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Objective: Patients with temporal lobe epilepsy (TLE) often exhibit neurocognitive 
disorders; however, we still know very little about the pathogenesis of cognitive 
impairment in patients with TLE. Therefore, our aim is to detect changes in the 
structural connectivity networks (SCN) of patients with TLE.

Methods: Thirty-five patients with TLE were compared with 47 normal controls 
(NC) matched according to age, gender, handedness, and education level. All 
subjects underwent thin-slice T1WI scanning of the brain using a 3.0 T MRI. 
Then, a large-scale structural covariance network was constructed based on 
the gray matter volume extracted from the structural MRI. Graph theory was 
then used to determine the topological changes in the structural covariance 
network of TLE patients.

Results: Although small-world networks were retained, the structural 
covariance network of TLE patients exhibited topological irregularities in 
regular architecture as evidenced by an increase in the small world properties 
(p  < 0.001), normalized clustering coefficient (p  < 0.001), and a decrease in 
the transfer coefficient (p  < 0.001) compared with the NC group. Locally, TLE 
patients showed a decrease in nodal betweenness and degree in the left lingual 
gyrus, right middle occipital gyrus and right thalamus compared with the NC 
group (p  < 0.05, uncorrected). The degree of structural networks in both TLE 
(Temporal Lobe Epilepsy) and control groups was distributed exponentially 
in truncated power law. In addition, the stability of random faults in the 
structural covariance network of TLE patients was stronger (p  = 0.01), but its 
fault tolerance was lower (p  = 0.03).

Conclusion: The objective of this study is to investigate the potential 
neurobiological mechanisms associated with temporal lobe epilepsy through 
graph theoretical analysis, and to examine the topological characteristics and 
robustness of gray matter structural networks at the network level.

KEYWORDS

temporal lobe epilepsy, connectome, graph theory, gray matter volume, structural 
covariance network

OPEN ACCESS

EDITED BY

Yongxin Li,  
Jinan University, China

REVIEWED BY

Yu Luo,  
Johns Hopkins University, United States
Chenxi Li,  
Air Force Medical University, China

*CORRESPONDENCE

Bo Sun  
 sunboycmu@163.com  

Ying Wang  
 wangyingdoc@163.com

†These authors share first authorship

RECEIVED 25 April 2024
ACCEPTED 24 June 2024
PUBLISHED 04 July 2024

CITATION

Chen Y, Sun L, Wang S, Guan B, Pan J, 
Qi Y, Li Y, Yang N, Lin H, Wang Y and 
Sun B (2024) Topological regularization of 
networks in temporal lobe epilepsy: a 
structural MRI study.
Front. Neurosci. 18:1423389.
doi: 10.3389/fnins.2024.1423389

COPYRIGHT

© 2024 Chen, Sun, Wang, Guan, Pan, Qi, Li, 
Yang, Lin, Wang and Sun. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 04 July 2024
DOI 10.3389/fnins.2024.1423389

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1423389&domain=pdf&date_stamp=2024-07-04
https://www.frontiersin.org/articles/10.3389/fnins.2024.1423389/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1423389/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1423389/full
mailto:sunboycmu@163.com
mailto:wangyingdoc@163.com
https://doi.org/10.3389/fnins.2024.1423389
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1423389


