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Consistency and stability of 
individualized cortical functional 
networks parcellation at 3.0 T and 
5.0 T MRI
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Background: Individualized cortical functional networks parcellation has been 
reported as highly reproducible at 3.0  T. However, in view of the complexity of 
cortical networks and the greatly increased sensitivity provided by ultra-high 
field 5.0  T MRI, the parcellation consistency between different magnetic fields 
is unclear.

Purpose: To explore the consistency and stability of individualized cortical 
functional networks parcellation at 3.0  T and 5.0  T MRI based on spatial and 
functional connectivity analysis.

Materials and methods: Thirty healthy young participants were enrolled. Each 
subject underwent resting-state fMRI at both 3.0  T and 5.0  T in a random order 
in less than 48  h. The individualized cortical functional networks was parcellated 
for each subject using a previously proposed iteration algorithm. Dice coefficient 
was used to evaluate the spatial consistency of parcellated networks between 
3.0  T and 5.0  T. Functional connectivity (FC) consistency was evaluated using the 
Euclidian distance and Graph-theory metrics.

Results: A functional cortical atlas consisting of 18 networks was individually 
parcellated at 3.0  T and 5.0  T. The spatial consistency of these networks at 
3.0  T and 5.0  T for the same subject was significantly higher than that of inter-
individuals. The FC between the 18 networks acquired at 3.0  T and 5.0  T were 
highly consistent for the same subject. Positive cross-subject correlations in 
Graph-theory metrics were found between 3.0  T and 5.0  T.

Conclusion: Individualized cortical functional networks at 3.0  T and 5.0  T 
showed consistent and stable parcellation results both spatially and functionally. 
The 5.0  T MR provides finer functional sub-network characteristics than that of 
3.0  T.
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Introduction

The human cerebral cortex consist of hundreds of cortical regions 
with unique structural morphology, functionality and connectivity 
(Kaas, 1987; Felleman and Van Essen, 1991; Zilles and Amunts, 2010; 
Eickhoff et al., 2018). The highly folded structure of cerebral cortex 
and multiple areas are thought to be organized into numerous spatially 
distributed large-scale networks, that interact as part of distributed 
functional networks and broadly serve for different aspects of human 
cognition and behavior (Fischl and Dale, 2000; Bressler and Menon, 
2010). However, individualized differences in brain organization are 
distributed heterogeneously across the cortex and white matter fiber 
tracts (Wang et al., 2015; Han et al., 2020), contributing significantly 
to the complexity of the cortical networks and individual variability. 
Most previous studies of functional networks have focused on the 
population-level or group-level, failing to fully account for individual 
differences. Applying a group-template to individual subject may 
bring misalignment, dilute brain-behavior associations with 
neuropsychiatric diseases, obscure individual differences in the 
calculation process and restrict the development of personalized 
medical treatment in clinical practice (Wang et al., 2015). Obtaining 
functional atlases at the individual level is an important step to explore 
individual brain function and thus can further provide basis for 
precision personalized medicine.

Wang et al. developed a novel cortical parcellation approach to 
accurately map functional organization at the individual level using 
resting-state blood oxygenation level dependent functional MRI 
(BOLD-fMRI) (Wang et al., 2015). A population-based functional 
atlas and a map of inter-individual variability were employed to guide 
the iterative search for functional networks in individual subjects. 
Functional networks mapped by this approach were highly 
reproducible within subjects and effectively captured the variability 
across subjects (Wang et al., 2015). Functional connectivity (FC) is 
defined as the temporal dependency of neurophysiological signals, 
such as BOLD-fMRI signals, between spatially remote brain areas 
(Friston et  al., 1993). Individual-specific functional connectivity 
analysis may contribute to reflecting individual characteristics of 
diseases, revealing the pathogenesis of diseases, and providing the 
possibility for early diagnosis and treatment monitoring.

It is generally known that MRI with high magnetic field can 
provide more detailed anatomical information relying on higher 
spatial resolution and signal-to-noise ratio compared to lower fields 
MRI (Triantafyllou et al., 2005; Schafer et al., 2008; de Hollander et al., 
2017). The BOLD signal arises from the inhomogeneity of the local 
field, which is caused by the difference in magnetic susceptibility 
between the deoxygenated hemoglobin-rich blood in the capillaries 
and venous vessels and the surrounding tissues. For resting-state 
fMRI, the ultra-high field strength MRI greatly increases sensitivity to 
the BOLD contrast (Triantafyllou et al., 2005). Recently, a 5.0 T MRI 
scanner was developed. The high field strengths of 5.0 T may provide 
more accurate topological and functional maps at individual level than 
that of 3.0 T (Prudent et al., 2010).

The individualized cortical functional networks parcellation 
method proposed by Wang et  al. has been reported as highly 
reproducible at 3.0 T (Wang et al., 2015). However, this method has 
never been tested on high field MRI above 3.0 T, such as 5.0 T MRI. It 
remains unclear whether the spatial distribution of these functional 
networks for the same subject would remain similar at different 

magnetic fields. Given the complexity of cortical networks and the 
significantly increased sensitivity to BOLD effects at ultra-high fields, 
this study aimed to explore the consistency and stability of 
individualized cortical functional networks parcellation across 3.0 T 
and 5.0 T MRI based on spatial measurement, between-network 
functional connectivity, and graph-theory analysis.

Materials and methods

Participants

This prospective study was approved by the Medical Research 
Ethics Committee and Institutional Review Board of Zhongnan 
Hospital and written informed consent was obtained from all subjects. 
Thirty healthy young individuals (mean age ± SD, 27 years ±5; male: 
16, female: 14) were enrolled from September 2021 to March 2022. All 
participants were right-handed and without any comorbidities.

