooyoung et  al., 2017). A previous study has 
suggested that blood pressure and heart rate are related to autonomic 
function in patients with delirium (Oh et al., 2018).

In this study, we aimed to develop a novel ML model to predict 
occurrence of delirium using fixed and dynamic features associated 
with ANS, as ML techniques can be useful for analyzing complex 
signals in continuous data-rich environments such as ICUs. The 
proposed approach utilizes various methods to extract complex 
biosignal features for early detection and management of delirium 
in ICU settings. In addition, since the confounders of delirium are 
diverse and complex, we  aimed to apply this model to a single 
neurological disease such as ischemic stroke to minimize the 
disease-related confounding variables. We  also validate the 
applicability of ML-based delirium prediction models in clinical 
practice through simulation-based and temporal evaluation with 
clinical dashboard.

2 Materials and methods

In this section, we will experiment with various ML models using 
fixed features from Electronic Medical Records (EMR) and dynamic 
features from biosignals (i.e., vital signs) as well as the selection of 
important variables. Additionally, the final model will be validated 
using a simulation-based and temporal evaluation to verify its 
applicability in clinical settings.

2.1 Data sources

This study included patients with ischemic stroke admitted to the 
Neuro ICU (NCU) and SU of Ajou University Hospital. Patients with 
acute stroke are admitted either to the NCU or the SU. Patients 
admitted to the NCU typically have more severe strokes; admissions 
to the NCU or SU may also be based on room availability rather than 
stroke severity. Patients in the NCU are transferred to the SU once 
their condition stabilizes; however, close observation remains 
required. The incidence of delirium was 25% in the SU and 31% in the 
NCU. Data from July 2019 to December 2020 were utilized for model 
development and retrospective evaluation, while data from March 
2023 to May 2023 were used for temporal evaluation.

2.2 Input variables

The fixed features at admission were based on the initial data collected 
at the time of admission, which were extracted from the EMR, and the 
dynamic features based on vital signs were extracted from the electronic 
medical records and patient monitoring device. The dynamic features 
comprised HR, RR, SpO2, DBP, and SBP, for which one measurement was 
taken every minute. BT was measured hourly. We used the dynamic 
features before event onset and fixed features obtained at ICU admission 
to reflect the precipitating and predisposing factors, respectively. All 
laboratory tests were performed within 24 h of hospitalization.

2.3 Primary outcome

The study patients were selected and divided into case and control 
groups according to their delirium status based on the CAM-ICU or 
ICDSC assessed by the nurse at the NCU and SU. The CAM-ICU or 
ICDSC was used in combination with thorough chart reviews of 
clinical data and nursing records by two trained neurologists for the 
final subject selection. Patients positive on CAM-ICU or those with 
an ICDSC score of ≥4 were considered to have delirium at admission. 
The ICDSC was measured by a nurse periodically every 8 h and 
immediately at the NCU or SU if delirium was suspected. As the final 
step, a neurologist confirmed the diagnosis of delirium. For primary 
outcome labeling, we  classified two groups: delirium and 
non-delirium. Subsequently, we used a 30-min period right before the 
event occurrence for prediction time for model development. Finally, 
we divided the 16-h period right before the occurrence of the event 
into 2-h observation windows. Then, we  labeled four observation 
windows that were close to the event as positive for delirium status 
(pre-delirious period) and others as negative for non-delirium status 
(non-delirious period) for simulation-based evaluation, because the 
evaluation of delirium was conducted every 8 h usually (Figure 1).
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FIGURE 1

Overview of the study design. Fixed and dynamic features were used for the delirium prediction model development. For model development, 
dynamic features that were collected 2 h before the time point of delirium occurrence (case group) or matched time point (control group) 
were utilized. The stepwise method was used for feature selection. With the selected features, several machine learning algorithms were used 
and evaluated for model development. The final selected model was evaluated in a simulation environment by applying the model from 16 h 
before to the index time point every 2 h. W1–W8: the observation window 1–8; *the same dataset. BT, body temperature; HR, heart rate; RR, 
respiratory rate.
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2.4 Data preprocessing

2.4.1 Dynamic feature extraction
All dynamic features were vital sign-based features, and they were 

extracted from the data of the 2-h observation period. The mean, 
Standard Deviation (SD) of vital signs were obtained from all 2-h 
observation periods. When we compared the statistical values between 
the case and control groups, BT and HR variables showed significant 
differences. However, basic statistical values like SD were not enough 
to capture the complex patterns in the biosignal data. As a result, 
we used advanced analytical methods to extract variability features. 
The time domain, and non-linearity were used for variability 
calculation. In the case of waveform data, frequency domain features 
were also extracted.