Chen et al. 10.3389/fnins.2024.1423389

Frontiers in Neuroscience 02 frontiersin.org

Introduction

Epilepsy (EP) was the second most common neurological 
disorder, characterized by frequent and unexplained seizures (Téllez-
Zenteno and Hernández-Ronquillo, 2012; Singh and Trevick, 2016). 
The essence of an epileptic seizure was the transient abnormal 
discharge of brain neurons, leading to specific clinical signs or 
symptoms. Temporal lobe epilepsy (TLE) originates from the 
temporal lobe region, accounting for approximately 40% of all 
seizures, making it one of the most common and severe types of 
epilepsy. Its clinical feature was the progressive development of 
spontaneous recurrent seizures; thus, it was intractable, recurrent, 
and drug-resistant (Téllez-Zenteno and Hernández-Ronquillo, 2012). 
Patients with TLE often exhibited cognitive impairment, especially in 
memory and executive functions (Mameniškienė et  al., 2016). 
Cognitive impairment (CI) was reported in 30–40% of patients with 
epilepsy, which may lead to a deterioration in quality of life and 
eventual disability (Kanner et  al., 2020). The degree of cognitive 
impairment varied from individual to individual and may worsen 
over time. Increasingly, evidence suggested that TLE was an abnormal 
network disease of epilepsy, not just a pathogen; epilepsy could 
be  conceptualized as a network disorder (González Otárula and 
Schuele, 2020; Tabibian et al., 2023). The cognitive state of patients 
with TLE changed with alterations in brain structure, but the 
neuroimaging mechanism underlying neurocognitive impairment in 
these patients remains unclear.

Existing studies had established grey matter disparities in 
patients with TLE (Alvim et  al., 2016). Certain studies showed 
anomalies in grey matter regions such as the hippocampus (Marsh 
et al., 2005), amygdala (Sone et al., 2016), and putamen (Kenchaiah 
et al., 2020) in patients with TLE. The brain regions concerned might 
not concur across various studies, arguably due to methodological 
variances, discrepancies in sample selection, and data analysis, 
leading to different outcomes. Some studies, for instance, found the 
swelling and enlargement of the amygdala in patients with TLE 
(Sporns et al., 2005; Sone et al., 2017; Peedicail et al., 2020), while 
others indicate amygdala atrophy (Armstrong, 1993; Guerreiro et al., 
2005; Goldberg et al., 2014; Hakyemez et al., 2016). These differences 
could be  attributed to the pathophysiological underpinnings of 
TLE. While traditional studies are capable of detecting volume 
changes in multiple grey matter regions in TLE patients, they fell 
short of elucidating the structural or functional connections among 
these regions, failing to provide these changes at a comprehensive 
brain network level.

In an attempt to reach a thorough comprehension of the complex 
network of the human brain, Sporns and colleagues (Sporns et al., 
2005) proposed the concept of the human connectome. The concept 
delved into the intricacies of the organizational patterns within the 
brain in detail. Consequently, the perception of the brain had evolved 
from a collection of discrete anatomical structures or chemicals to a 
complex network of interconnected neurons. The paradigm shift in 
this concept has enabled a novel avenue for in-depth investigation of 
neural activity in the brain and the pathogenesis of a myriad of 
neuropsychiatric disorders. The aim of human connectomics was to 
depict the human brain network map in a comprehensive and 
detailed manner. It covered the spectrum from a macroscopic level 
(brain region) to a microscopic level (single neuron), additionally 
exploring the rules of network connectivity (Sporns et al., 2005; Liang 

et  al., 2021). Through human connectomics, it was possible to 
interpret brain network connections via three spatial dimensions: 
microscale, mesoscale, and macroscale, which denote neurons, 
neuron clusters and brain regions, respectively. In the context of 
identifying and characterising human brain networks, graph theory 
emerges as a standard method. It facilitated an intuitive and effective 
modelling of the intricate structure and functionality of the brain 
(Marsh et al., 2005; Alvim et al., 2016; González Otárula and Schuele, 
2020). By employing this method, researchers could delve into the 
topological characteristics of human brain networks, such as node 
connectivity, graph clustering coefficients and path length. This 
in-depth understanding achieved through graph theory aids in 
unveiling the organizational principles governing human brain 
networks, pinpointing crucial neurons or brain regions, and 
illustrating the interaction dynamics amidst different networks 
(Marsh et al., 2005; Alvim et al., 2016).