MR acquisitions

Each participant underwent both 3.0 T and 5.0 T MRI scan in a 
random order within a 48-h window. The imaging protocols included 
resting-state blood oxygenation level dependent (rs-BOLD) MRI and 
structural three-dimensional (3D) T1-weighted images. The 3.0 T 
examinations were conducted with a commercial MR scanner 
(Discovery MR 750w, GE Healthcare, Waukesha, WI, United States) 
equipped with a 32-channel head coil. The 5.0 T examinations were 
performed with a newly MR scanner (uMR Jupiter, United Imaging 
Healthcare, Shanghai, China), also with a 32-channel head coil. To 
ensure homogeneous and reliable results, the main parameters were 
standardized between 3.0 T and 5.0 T devices. Resting-state data were 
acquired using a gradient echo-planar imaging (EPI) sequence with 
the following parameters: TR/TE = 2000/25 ms, timepoints = 240, 
FOV = 240 mm × 240 mm, flip angle (FA) = 90°, Acquisition 
Matrix = 60 × 60, slice thickness = 4.0 mm, number of slices = 39, and 
voxel size = 4 × 4 × 4 mm3. Structural 3D T1-weighted images for the 
3.0 T scans were acquired with a brain volume imaging (BRAVO) 
sequence: TR/TE = 8.0/3.0 ms, thickness = 1.0 mm, FA = 12°, 
Acquisition Matrix = 240 × 240, FOV = 240 mm × 240 mm, number of 
slices = 148 and voxel size = 1 × 1 × 1 mm3. For the 5.0 T scans, 
structural 3D T1-weighted images were acquired with a three-
dimension fast spoiled gradient echo sequence (T1 GRE-FSP 3D) with 
identical parameter to the 3.0 T scans. During resting functional MRI 
scanning, participants were instructed to relax, lie down comfortably 
with eyes closed, remain awake, and minimize cognitive activity. Head 
motion was minimized using foam pads, and earplugs were provided 
to attenuate scanner noise, ensuring smooth progress of the MRI scan 
and image quality.

SNR, tSNR and CNR of raw resting-state 
fMRI data evaluation

To compare the Signal-to-Noise Ratio (SNR) of 3.0 T and 5.0 T, the 
signal component (S) was determined as the mean intensity within the 
selected parenchyma region of interests (ROIs). The ROIs were 
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symmetrically drawn in frontal and parietal lobes at the apex level of 
the lateral ventricle from axial conventional resting-state fMRI data 
(Supplementary Figure S1). The noise (N) area was defined as regions 
in the four corners of the image, and its standard deviation was 
determined by calculating the mean of the standard deviation of four 
corners (Han et al., 2021). The mean SNR was calculated by S/N. The 
temporal SNR (tSNR) was computed on a voxel-wise basis and defined 
as the temporal mean signal divided by temporal standard deviation 
in subjects. Considering that neuronal activity signals may lead to bias 
in the measurement of tSNR on BOLD images, we also scanned a 
water phantom at 3.0 T and 5.0 T MR and calculated the tSNR, 
respectively. For Contrast-to-Noise Ratio (CNR) of 3.0 T and 5.0 T, 
we collected the mean intensity of gray (Sgray) and white matter (Swhite). 
The ROI of gray matter was drawn on the frontal lobe at the apex level 
of the lateral ventricle from axial raw resting-state fMRI, and ROI of 
white matter was drawn in callosum area of the same level as gray 
matter ROI (Supplementary Figure S1). The CNR was calculated by 
(Sgray-Swhite)/Swhite.

fMRI preprocessing

Resting-state fMRI data, preprocessed using the Independent 
Component Analysis Fix (ICA-FIX) method from Human 
Connectome Project (HCP) subjects and presented as temporal series 
of grayordinates, were processed using the HCP pipeline (Glasser 
et al., 2016). The preprocessing steps involved the use of FSL (FMRIB 
Software Library), FreeSurfer, and command line functions from 
Connectome Workbench (Marcus et  al., 2011; Barch et  al., 2013; 
Smith et al., 2013; Glasser et al., 2016). Resting-state fMRI data for 
each subject underwent resampling to a standardized cortical surface 
mesh representation (fs_LR 32 k mesh). Despite the application of 
ICA-FIX, previous studies noted that global physiological noise and 
motion-related artifacts were not entirely eliminated (Marcus et al., 
2011; Glasser et al., 2016). To enhance the resting-state fMRI analysis, 
we  implemented additional processing steps:(1) Normalization of 
resting-state fMRI time series at each vertex to zero mean and unit 
variance.(2) Linear detrending and band-pass filtering (0.01–0.08 Hz). 
(3) Regression of 12 head-motion parameters and whole-brain signal. 
(4) Gaussian smoothing (sigma = 2.55 mm) on the 32 k fs_LR surface.

Individualized homologous functional 
regions parcellation

Following preprocessing of fMRI data, individualized functional 
networks were parcellated, homologous networks were identified, and 
ROI-ROI functional connectivity was calculated using the 
Homologous Functional Regions Across Individuals toolbox (HFR_ai, 
http://nmr.mgh.harvard.edu/bid/DownLoad.html). Initially, the 
individual parcellation was conducted based on the methodology 
proposed by Wang et al. (2015). The confidence value was set to 3, 
with 10 terminating iterations, and homologous networks of the left 
and right hemispheres were combined. Subsequently, homologous 
functional regions across individuals were determined based on the 
individual parcellation results obtained from the previous step. The 
parcellation result after 10 consecutive iterations was selected, with a 

match rate set to 1, indicating that all subjects had matched that ROI 
or the kept ROI was homologous in function across all individuals. 
Finally, ROI-ROI functional connectivity was calculated using the 
homologous regions defined in the previous step.