Dynamic features reflecting variability were calculated using 
Poincaré plot, Detrended Fluctuation Analysis (DFA), and sample 
entropy to capture short-and long-term variability, correlations, and 
irregularity in time-series data. Poincaré plot is a geometrical method 
of graphing each data point against the next data point, providing 
insight into patterns within the data measured over the short term 
(Karmakar et  al., 2009; Woo et  al., 1992). DFA measures the 

long-range correlation and dependencies of a time series over a range 
of time scales (Peng et  al., 1994). Sample Entropy quantifies the 
complexity and measures the irregularity within time series data. 
Lower value means regularity, and higher value means irregularity 
(Yentes et al., 2019; Richman and Moorman, 2000). These methods 
are widely used in time-series analysis for physiological signals. 
Detailed methodologies for each approach can be found in Karmakar 
et al. (2009), Woo et al. (1992), Peng et al. (1994), Yentes et al. (2019), 
and Richman and Moorman (2000).

All variability metrics used are summarized in 
Supplementary Table S1. The electrocardiogram (ECG) waveform was 
collected in the most recent 30 min in each observation window, and 
the variability of respiratory rate interval was extracted through ECG 
that was down-sampled at 125 Hz (Figure 2).

2.4.2 Imputation
The problem of missing values is common in clinical data, and the 

dataset of the model developed also had missing values. To solve this 
problem, we experimented using mean value replacement, median 
value replacement, and Multivariate Imputation by Chained Equations 
(MICE) replacement methods, and the MICE method with the best 

FIGURE 2

Input variable extraction strategy in each observation time window. (A) In addition to baseline data at admission, 2-h vital signs, the latest 30-min 
electrocardiogram, and body temperature measurement in each time window are used for model training. (B) All patients are matched by the length of 
stay in the intensive care unit using the propensity score matching method.
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performance was finally adopted. The MICE algorithm can impute 
both continuous and categorical data, and it can simultaneously 
estimate missing values for multiple variables. This method not only 
considers the relationships between each variable but also performs 
multiple iterations of imputation. Details about the MICE 
methodology are in Azur et al. (2011).

2.5 Study design

The study flow diagram is shown in Figure 3. Model development 
was based on a case–control study to analyze patients with and 
without delirium. The study included 707 patients with acute stroke 
admitted to the SU and NCU at Ajou University Hospital from July 
2019 to December 2020. Among the 707 patients with stroke admitted 
to the ICU at Ajou University Hospital, 138 were excluded because 
delirium already occurred before admission to the ICU (n = 7), 
delirium occurred within 2 h of ICU admission (n = 12), and ICU 
Length Of Stay (LOS) was either too short (<12 h, n = 104) or too long 
(≥20 days, n = 15). The remaining 84 and 485 patients with and 
without delirium, respectively, were matched using the Propensity 
Score Matching (PSM) method. PSM is a method with LR to match 
two groups into a comparable state. Details has been described in 
Peter (2011). We used PSM to control confounding factors between 
delirious patients and non-delirious patients. The LOS variable was 
used to match patients with and without delirium (within 1-day 

difference). The LOS was chosen as the matching variable because it 
indicates patient severity, and the time of data extraction needs to 
be the same for patients with and without delirium. Therefore, the data 
could be extracted at similar time points for patients with and without 
delirium with a similar level of severity. The temporal validation 
cohort consisted of 149 patients admitted from January to May 2023; 
115 were included after applying the exclusion criteria.

2.6 ML model

2.6.1 Model development
We developed the model to predict occurrence of delirium in the 

ICU in 420 patients with stroke. After data preprocessing and 
extraction, we  split the entire dataset patient-wise. The case 
and control groups were randomly divided into the training set (80%) 
and test set (20%) and then stratified to unify the labeling ratio of each 
dataset (case:control = 1:4 for the training set and case:control = 1:4 
for the test set). Then, 10% of the training set was divided into the 
validation set for hyperparameter tuning (Figure 4).