The structural T1-weighted imaging, compared to functional 
magnetic resonance imaging (fMRI) and diffusion magnetic 
resonance imaging (dMRI), was an often-seen sequence in a variety 
of clinical imaging protocols. It offered a faster image acquisition rate 
and experiences minimal distractions. Such images typically remain 
unaffected by the distortion and signal attenuation artifacts that are 
regularly observed in frontoorbital and temporal base regions during 
functional echo plane imaging and diffusion magnetic resonance 
imaging (Bernhardt et al., 2013; Byeon et al., 2015; Zaki et al., 2018). 
Employing nodes to signified different regions of the cerebral cortex, 
the structural covariance network (SCN) based on graph theory 
represents the correlation of morphological measurements (e.g., 
cortical thickness) amongst these areas to construct a connected 
structure of brain networks. This analysis was defined not by the 
resolution of imaging voxels, rather by the sampling density of points 
on the cortex surface (Luo et al., 2019, 2022). As such, it could outline 
the correlation between structures across the whole brain region. 
SCN analysis had been put to use in the research of various central 
nervous system diseases (Han et al., 2021; Saviola et al., 2021; Faridi 
et al., 2022; Eussen et al., 2023; Shi et al., 2023) and was viewed as a 
potentially effective tool for investigating brain network alterations 
in epilepsy (Ai et al., 2023).Although previous studies have conducted 
graph theory research on patients with temporal lobe epilepsy, these 
studies have all used functional imaging such as resting-state imaging 
and DTI to characterize changes in the brain networks of patients 
with temporal lobe epilepsy (Bernhardt et al., 2013; Lin et al., 2020). 
Despite these studies effectively revealing abnormalities in the brain 
networks of patients with temporal lobe epilepsy, these functional 
sequences are prone to artifact interference and long scanning times. 
Therefore, this study plans to use structural magnetic resonance 
imaging for graph theory analysis, attempting to explore potential 
network abnormalities in patients with temporal lobe epilepsy from 
the perspective of connectomics. In efforts to delve into the 
topological characteristics of cortical thickness in patients with TLE, 
a group of patients clinically diagnosed with TLE were examined 
alongside a normal control group (NC) matched for age, handedness, 
sex, and education level using SCN.

To this end, we used graph theory to analyze the changes in the 
topological properties of structural covariance networks in TLE 
patients. We further explored the neuroimaging mechanism in TLE 
patients with cognitive impairment reveal new imaging evidence for 
the TLE-based cognitive impairment.
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Patients and methods

Participants

A senior neurologist with 16 years of experience used the 2017 
International League Against Epilepsy (ILAE) focal epilepsy diagnostic 
criteria to determine the diagnosis of all patients (Fisher et al., 2005). 
This process included a comprehensive evaluation of seizure history, 
physical examination, EEG examination, imaging examination, lab 
tests, and other auxiliary exams. A separate senior neurologist, with 
17 years of experience, independently reviewed the MRI images of all 
participants to ascertain the absence of epileptogenic lesions such as 
malformations, tumors, and reactive gliosis. Any participants with a 
history of previous brain surgery, chronic medical conditions aside 
from epilepsy, MRI contraindications, substance abuse, or mental 
health disorders were excluded from the study. Professional 
psychoanalysts conducted neuropsychological tests on all subjects. 
They used the Mini Mental State Examination form (MMSE) and the 
Montreal Cognitive Assessment (MoCA) to measure cognitive 
function. The Hamilton Anxiety Scale (HAMA) and Hamilton 
Depression Scale (HAMD) were utilised for psychological evaluations. 
Ultimately, 35 patients with temporal lobe epilepsy were included in 
the study.

In this study, we enlisted 47 healthy volunteers as control subjects, 
each of whom was matched in age, sex, handedness, and level of 
education to the patients. The entire research scheme has received 
approval from the Ethics Committee of the First Affiliated Hospital of 
Dalian Medical University. After obtaining the approval of the ethics 
committee, the patient’s written informed consent was waived.