Individualized cortical functional networks 
spatial consistency evaluation

Intra-subject reliability and inter-subject variability were 
measured using the Dice coefficient. The Dice coefficient measures the 
similarity between two sets of data, such as binary masks or 
segmentations of an image. The Dice coefficient is defined as the ratio 
of the intersection or overlap of two sets of data to their union:

Dice coefficient = 2 |A ∩ B|/ (|A| + |B|). In this study, each 
individualized network was transformed into a binary mask. |A| + |B| 
indicates the sum of the number of total voxels within network A and 
B. And |A ∩ B|indicates the number of the common voxels between 
network A and B.

We used dice coefficient to describe the spatial consistency of 
cortical functional networks obtained by parcellation of BOLD images 
from different MRI devices, i.e., 3.0 T and 5.0 T field strengths. Thus 
there were two different dice coefficients for each network. One was 
the dice coefficient of 3.0 T images and 5.0 T images for the same 
subject, which we named the “dice coefficient intra-individual,” and 
the other was for the different subjects (namely dice coefficient for one 
subject’s 3.0 T images and every other subject’s 5.0 T images), which 
we named the “dice coefficient inter-individual.” We then evaluated 
the difference between these two dice coefficients. A high intra-
individual dice coefficient would indicate high spatial consistency of 
a certain network at different magnetic fields for the same subject, and 
reflects the stability of the individualized brain functional parcellation 
method. The inter-individual variability of the cortical networks 
would lead to a lower dice coefficients for different subjects and 
further reflects the functional complexity of corresponding networks.

Between-networks functional connectivity 
consistency analysis of individualized 
cortical networks

The total number of sub-regions obtained by HFR-ai parcellation 
(the second step of HFR-ai above) was calculated and analyzed for 
3.0 T and 5.0 T images. We clustered these sub-regions according to 
the 18-networks (except for lateral ventricle system) they belonged to. 
These 18-networks were divided by the two hemispheres into 36 
networks. Then the BOLD signals of the homologous functional 
regions clustered to the same network were averaged. The FC between 
these 36 networks was calculated using the averaged BOLD signals. 
Thus a functional connectivity matrix of size 36 × 36 was obtained for 
each subject for 3.0 T and 5.0 T images, respectively. We used the 
Euclidian distance (Frobenius Norm) to measure the consistency 
between two FC matrices. The Euclidian distance of two matrices was 
defined as the square root of the sum of the absolute squares of the 
difference between their corresponding elements:
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The intra-individual Euclidian distance between the 3.0 T network 
FC matrix and the 5.0 T network FC matrix was calculated for each 
subject. The inter-individual Euclidian distance between the 3.0 T 
network FC matrix of each subject and the 5.0 T network FC matrices 
of other subjects was also calculated.

Graph theory analysis of functional 
connectivity matrices

For the between-network FC matrices (FC between the 36 
networks) and the between sub-regions matrices (FC between the 75 
sub-regions for 3.0 T and the 84 sub-regions for 5.0 T) obtained from 
HFR-ai parcellation, global network metrics were calculated using the 
Graph Theoretical Network Analysis (GRETNA).1 These global 
network metrics included small-world parameters such as the 
clustering coefficient (Cp), the characteristic path length (Lp), 
normalized clustering coefficient (γ), normalized characteristic path 
length (λ) and small-worldness (σ), as well as other global network 
metrics like global network efficiency, assortativity, synchronization, 
and hierarchy. Subsequently, the correlation of the global network 
metrics between 3.0 T and 5.0 T images for these two matrices was 
calculated to explore the consistency and stability of functional 
connectivity of individualized cortical functional networks across 
different magnetic field strengths.

Statistical analysis

Statistical analyses were conducted using SPSS 23.0 software 
(SPSS, Inc., Chicago, IL, USA). A significance level of p < 0.05 was 
considered statistically significant. A paired sample t-test was used for 
the statistics of image SNR, tSNR and CNR between groups. A 
two-way Analysis of Variance (ANOVA) was used to calculate the 
main and interaction effects for individual and cortical network 
factors of the difference of dice coefficient. Group statistics of dice 
coefficients were compared using a two-sample independent t-test. 
The area under curve (AUCs) of all the network metrics of 3.0 T and 
5.0 T images was statistically analyzed using Pearson 
correlation analysis.

Results

SNR, tSNR and CNR of 3.0  T and 5.0  T 
resting-state fMRI data

The original three cross-sectional views of raw fMRI images 
(axial, coronal and sagittal) of 3.0 T and 5.0 T of one representative 
subject were demonstrated (Supplementary Figure S2). The quality of 

1 https://www.nitrc.org/projects/gretna

5.0 T images was visibly better than that of 3.0 T images. Significant 
statistical differences were observed in SNR (370.8 ± 61.8 vs. 
144.8 ± 29.7, p < 0.0001) and CNR (0.88 ± 0.20 vs. 0.65 ± 0.10, 
p < 0.0001) between two groups (Supplementary Table S1).

The tSNR map calculated on a voxel-wise manner of 3.0 T and 
5.0 T have been demonstrated (Supplementary Figure S3). The tSNR 
measured in a gray matter ROI of 5.0 T images was superior to 3.0 T 
(27.95 ± 2.66 vs. 25.78 ± 2.72, p < 0.0001). In addition, the water 
phantom tSNR of 5.0 T was also significantly better than that of 3.0 T 
(320.13 vs. 210.24) (Supplementary Table S1).