To measure the generalized model performance, the training, 
validation, and test datasets were randomly split 50 times. Finally, 
we  prepared 50 datasets to train and evaluate the delirium 
prediction model.

We conducted feature reduction for removing model complexity. 
We  extracted 109 features. To reduce unimportant features and 

FIGURE 3

Inclusion and exclusion criteria for model development. All patients admitted to the intensive care unit (ICU) between July 2019 and December 2020 
were enrolled. Two trained neurologists selected all patients by reviewing clinical data and nursing records. Finally, 67 patients with delirium (case 
group) and 268 patients without delirium (control group) were used for model development, and 90% were used for training and 10% for validation. In 
total, 17 patients with delirium and 68 patients without delirium were used for model evaluation. *AUMC, Ajou University Medical Center; CAM, 
confusion assessment method.
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overcome the limitations of a small dataset, we applied a stepwise 
statistical variable selection method to finalize the predictors. The 
stepwise selection method was used for each of the 50 different 
training sets described above. A variable that was selected many times 
during 50 iterations was listed as the higher priority. For example, the 
variable selected 50 times in all iterations was defined as the most 
important feature, and the variable selected 0 times in all iterations 
was defined as the most unimportant feature.

Stepwise variable selection using a p-value of 0.05 as an inclusion 
and exclusion threshold was performed for adding statistically 
significant variables and those that were not. By using this method, it 
enabled us to find the most informative features and reduce the 
complexity of the model that prevented overfitting. This not only 
helped the generalization of the model, especially with small datasets, 
but also reduced noise variance and protected the algorithm 
from overparameterization.

Owing to the limited number of data samples, we could not 
use a deep-learning model. Thus, we  used machine-learning 
models. Most prior studies presented models using LR. In 
contrast, we used multiple models for performance comparison 
and analysis. The LR, Random Forest (RF), LightGBM (LGBM), 
Support Vector Machine (SVM), and XGBoost (XGB) were used 
for training the developed delirium prediction model. Each 
algorithm m was trained 50 times with 50 training datasets. 
We also developed and compared models using different number 
of features (top 10, top 20, top 30, top 40, top 50, and all features 
from the feature priority list).

2.6.2 Classification evaluation
The performance of the model used to classify delirium status 

30 min before the event onset was assessed. The mean performance 
and 95% CI for the 50 models developed were measured. The 
optimal cut-off was defined using Youden’s index in the validation 
dataset to set the cut-off of the model prediction. The Youden’s 
Index is a method to find the optimal threshold that maximizes 
sensitivity and specificity, which is useful even when the class is 
unbalanced (Fluss et al., 2005). The indicators of performance were 
AUROC, average area under the precision-recall curve (AUPRC), 
accuracy, precision, recall, F1 score, sensitivity, and specificity. 
Additionally, to verify the influence of the bio-signal data, the 

variables were categorized as follows for comparison: top  20 
features among only fixed features, top 20 features among only 
dynamic features, and top  20 features among both fixed and 
dynamic features.

2.6.3 Simulation-based evaluation
To apply the model in the real clinical environment, the model 

needs to predict continuously from the time patients are admitted 
to the ICU. For this simulation-based evaluation, we applied the 
trained model to evaluate in test set using all observational windows 
defined in Figure 1 (i.e., window1–8). Then, we confirmed the trend 
of the model’s prediction probability during 16 h before event 
occurrence in every 2-h time window. This simulation based 
evaluation approach can reflect clinical workflows and make timely 
predictions to help clinicians and nurses make clinical decisions 
based on real-time data.

2.6.4 Temporal evaluation
We validated our model temporally using a specialized user 

interface designed for this task (Figure 5). This model was employed 
for all stroke patients admitted to the SU and the NCU from March 
1 through May 3, 2023. Temporal validation process was executed in 
three stages. First, the discriminative capability of the model was 
evaluated by differentiating the onset of delirium (using data from 
within 2 h before delirium event documentation) from a matched 
non-delirium group. Next, the model’s ability to forecast the risk of 
delirium onset during the 16 h leading up to a delirium event was 
compared. Within this period, the 8 h immediately before the 16 h of 
delirium were explicitly designated as the “pre-delirious period,” 
consistent with our retrospective validation method. These first two 
stages adopted the same approach used in our retrospective 
validation. Finally, the model was applied throughout the patient’s 
ICU stay. An 8-h “pre-delirious period” before any confirmed 
delirium event was set for detection. Observations were ended at the 
time of the first confirmed delirium event or upon the 
patient’s discharge.

2.6.5 Statistical analysis
Univariate analysis was performed to statistically compare 

independent variables between the case and control groups. For 

FIGURE 4

Dataset split workflow. The total dataset is divided by patient into the training set (80%) and test set (20%). Then, 10% of the training set is divided into 
the validation set for hyperparameter tuning of the model.
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continuous data such as HR and SpO2, the between-group variation 
was analyzed using the two-sample two-tailed t-test. For categorical 
data such as sex, smoking, and alcohol drinking, the chi-squared test 
was used. The level of significance was set at p < 0.05.

2.6.6 Software
All analyses were performed using Python version 3.7, the Python 

package scikit learn 1.0.1, pandas 1.1.5, numpy 1.19.5, scipy 1.4.1, and 
pyhrv 0.4.0. The Python packages Matplotlib 3.2.2 and Seaborn 0.11.2 
were also used to visualize the data and results.

3 Results

3.1 Baseline characteristics

The baseline characteristics of the case and control groups are 
presented in Supplementary Table S2. The NIHSS score indicating 
stroke severity (p = 0.016), premorbid modified Rankin Scale (mRS) 
score (p = 0.013), and number of older patients (p < 0.001) were 
higher in the case group than in the control group. In addition, the HR 
(p = 0.023), RR (p < 0.001) and BT (p < 0.001) were significantly 
higher in the case group than in the control group. The variability 
features are shown in Supplementary Table S3.

3.2 Models for prediction of delirium 
occurrence

The result of variable selection across all variables is shown in 
Figure 6. The top 50 variables were evaluated for model development: 
17 variables were from the fixed features (clinical features at 
admission) and 33 variables from the dynamic features (features 
based on vital signs). Finally, 20 variables—8 variables from the fixed 
features and 12 variables from the dynamic features—were selected 
for the final model (Table 1).

3.3 Model performance

3.3.1 Evaluation of delirium event classification
Among ML algorithms, LR showed the highest performance in 

delirium event classification when the top 20 features were used 
(Table 2 and Figure 7). Our model showed an AUROC of 0.80 (95% 
confidence interval [CI]: 0.78–0.81) and an AUPRC of 0.552 (95% 
CI: 0.525–0.579), and the model could classify delirium and 
non-delirium status with a sensitivity and specificity of 0.75 and 
0.72, respectively.

We also compared the models when only fixed features were used 
and when the dynamic features were used together. When comparing 
the performance in terms of the different sources of features, the best 
performance was obtained when fixed and dynamic features were 
used together (AUROC: 0.8 [95% CI: 0.78–0.814]) (Figure 8 and 
Supplementary Tables S4, S5), followed by when only fixed features 
were used (AUROC: 0.701 [95% CI: 0.68–0.721]). The lowest 
performance was obtained when only dynamic features were used 
(AUROC: 0.68).

3.3.2 Simulation-based evaluation
In simulation-based evaluation, all observation windows shown 

in Figure 1 were used for evaluation. The average of performance 
indices according to outputs of finally selected models (50 models 
trained by LR with the top 20 variables) was used. The performance at 
all time points showed an average AUROC and AUPRC of 0.71 and 
0.29, respectively (Table 2).

As shown in Figure 9, the model’s mean prediction probability by 
time point increased as the time points approached the event onset in 
the case group (orange line). In addition, the mean number of alarms 
per patient by time point was higher for patients with delirium than 
for patients without delirium and as the time approached the event 
onset (Figure 9). The models’ mean prediction probability and total 
number of alarms per patient in this simulation are presented in 
Supplementary Table S6.