Spatial consistency of individualized 
cortical functional parcellation between 
3.0  T and 5.0  T images

A functional cortical atlas comprising 18 networks (excluding the 
lateral ventricle system) for each unilateral cerebral hemisphere was 
individually parcellated on both 3.0 T and 5.0 T images. The details of 
this template atlas was provided in the original paper (Yeo et al., 2011). 
The lateral ventricle, not belonging to the cortical network, was 
excluded from our study. The labels of these 18 networks and the atlas 
projected onto the individual cortical surface are depicted in Figure 1 
(Wang et al., 2020).

The calculated dice coefficients of each networks are presented 
in Figure 2 and Table 1. The bilateral hemispheres were calculated 
separately. The intra-individual dice coefficient of each cortical 
functional network between 3.0 T and 5.0 T was high (range: 
0.5143–0.8337) for both hemispheres. The results of ANOVA 
analysis revealed that the main and interaction effects of individual 
and cortical network factors on the dice coefficient were statistically 
significant (F > 8.3, p < 0.0001, see Supplementary Figure S4 and 
Supplementary Table S2). This suggests that individual and cortical 
network were main factors affecting the difference in dice 
coefficients. The post-hoc analysis at each cortical network showed 
that almost all cortical functional networks exhibited a higher dice 
coefficient intra-individually than inter-individually, with 
significant statistical differences (p < 0.05), except for bilateral 
temporal limbic network (LMB-t) and orbitofrontal limbic network 
(LMB-o).

Based on the intra-individual dice coefficient, along with the 
statistical differences between dice coefficient intra and inter-
individuals, we classified all parcellated cortical functional networks 
into three categories. First, networks with a relatively high intra-
individual dice coefficients and slight statistical difference between 
intra and inter-individual dice coefficients. These included bilateral 
visual network-1 (VSL-1), Visual Network-2 (VSL-2), dorsal 
somatomotor network (SMN-d), ventral somatomotor network 
(SMN-v) and somatomotor network for hand (SMN-h) (intra-
individual dice coefficient > 0.75). Second, networks with moderate 
dice coefficient intra-individual and significant statistical difference 
between intra and inter-individual dice coefficients were identified. 
These encompassed networks such as bilateral posterior dorsal 
attention network (DAN-p), anterior dorsal attention network 
(DAN-a), posterior ventral attention network (VAN-p), anterior 
ventral attention network (VAN-a), posterior frontoparietal network 
(FPN-p), ventrolateral frontoparietal network (FPN-v), dorsolateral 
frontoparietal Network (FPN-d), temporal parietal network (TPN-t), 
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posterior default network (DMN-p), default network-1 (DMN-1) and 
default network-2 (DMN-2) (intra-individual dice coefficients 0.60–
0.75). Third, the networks with relatively lower dice coefficient both 

intra-and inter-individual. The remaining networks of bilateral LMB-t 
and LMB-o fell into this category (intra-individual dice coefficient 
0.50–0.60).

FIGURE 1

The functional cortical atlas consisting of 18 networks individually parcellated on both images of 3.0 T and 5.0 T. VSL, Visual Network; SMN-d, Dorsal 
Somatomotor Network; SMN-v, Ventral Somatomotor Network; SMN-h, Somatomotor Network for hand; DAN-p, Posterior Dorsal Attention Network; 
DAN-a, Anterior Dorsal Attention Network; VAN-p, Posterior Ventral Attention Network; VAN-a, Anterior Ventral Attention Network; LMB-t, Temporal 
Limbic Network; LMB-o, Orbitofrontal Limbic Network; FPN-p, Posterior Frontoparietal Network; FPN-v, Ventrolateral Frontoparietal Network; FPN-d, 
Dorsolateral Frontoparietal Network; TPN-t, Temporal Parietal Network; DMN, Default Network; DMN-p, Posterior Default Network.
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The number of parcellated individualized 
cortical functional sub-regions for 3.0  T 
and 5.0  T images

The total number of individualized homologous functional 
sub-regions was 75 for 3.0 T images and 84 for 5.0 T images 

(Figure 3 and Table 2). Each of the sub-regions was displayed for 
a representative individual (Supplementary Figure S5). These 
functional regions constituted the 36 larger brain networks of 
bilateral cerebral hemispheres. For each of the 36 parcellated 
networks, the number of functional sub-regions parcellated was 
shown in Table  2. Figure  4 demonstrated two representative 

FIGURE 2

The dice coefficient of obtained 18 cortical networks of 3.0  T and 5.0  T images for intra and inter-individual. (A) The left hemisphere. (B) The right 
hemisphere. The dice coefficient of each network at 3.0  T and 5.0  T was generally high value (range: 0.5143–0.8337) of bilateral hemispheres. Almost 
all cortical functional networks had the higher dice coefficient intra-individual than that of inter-individual with significant statistic difference (p  <  0.05), 
except for bilateral networks of LMB-t and LMB-o. VSL, Visual Network; SMN-d, Dorsal Somatomotor Network; SMN-v, Ventral Somatomotor Network; 
SMN-h, Somatomotor Network for hand; DAN-p, Posterior Dorsal Attention Network; DAN-a, Anterior Dorsal Attention Network; VAN-p, Posterior 
Ventral Attention Network; VAN-a, Anterior Ventral Attention Network; LMB-t, Temporal Limbic Network; LMB-o, Orbitofrontal Limbic Network; FPN-p, 
Posterior Frontoparietal Network; FPN-v, Ventrolateral Frontoparietal Network; FPN-d, Dorsolateral Frontoparietal Network; TPN-t, Temporal Parietal 
Network; DMN, Default Network; DMN-p, Posterior Default Network. *p  <  0.05. **p  <  0.01. ***p  <  0.001. ****p  <  0.0001.
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individuals, and it clear that the angular gyrus was correctly 
identified on 5.0 T but was missing on 3.0 T for both subjects, 
hence the number of the parcellated sub-regions of DMN-2 was 5 
at 5.0 T, and 4 at 3.0 T (Figure 4). Likely, in some other networks 
(e.g., right VSL-1, bilateral VAN-p, left FPN-p, left FPN-v, bilateral 
FPN-d, right DMN-p, bilateral DMN-1, and left DMN-2), the 
number of sub-regions parcellated from 5.0 T images exceeded 
that from 3.0 T images.