3.3.3 Temporal evaluation
The results of our model’s temporal validation are closely aligned 

with those of the retrospective evaluation. When assessing delirium 
occurrence against the matched non-delirium group, the AUROC was 
0.78, and the AUPRC was 0.49. In the 16 h leading up to delirium, 
these values were 0.70 and 0.31, respectively (Table 2). Evaluating over 
the entire duration of the ICU stay yielded an AUROC of 0.68 and an 
AUPRC of 0.12, illustrating a decrease in precision and lower AUPRC 
values as the assessment period lengthened. However, a positive 
correlation was observed between the approach of a delirium event, 

FIGURE 5

Delirium occurrence alarm system embedded in the prediction 
model. This image shows the clinical dashboard user interface used 
for temporal validation. (A) Alarm Dashboard page, (B) Model 
Prediction and vital sign trend view page, and (C) Data input page.
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the delirium probability value, and the frequency of alarms 
(Figure 10). Consequently, despite false alarms, it can be inferred that 
these alerts were meaningful due to their temporal proximity to 
delirium events.

3.3.4 Predicted risk of delirium and patient 
outcomes

We examined the relationship between the predicted risk of 
delirium and the actual outcomes of patients evaluated during 
retrospective and temporal validation. When comparing high-risk 
patients (mean predicted risk of delirium ≥0.2) and low-risk patients 
(mean predicted risk of delirium <0.2) during the retrospective 
validation, the ICU length of stay and 3-month mRS score were 
statistically significantly higher in the high-risk group (5.57 days, 
p = 0.014 and 2.98, p < 0.001, respectively) than the low-risk group 
(3.98 days and 1.39). These trends were also observed in the temporal 
validation; high-risk patients with a mean risk of delirium ≥0.2 had a 
mean ICU length of stay of 5.8 days (p = 0.001), compared with 
3.27 days for low-risk patients. This difference was also observed when 
the cut-off for separating the high-risk and low-risk groups was varied 
(Table 3).

4 Discussion

Our prediction model using ML could predict the occurrence of 
delirium, and the model’s predictive probability of delirium 
significantly improved closer to the time of delirium occurrence. In 
our study, we  conducted a temporal evaluation of our model’s 
performance. The findings revealed a consistency in the model’s 
performance, mirroring its effectiveness during the training phase. 
This alignment strengthens our confidence in the model’s robustness 
and potential as a practical tool in a clinical setting. Given its 
consistent performance, we anticipate that this model will serve as a 
valuable addition to clinical practice, aiding healthcare professionals 
in improving patient outcomes.

To predict the occurrence of delirium, it may be useful to use 
variable vital signs rather than identify the conventional risk factors 
of delirium, such as patient demographics and initial laboratory 
findings. Previous PRE-DELERIC and E-PRE-DELERIC models 
were static models that yield calculated probabilities of delirium 
24 h after ICU admission (van den Boogaard et al., 2012; van den 
Boogaard et al., 2014). In another previous study, the heart rate of 
patients with delirium was more variable and irregular than that of 

FIGURE 6

Feature selection results. This plot shows the final variable list selected through stepwise feature selection method. The final ML model included top 20 
features.
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patients without delirium (Jooyoung et al., 2017). In addition, a 
pilot study showed that in recent cases of delirium, blood pressure 
changed more significantly in the head-up tilt tests and that 
dynamic parameters were used to correlate with excessive 
sympathetic responses showing delirium predictability (Shanahan 
et al., 2021). Although delirium prediction models using ML have 

been developed, they have not continuously monitored the 
occurrence of delirium (van den Boogaard et al., 2012; van den 
Boogaard et al., 2014; Wassenaar et al., 2015; Bishara et al., 2022). 
One of the primary benefits of utilizing vital sign data is its potential 
for real-time delirium risk assessment, a marked improvement 
compared to existing models such as PREDELIRIC and 

TABLE 1 Baseline Characteristics of the study population (Top 20 features).

Variable Case (n = 84) Control (n = 336) p-value Selected for top 20 
features

Demographics

Age, year 73.81 ± 11.24 63.6 ± 14.04 <0.001* √

Sex (male), % 64.28 61.6 0.744 √

Alcohol, % 52.38 42.55 0.134 √

Fixed features

NIHSS 7.98 ± 5.2 6.25 ± 5.78 0.016* √

HbA1c, % 6.66 ± 1.72 6.27 ± 1.41 0.032* √

Prothrombin time (INR) 1.58 ± 2.65 1.22 ± 1.34 0.081 √

D-dimer, ug/mL 2.79 ± 6.34 1.29 ± 3.36 0.003* √

Hemoglobin 15.99 ± 25.95 13.8 ± 2.32 0.131 √

Dynamic features

BT, °C 36.97 ± 0.42 36.79 ± 0.43 <0.001* √

HR, bpm 75.49 ± 15.18 71.22 ± 14.36 0.023* √ (mean, SD2)

RR, breaths/min 18.21 ± 2.99 17.59 ± 3.1 0.114 √ (a2, SD1, SDSD, RMSSD)

SpO2, % 96.64 ± 1.39 96.23 ± 3.19 0.271 √ (mean, SDSD, SD, RMSSD)

SBP, mmHg 147.91 ± 21.84 147.04 ± 23.47 0.770

DBP, mmHg 84.97 ± 13.63 86.07 ± 13.37 0.149 √ (SD ratio)

*p < 0.05. †Number of comorbidities among hypertension, dyslipidemia, or diabetes; NIHSS, National Institute of Health Stroke Scale; mRS, modified Rankin Scale; SD1/SD2, Poincaré plot 
standard deviation of the major/minor axis; SDSD, standard deviation of successive difference; RMSSD, root mean square of successive difference; SD, standard deviation; SD ratio, ratio 
between SD1 and SD2 (SD2/SD1).

TABLE 2 Model performance based on the feature set.

Features AUROC (95% CI) AUPRC (95% CI) Precision (95% CI) Recall (95% CI) F1-score (95% 
CI)

Discrimination performance between delirium and non-delirium according to feature sets (retrospective evaluation)

All feature 0.68 (0.67–0.7) 0.39 (0.36–0.41) 0.35 (0.32–0.38) 0.66 (0.62–0.71) 0.43 (0.42–0.45)

Top 50 features 0.72 (0.7–0.74) 0.45 (0.43–0.48) 0.41 (0.38–0.44) 0.64 (0.6–0.69) 0.48 (0.46–0.49)

Top 40 features 0.75 (0.73–0.76) 0.49 (0.46–0.51) 0.4 (0.38–0.43) 0.7 (0.66–0.74) 0.5 (0.48–0.51)

Top 30 features 0.79 (0.77–0.8) 0.53 (0.51–0.56) 0.43 (0.41–0.46) 0.73 (0.7–0.77) 0.53 (0.51–0.55)

Top 20 features 0.80 (0.78–0.81) 0.55 (0.52–0.58) 0.42 (0.4–0.44) 0.75 (0.72–0.79) 0.53 (0.51–0.55)

Top 10 features 0.74 (0.72–0.76) 0.47 (0.44–0.49) 0.42 (0.4–0.45) 0.66 (0.62–0.69) 0.49 (0.47–0.51)

Simulation-based evaluation performance (retrospective evaluation)

Top 20 features 0.71 (0.7–0.73) 0.29 (0.27–0.31) 0.25 (0.23–0.26) 0.68 (0.63–0.72) 0.35 (0.33–0.37)

Discrimination performance between delirium and non-delirium (temporal evaluation)

Top 20 features 0.78 0.49 0.41 0.62 0.50

Simulation-based evaluation performance (temporal evaluation)

Top 20 features 0.70 0.31 0.27 0.61 0.37

Performance in entire ICU staying (temporal evaluation)

Top 20 features 0.68 0.12 0.10 0.61 0.17

https://doi.org/10.3389/fnins.2024.1425562
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2024.1425562

Frontiers in Neuroscience 10 frontiersin.org

E-DELIRIC. For validation, we compared our machine-learning 
model with the well-known delirium prediction tools, 
PRE-DELIRIC and E-DELIRIC. The cut-off was set identically to 
our model’s optimal threshold for comparing performance metrics. 
The model we  developed demonstrated superior performance 
across all metrics, proving its clinical application is more effective 
than existing tools, which can only predict within 24 h of admission 
(Table 4).

The average AUROC of the model using fixed features alone 
was 0.70 (95% CI: 0.68–0.72); however, it increased to 0.80 (95% 
CI: 0.78–0.81) when the dynamic features were also used. This 
show that dynamic features can not only improve the performance 
of delirium prediction models but also be useful for predicting 
real-time delirium probability (Supplementary Table S5). In 
simulation-based evaluation, the model’s mean prediction 
probability by time point was higher for predicting delirium status 
closer to the event onset (Figure 9). Since continuous dynamic 
data were used, we could continuously predict the likelihood of 
delirium occurrence.