Consistency of between-network 
functional connectivity of individualized 
cortical networks between 3.0  T and 5.0  T 
images

Significant statistical differences were observed between intra and 
inter-individuals for the Euclidean distance of the between-network 
FC matrices (p = 0.006) (Figure 5). The mean Euclidian distance for 

TABLE 1 The Mean and SD of dice coefficient intra and inter-individual for 18 networks in bilateral hemispheres.

Network Dice coefficient intra-individual Dice coefficient inter-individual

Mean SD N Mean SD N p-value

VSL-1 0.8116#/0.8125* 0.0735#/0.0624* 30 0.7771#/0.7835* 0.0672#/0.0636* 870 0.0061#/0.0142*

VSL-2 0.8122/0.8337 0.0612/0.0621 30 0.7796/0.8102 0.0717/0.0666 870 0.0142/0.0579

SMN-d 0.7989/0.7642 0.0550/0.0574 30 0.7710/0.7316 0.0507/0.0586 870 0.0033/0.0028

SMN-v 0.7816/0.7783 0.0743/0.0646 30 0.7493/0.7358 0.0684/0.0727 870 0.0114/0.0016

SMN-h 0.7894/0.7499 0.0616/0.0835 30 0.7460/0.7122 0.0573/0.0722 870 <0.0001/0.0053

DAN-p 0.6562/0.6291 0.1013/0.0919 30 0.5689/0.5386 0.0768/0.0724 870 <0.0001/<0.0001

DAN-a 0.6445/0.6712 0.1162/0.0960 30 0.5393/0.5464 0.0833/0.0843 870 <0.0001/<0.0001

VAN-p 0.6484/0.6656 0.0822/0.0758 30 0.5674/0.5835 0.0770/0.0815 870 <0.0001/<0.0001

VAN-a 0.6412/0.6167 0.0991/0.1078 30 0.5440/0.5044 0.0789/0.0805 870 <0.0001/<0.0001

LMB-t 0.5298/0.5571 0.1858/0.1776 30 0.5430/0.5486 0.1597/0.1670 870 0.6584/0.7857

LMB-o 0.5143/0.5505 0.1359/0.1275 30 0.5285/0.5527 0.1355/0.1433 870 0.5741/0.9345

FPN-p 0.7092/0.6967 0.1110/0.1023 30 0.6243/0.6118 0.1073/0.0988 870 <0.0001/<0.0001

FPN-v 0.6874/0.6638 0.1518/0.1257 30 0.5401/0.4842 0.1014/0.0931 870 <0.0001/<0.0001

FPN-d 0.6426/0.6465 0.1062/0.1056 30 0.4854/0.4951 0.0750/0.0828 870 <0.0001/<0.0001

TPN-t 0.6661/0.7032 0.0900/0.1044 30 0.5413/0.6246 0.0738/0.0738 870 <0.0001/<0.0001

DMN-p 0.6811/0.6330 0.1094/0.1277 30 0.6289/0.5668 0.1113/0.1110 870 0.0117/0.0014

DMN-1 0.6439/0.6054 0.1241/0.1307 30 0.5581/0.5204 0.0993/0.1003 870 <0.0001/<0.0001

DMN-2 0.6787/0.6025 0.0886/0.1175 30 0.5567/0.4785 0.0750/0.0916 870 <0.0001/<0.0001

SD, Standard Deviation; N, Number; VSL, Visual Network; SMN-d, Dorsal Somatomotor Network; SMN-v, Ventral Somatomotor Network; SMN-h, Somatomotor Network for hand; DAN-p, 
Posterior Dorsal Attention Network; DAN-a, Anterior Dorsal Attention Network; VAN-p, Posterior Ventral Attention Network; VAN-a, Anterior Ventral Attention Network; LMB-t, Temporal 
Limbic Network; LMB-o, Orbitofrontal Limbic Network; FPN-p, Posterior Frontoparietal Network; FPN-v, Ventrolateral Frontoparietal Network; FPN-d, Dorsolateral Frontoparietal Network; 
TPN-t, Temporal Parietal Network; DMN, Default Network; DMN-p, Posterior Default Network. #Left hemisphere. *Right hemisphere.

FIGURE 3

The average FC matrix of sub-regions at 3.0  T and 5.0  T by HFR software. (A) The 75*75 sub-regions FC matrix of 3.0  T images. (B) The 84*84 sub-
regions FC matrix of 5.0  T images.
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TABLE 2 The number of sub-regions parcellated by HFR of 3.0  T and 5.0  T images.