Despite the lack of clear evidence on drugs that can prevent 
delirium, a study has shown that short-term prophylactic 
administration of low-dose haloperidol is effective in preventing 
delirium in elderly ICU patients after noncardiac surgery (Wang et al., 
2012). Appropriate administration timing and patient selection are 

required to effectively prevent delirium. Therefore, prediction and 
early detection of delirium using our model can help prevent delirium 
and reduce unnecessary utilization of medical resources as well as 
burden on medical staff, caregivers, and patients. Our research may 
facilitate the earlier prediction and detection of delirium, improving 
its prevention and treatment.

The 20 variables selected for ML in our study were consistent 
with the commonly known risk factors for delirium. Old age and 
diabetes are well-known risk factors for delirium, and stroke 
severity according to the NIHSS is also known as a risk factor for 
delirium (Oldenbeuving et al., 2011). In our statistical analysis, 
the NIHSS score showed significant differences between the two 
groups. This finding could be interpreted as delirium occurring 
due to a worsening stroke; however, we used the NIHSS score 
recorded at admission, which does not consider stroke 
deterioration, suggesting that the initial NIHSS score is important 
for classifying delirium. Therefore, the variables determined 
through ML are related to delirium. The trends in vital sign-based 
data allow us to gain insight into how the model detects changes 
in dynamic features before the delirium event (Figure  10). 
Characteristics such as BT and HRV showed more dynamic 
changes closer to the delirium onset. The BT of patients with 
delirium at baseline was higher at the baseline and lower than that 
before the delirium onset. HRV was similar between patients with 

FIGURE 7

Comparison of prediction performance across different Machine Learning algorithms. This plot shows the Receiver Operating Characteristic curves of 
each model that is trained by different algorithms (LR, RF, SVM, LGBM, XGB) using the top 20 variables. These results are calculated from the mean 
performances of 50 models trained by different randomly selected training datasets. The red area represents the mean ± SD of the performance of the 
final model.
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and without delirium, but the variability increased before delirium 
occurrence. Moreover, SpO2 and RR variability were different 
between patients with and without delirium. Therefore, our study 
suggests that these dynamic changes controlled by the ANS may 
help distinguishing the two groups.

Our findings showed dynamic changes in the ANS in patients 
with delirium, which is consistent with the pathophysiology of 
delirium revealed in a previous study, indicating dysregulation of 
HRV and sympathetic hyperactivity. Several studies have 
suggested that an HRV alteration may help identify patients with 
stroke at risk for delirium in the ICU (Rollo et  al., 2022). In 
addition, previous studies have suggested that delirium is 
associated with impaired oxidative metabolism (Taccone et al., 
2010; Wood et  al., 2017). A near-infrared spectroscopy study 
showed that low brain tissue oxygenation was an independent risk 
factor for delirium (Wood et al., 2017). Conversely, some studies 
have reported that perioperative hyperoxia may contribute to 
postoperative delirium (Lopez et al., 2017; Kupiec et al., 2020). 
Among the dynamic features considered in our study, SpO2 was 
higher in the case group than in the control group and decreased 
just before delirium occurrence. We believe that delirium is not 
associated only with tissue oxygenation, and our findings can 
provide a clue for connecting the contradictory findings on tissue 
oxygenation. One study had showed that temperature variability 
increased during delirium (van der Kooi et al., 2013).

In our study, we  conducted a temporal application of our 
model, observing a performance largely congruent with our 
retrospective evaluation. Notably, when the model was utilized 

FIGURE 8

Comparison of models’ performance according to the used features. Comparison of models’ performance according to the used features. The AUROC 
was higher (0.80) when fixed and dynamic features were used together, compared to the models that used only fixed (0.70) or dynamic features (0.71).

FIGURE 9

Mean prediction probability and mean number of alarms per patient in 
the retrospective validation. It shows the mean prediction probability 
of the model by time point (above), and the number of alarms per 
patient by time point (below). The orange line indicates delirium group 
and green line indicates non-delirium group. The black dashed line 
indicates the time point before 30 min of actual delirium event 
occurrence. The model’s prediction probability is higher and higher 
recall performance is seen closer to the event occurrence.
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FIGURE 10

Mean prediction probability and mean number of alarms per patient in the temporal validation. The image shows the mean prediction probability of 
the model by time point (A) and the number of alarms per patient by time point (B). Similar to the retrospective validation, we saw a gradual increase in 
prediction probability and the number of alarms closer to the time of the event, with this pattern starting around 48 h before the delirium.