Network 3.0  T 5.0  T

Left hemisphere Right hemisphere Left hemisphere Right hemisphere

VSL-1 2 1 1 2

VSL-2 3 3 3 3

SMN-d 1 1 1 1

SMN-v 3 2 2 2

SMN-h 1 1 1 1

DAN-p 3 3 3 3

DAN-a 2 2 1 1

VAN-p 3 4 5 5

VAN-a 3 3 3 3

LMB-t 1 1 1 1

LMB-o 1 1 1 1

FPN-p 1 2 2 2

FPN-v 3 2 4 2

FPN-d 2 3 3 4

TPN-t 1 1 1 1

DMN-p 2 1 2 2

DMN-1 3 2 4 4

DMN-2 4 3 5 3

Total 39 36 43 41

VSL, Visual Network; SMN-d, Dorsal Somatomotor Network; SMN-v, Ventral Somatomotor Network; SMN-h, Somatomotor Network for hand; DAN-p, Posterior Dorsal Attention Network; 
DAN-a, Anterior Dorsal Attention Network; VAN-p, Posterior Ventral Attention Network; VAN-a, Anterior Ventral Attention Network; LMB-t, Temporal Limbic Network; LMB-o, 
Orbitofrontal Limbic Network; FPN-p, Posterior Frontoparietal Network; FPN-v, Ventrolateral Frontoparietal Network; FPN-d, Dorsolateral Frontoparietal Network; TPN-t, Temporal Parietal 
Network; DMN, Default Network; DMN-p, Posterior Default Network.

FIGURE 4

Two representative subjects with high and moderate dice coefficients for the left DMN-2 network at 3.0  T and 5.0  T. Subject 018 was with high dice 
coefficient (0.8084) and subject 026 was with moderate dice coefficient (0.6119) intra-individually. The individualized left DMN-2 networks were 
projected onto the individual cortical surface. The spatial distribution of left DMN-2 network was highly similar between 3.0  T and 5.0  T for subject 018, 
however the spatial distribution of this network was slightly different on 3.0  T and 5.0  T for subject 026. Note that the angular gyrus was correctly 
identified on 5.0  T but was missing on 3.0  T, hence the number of the parcellated sub-regions of DMN-2 was 5 at 5.0  T, and 4 at 3.0  T.

https://doi.org/10.3389/fnins.2024.1425032
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yu et al. 10.3389/fnins.2024.1425032

Frontiers in Neuroscience 09 frontiersin.org

inter-individuals was higher than that of intra-individuals 
(11.1647 ± 1.7128 vs. 10.2922 ± 1.4312).

Graph theory metrics consistency

For correlation analysis of the global network metrics of the 
between-network FC matrices (size of 36 × 36) between the 3.0 T and 
5.0 T images, a positive correlation was observed in metrics such as 
assortativity (ar, r = 0.403, p = 0.027), network efficiency (aEg, r = 0.507, 
p = 0.004), characteristic path length (aLambda, r = 0.365, p = 0.047), 
and normalized characteristic path length (aLp, r = 0.504, p = 0.005) 
(Figure 6A).

Similarly, a significant positive correlation of certain global 
network metrics was observed in the between-sub-regions matrices 
(matrix size of 75 × 75 for 3.0 T and matrix size of 84 × 84 for 5.0 T) 
images obtained from HFR-ai parcellation on (Figure 6B), namely 
network efficiency (aEg, r = 0.595, p = 0.001; aEloc, r = 0.373, p = 0.042), 
characteristic path length (aLambda, r = 0.370, p = 0.044) and 
normalized characteristic path length (aLp, r = 0.573, p = 0.001).

Discussion

Parcellating functional networks across the cerebral cortex in 
individuals based on functional connectivity is particularly important 
for personalized diagnosis and treatment (Fan et al., 2020; Gordon 
et al., 2022). This study represents the first attempt to evaluate the 

consistency and stability of individualized cortical functional networks 
parcellation at 3.0 T and 5.0 T MRI. We  delineated 18 cortical 
functional networks based on a previously proposed cortical 
parcellation algorithm and derived several key findings (Wang et al., 
2015). Firstly, the spatial consistency (dice coefficient) of the 
parcellated 18 networks between 3.0 T and 5.0 T within the same 
individuals was generally high, surpassing that of inter-individuals. 
Secondly, the total number of sub-regions obtained by individualized 
parcellation of cerebral cortex at 5.0 T exceeded that of 3.0 T, indicating 
a higher sensitivity and enhanced cross-regional contrast achievable 
at 5.0 T. Thirdly, we observed high consistency of individualized FC 
between 3.0 T and 5.0 T for the same subject, indicated by a 
significantly lower Euclidian distance of the between-network FC 
matrix between 3.0 T and 5.0 T intra-individual than inter-individual. 
Fourthly, for graph theory analysis of the individualized FC, 
we identified a significant correlation in graph theory metrics (such as 
assortativity, network efficiency, and small-worldness) between 3.0 T 
and 5.0 T. These results helped verify the consistency and stability of 
individualized cortical functional networks parcellation at 3.0 T and 
5.0 T, and demonstrated the variance of cortical networks across 
individuals (Laumann et al., 2015).

All the parcellated cortical functional networks could be classified 
into three categories based on the intra-and inter-individual dice 
coefficients between 3.0 T and 5.0 T. First, the category with a relatively 
high dice coefficient intra-individual and slight statistic difference 
between dice coefficient intra and inter-individual. The spatial 
consistency of these cortical networks within individuals was very 
high across different magnetic fields, and the spatial variance between 
individuals was relatively small. The parcellated cortical functional 
networks of bilateral VSL-1, VSL-2, SMN-d, SMN-v and SMN-h were 
classified into this category. Previous FC study also revealed that SMN 
and VSL systems had low inter-subject variability (Mueller et  al., 
2013), consistent with our findings. Both VSL and SMN are primary 
sensory and motor networks. The low variabilities of VSL and SMN 
was related to their dedicated and simpler functions, and their less 
complicated evolutionary cortical expansion and cortical folding (Hill 
et al., 2010). Interestingly, we have recognized a new network not 
labeled independently in Yeo’s 17-network atlas. It was located in the 
anterior central gyrus (the part of the brain that responsible for hand 
movement) and was part of the somatomotor network, we named it 
SMN-h. Quite significant differences between intra and inter-
individuals were demonstrated in SMN-h in left hemisphere, but not 
in SMN-d or SMN-v, nor in the right hemisphere. This provided two 
implications. First, compared to other SMN sub-networks, SMN-h has 
more complex functions and greater individual variability. Second, in 
terms of lateralization, SMN-h in the left hemisphere exhibited more 
complicated functional activities than that of right hemisphere. This 
probably can be explained by the fact that the healthy participants 
included in our study were all right-handed.

The second category of networks showed moderate intra-
individual dice coefficients and significant statistical difference 
between intra-and inter-individual dice coefficients. These networks 
include the bilateral DAN-p, DAN-a, VAN-p, VAN-a, FPN-p, FPN-v, 
FPN-d, TPN-t, DMN-p, DMN-1 and DMN-2. The DAN is supposed 
to be  organized bilaterally and comprises the intraparietal sulcus 
(IPS), the frontal eye fields (FEF) and superior parietal lobule of each 
hemisphere (Petersen and Posner, 2012; Vossel et al., 2014). The VAN 
is mainly located in Temporal–parietal junction (right-lateralized) and 

FIGURE 5

The Euclidian distance of the 36  ×  36 averaged FC matrix at 3.0  T and 
5.0  T for intra and inter-individual. The mean Euclidian distance for 
inter-individual was higher than that of intra-individual 
(11.1647  ±  1.7128 vs. 10.2922  ±  1.4312). Significant statistical 
difference intra and inter-individuals on the 3.0  T and 5.0  T images 
was observed (p  =  0.006). **p  <  0.01.
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FIGURE 6

Correlation analysis of functional connectivity matrix of individualized cortical networks between 3.0  T and 5.0  T images. (A) For the 36  ×  36 averaged 
functional connectivity matrix between the 3.0  T and 5.0  T images, a positive correlation in metrics of assortativity (ar, r  =  0.403, p  =  0.027), network 
efficiency (aEg, r  =  0.507, p  =  0.004), characteristic path length (aLambda, r  =  0.365, p  =  0.047) and normalized characteristic path length (aLp, r  =  0.504, 
p  =  0.005) has been observed. (B) For the primitive sub-regions matrix, significant positive correlation between 3.0  T and 5.0  T images of network n 
(aEg, r  =  0.595, p  =  0.001; aEloc, r  =  0.373, p  =  0.042), characteristic path length (aLambda, r  =  0.370, p  =  0.044) and normalized characteristic path 
length (aLp, r  =  0.573, p  =  0.001) was also observed.
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ventral prefrontal cortex (Vossel et al., 2014), generally considered 
part of the Salience network. Both DAN and VAN are higher-order 
cognitive networks, previous studies have shown great variability of 
these two networks by using different parcellation models (Vossel 
et al., 2014; Allan et al., 2020; Ramezanpour and Fallah, 2022). FPN is 
a key component of higher order function network and has extensive 
connectivity with many different brain networks, making it a 
functional hub of cognitive functions (Power et al., 2013). The study 
of precise mapping reflected the large individual variation in the 
precise anatomy of the FPN (Laumann et  al., 2015). In addition, 
previous study also demonstrated FPN and attentional networks 
showed high inter-individual variability (Mueller et al., 2013), which 
was consistent with our results. The studies of DMN are the most 
extensive (Buckner, 2012). Related experiments analysis of intrinsic 
connectivity combined with graph-analytic and clustering techniques 
have demonstrated that DMN comprises two subsystems that interact 
with a common core, and the subsystems functionally dissociate when 
under different task or resting-state conditions (Andrews-Hanna et al., 
2010). The results of our individualized analysis on different MR fields 
also confirmed the existence of three sub-networks of DMN. All the 
above networks are higher-order cognitive networks, thus it is not 
surprising that these networks showed significant inter-individual 
variability also less intra-individual consistency than the first category 
of visual and sensory-motor networks, indirectly reflecting their 
possible complex functions.

The sole cortical network classified into the third category with a 
relatively lower intra-and inter-individual dice coefficient was the 
limbic network (LMB-t and LMB-o). The limbic system can be divided 
into cortical and sub-cortical limbic regions. While the two 
sub-networks (LMB-o and LMB-t) we have parcellated seemed to 
mainly located in other extended nodes referred as the “limbic 
forebrain” (Morgane et  al., 2005). The limbic system has been 
implicated in memory and mood regulations, and its status may 
change rapidly according to the subjects’ mood status. Our study 
suggested that these two networks were highly variable both intra-
individual and across individuals, likely due to their involvement in 
short-term memory processing and mood-related functional 
activities. Besides, the limbic system areas are close to the bottom of 
the brain and are very susceptible to low SNR and signal drop, which 
might be  one of the reasons that contributes to the low spatial 
consistency (dice coefficients) both intra and inter-individually of this 
network. However, by a visual check of the raw fMRI data (see 
Supplementary materials), we did not find any significant artefact or 
distortion of the medial and inferior temporal areas, despite a slightly 
weaker signal at the temporal pole. Thus, the inter-and intra-variability 
of the LMB networks is more likely due to the quick neurophysiological 
changes in these areas.