TABLE 3 Comparison of clinical outcomes in high-and low-risk groups.

Cut-off Risk group ICU LOS (days) p-value 3 month mRS p-value

Retrospective

0.2
High 5.57 ± 8.84 0.014 2.98 ± 1.82 < 0.001

Low 3.98 ± 4.41 1.39 ± 1.5

0.3
High 6.2 ± 10.16 0.001 3.06 ± 1.71 < 0.001

Low 3.97 ± 4.24 1.57 ± 1.65

0.4
High 6.06 ± 8.29 0.023 3.05 ± 1.73 < 0.001

Low 4.21 ± 5.82 1.71 ± 1.71

Temporal

0.2
High 5.8 ± 4.88 0.001 – –

Low 3.27 ± 2.92 – –

0.3
High 6.26 ± 4.08 0.005 – –

Low 3.68 ± 3.64 – –

0.4
High 6.73 ± 4.09 0.005 * – –

Low 3.68 ± 3.64 – –

*p < 0.05.

TABLE 4 Comparison of the performances of PRE-DELIRIC and E-DELIRIC.

Model AUROC (95% CI) AUPRC (95% CI) Precision (95% CI) Recall (95% CI) F1-score (95% 
CI)

PRE-DELIRIC 0.73 0.27 0.35 0.48 0.40

E-DELIRIC 0.72 0.28 0.34 0.56 0.42

Ours 0.80 0.55 0.42 0.75 0.53
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throughout the entire study period, we  noticed a substantial 
decrease in precision as the number of predictions and 
non-delirium data escalated. However, a trend emerged showing 
an escalating proportion of alarms as the onset of delirium 
approached. This pattern could serve as a valuable guide, enabling 
clinicians to adjust their focus accordingly. In temporal application, 
we observed that the alerts made clinicians more focused on the 
onset of delirium in their patients, allowing them to identify new 
delirium cases quickly. Furthermore, patients exhibiting a higher 
predicted risk of delirium were found to have an increased 
3-month mRS and longer ICU stays. However, the mortality rates 
of the case (7.14%) and control (6.25%) groups were not 
significantly different (p = 0.9603).

Though our temporal evaluation did not incorporate 
interventions, the significant difference in clinical outcomes within 
the high-risk delirium group provides a compelling rationale for 
the initiation of future studies that focus on early intervention 
strategies leveraging our predictive system.

However, our study has several limitations. First, since this 
model was only applied to patients with stroke, assessed using the 
NIHSS, it may be  difficult to generalize this model to patients 
admitted to the ICU for other diseases. However, these 
shortcomings can be overcome using general scales representing 
the severity of each disease. It can be  replaced by the Acute 
Physiology and Chronic Health Evaluation (APACHE) III or 
Sequential Organ Failure Assessment (SOFA) score, which are 
commonly used in the ICU (van den Boogaard et al., 2012; van den 
Boogaard et  al., 2014). In addition, we  focused specifically on 
stroke patients and included hypertension, diabetes, and 
dyslipidemia as stroke-related comorbidities. Nonetheless, 
incorporating well-known delirium risk factors, such as dementia 
and organ failure, can improve the performance of 
prediction models.

Second, during the temporal validation, we only observed the 
performance of the alarms and did not add clinical interventions 
based on the alarms. However, given that this study confirmed 
that the model-predicted risk levels and alarms were associated 
with adverse clinical outcomes, it may be possible to study the 
effectiveness of interventions using this alarm system in 
the future.

Third, our models have difficulty presenting a predictive score 
without patient monitoring. However, as the patients targeted in 
our study (those admitted to the NCU and SU) were fundamentally 
under vital sign monitoring, we  believe this does not pose a 
significant problem.

Finally, this study did not conduct external validation. 
However, we collected data from different time points for further 
validation than the cohort used in the development. We  also 
performed simulation validation, which indicated the evaluation 
is sufficiently reliable.

5 Conclusion

We believe that a prediction model using ML can provide timely 
prediction of the possibility of delirium in patients with ischemic 
stroke. In addition, the study revealed that vital-sign-based dynamic 
information is valuable for monitoring the risk of delirium occurrence.
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