The total number of individualized homologous functional 
regions of 5.0 T images was slightly larger than that of 3.0 T images. In 
11 of the 36 networks, more sub-regions were parcellated from 5.0 T 
images, predominantly in networks of FPN, DMN and VAN. This may 
be due to the superior image quality, higher SNR and CNR of 5.0 T 
than 3.0 T, and the spatially adjacent but functionally segregated 
sub-regions are more distinguishable at 5.0 T. We have compared the 
SNR, tSNR and CNR of the raw resting-state fMRI data between 3.0 T 
and 5.0 T groups. Results showed that the raw BOLD images at 5.0 T 
have higher SNR, tSNR and CNR than that at 3.0 T. This was 
expectable and consistent with previous studies (Triantafyllou et al., 

2005; Schafer et al., 2008). The attenuation of intravascular signal from 
veins at higher field facilitated spatial specificity of detecting neural 
activity related signal (Gati et al., 1997). Studies on 7.0 T MR have 
shown that ultra-high field provides significant advantage over lower 
(3.0 T) field for functional connectivity measurement, based on higher 
BOLD CNR yielding higher temporal correlation between functionally 
connected brain areas (Duong et al., 2002; Hale et al., 2010). Another 
study used increased BOLD contrast-to-noise ratio at 7.0 T to measure 
the topographic representation of the digits in human somatosensory 
cortex at 1 mm isotropic resolution in individual subjects, this is 
almost impossible to achieve at or below 3.0 T field strength (Sanchez-
Panchuelo et al., 2010). These results further confirmed that MRI with 
ultra-high field could obtain finer functional 
sub-network characteristics.

We further analyzed the consistency of the parcellated networks 
from a functional connectivity perspective. The mean Euclidian 
distance of FC matrices for inter-individual at 3.0 T and 5.0 T was 
significantly higher than for intra-individual. This indicated that 
functional connectivity between the 36 brain networks obtained by 
individualized parcellation was consistent within individuals across 
3.0 T and 5.0 T, but variable across individuals. Multiple previous 
studies have also demonstrated the variability of the human cortical 
spontaneous activity across space, rs-fMRI platforms (3 T and 7 T), 
and individuals, with higher connectivity variability between 
participants and the lower connectivity variability within individual 
participants (Frost and Goebel, 2012; Xing et al., 2023). These findings 
elucidate individual variances in functional connectivity of cortical 
networks, and were again validated by our use of individualized 
parcellation method in high and ultra-high fields.

Correlation analysis of the graph theory global metrics for the 
between-network FC and sub-regions FC matrix obtained from 
HFR-ai parcellation showed a positive correlation between the 5.0 T 
and the 3.0 T matrices. The graph theory analysis results were 
consistent and correlated under different field strengths. A previous 
study have reported good or excellent test–retest reliability for many 
metrics including assortativity, characteristic path length, global 
efficiency and local efficiency at 3.0 T (Welton et al., 2015). Our results 
expanded these findings to different magnetic fields.

Several limitations in our study should be acknowledged. First, 
we set a total of 10 iterations in individualized parcellation based on 
previous reference (Wang et al., 2015). However, at 5.0 T, 10 iterations 
may not capture all individualized parcellation details. Thus probably 
resulting in fewer sub-regions parcellated for some networks at 5.0 T 
than 3.0 T. In the future, we intend to set more iterations at 5.0 T to 
evaluate the performance of individualized parcellation. Second, 
we set the same TE values of 25 ms and flip angle of 90° at 5.0 T MR 
with 3.0 T. These TE and flip angle values were very commonly used 
parameter settings, while it may not be the optimal for the 5.0 T field 
strength. For 5.0 T images, the optimal TE and Ernst angle is not clear 
and have not been reported. Yacoub et al. have reported TE = 25 ms 
was the optimal TE to be used in 7.0 T BOLD fMRI in the human 
visual cortex, while 35 ms was optimal TE at 4.0 T (Yacoub et  al., 
2001). Gonzalez-Castillo et al. have reported that for the gray matter 
compartment, the Ernst angle was 77° at 3.0 T BOLD fMRI. While 
using lower flip angles in 3.0 T BOLD fMRI experimentation may have 
benefits such as reduction of RF power, limitation of apparent 
T1-related inflow effects, reduction of through-plane motion artifacts 
and lower levels of physiological noise (Gonzalez-Castillo et al., 2011). 
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More studies are needed to explore the optimal parameter for the 
BOLD images at 5.0 T MR. Third, we did not collect multiple resting-
state scanning sessions at 3.0 T and 5.0 T. Previous study has confirmed 
the consistency of individualized parcellation at 3.0 T, indicating that 
the consistency and stability were reliable on the same field strength 
(Wang et al., 2015). Considering the purpose of our study was to 
explore the consistency and stability of individualized parcellation 
across different magnetic fields, only one session was collected for 
each field. Finally, we investigated the individual-specific functional 
connectivity by resting-state fMRI, while task-evoked conditions need 
further evaluation to draw similar conclusions.

In conclusion, we  have confirmed that individualized cortical 
functional networks at different magnetic fields had consistent and 
stable parcellation results both spatially and functionally. The 5.0 T 
BOLD fMRI has higher SNR and CNR than 3.0 T and provides finer 
functional sub-network characteristics of individualized cortical 
functional networks parcellation. These results have laid the 
foundation for future application of individualized cortical functional 
networks parcellation at 5.0 T and other ultra-high field MR.
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