Imaging data acquisition

In this study, all images were retrospectively collected from uMR 
Omega 3.0 T MR (uMR Jupiter; United Imaging Healthcare) and 
Philips Ingenia CX 3.0 T (Philips Healthcare, Best, the Netherlands) 
scanners. These devices, fitted with 32-channel head coils, enabled us 
to acquire brain MRI images. All of our subjects were scanned in a 
supine position, and they were instructed to maintain stillness 
throughout the scanning procedure. The 3D T1WI sequence 
parameters were as follows: For the uMR Omega, repetition 
time = 9.0 ms, echo time = 3.6 ms, voxel size = 0.5 × 0.5 × 0.5 mm3, slice 
thickness = 0.5 mm, matrix size = 512 × 360, and number of slices = 440. 
For the Philips Ingenia, repetition time = 8.4 ms, echo time = 3.8 ms, 
voxel size = 1 × 1 × 1 mm3, matrix size = 200 × 200, and number of 
slices = 220. The structural images derived from these scans served the 
essential purpose of identifying and ruling out possible intracranial 
structural abnormalities such as severe white matter lesions, 
cerebrovascular conditions, brain atrophy, cerebral infarction, ectopic 
gray matter, and cerebral hemorrhages. Details of participants 
collected by different devices are shown in Supplementary Table S1.

Image preprocessing

First, a senior imaging diagnosticians examined the T1WI images 
of each subject and marked those with poor image quality (false artifacts 
and incomplete images) and parenchymal lesions for exclusion. Then 

the T1WI images were preprocessed using the VBM toolbox1 in the 
SPM8 software package implemented in MATLAB 2013b (Mathworks, 
Natick, MA, United States).The specific steps were as follows: (1) Data 
format conversion: converting a DICOM format image into a NIFTI 
format image; (2) segmentation: All T1WI images were segmented into 
gray matter (GM), white matter (WM) and cerebrospinal fluid; (3) 
normalization: the GM image was registered to the Montreal 
Neurological Institute (MNI template) based on the DARTEL algorithm; 
(4) modulation: the deviation generated in the process of standardization 
was corrected, which produced the final modulated GM image.

Construction of the structural covariance 
network

According to Cao et al., each brain was divided into 90 cortical and 
subcortical regions of interest (ROI), excluding the cerebellum, using 
the automatic anatomical labeling (AAL) template (Rolls et al., 2020). 
Firstly, the average volume of each Region of Interest (ROI) was 
obtained from the Grey Matter (GM) map created by Voxel-based 
Morphometry (VBM). Following this, a linear regression analysis was 
facilitated for each ROI to offset the influences of factors such as age, 
gender, and total intracranial volume (TIV). The residuals resulting 
from this regression, otherwise known as the corrected GM volume, 
was then utilized in the construction of a structural covariance 
network. To accomplish this, we employed the Pearson correlation 
coefficient to assess the relationships between individual corrected GM 
volumes, subsequently generating a correlation matrix [Rij], where 
I and J range from 1 to N (N = 90) for each group. This correlation 
matrix was then refined by resetting diagonal elements and negative 
correlations to zero, exclusively preserving the positive correlation 
values. By defining a specific threshold within the correlation matrix R, 
we obtained a binary adjacency matrix [Aij]. This was done by setting 
Aij = 1 if [Rij] was greater than the threshold, otherwise, Aij = 0. This 
resulted in adjacency matrix A, which symbolizes a binary, undirected 
graph G, with N representing the number of nodes and E symbolizing 
the count of edges. In this context, the nodes mirror specific regions of 
the brain, and the edges correspond to undirected neural connections. 
Non-zero elements in A further represent these connections.

Structural covariance network analysis

The Graph Analysis Toolbox (GAT) (Lambiotte et al., 2012), based 
on graph theory, was used to calculate and compare the topological 
properties of the structural covariance network between the TLE and 
NC groups. In this study, we  used GAT to construct structural 
covariant networks based on the volume of non-gray matter, and 
further calculate the topological properties of these networks. It was 
noteworthy that we  included the age, gender, and TIV of each 
participant as covariates in the analysis to obtain more accurate 
results. This helped to understand the connection patterns between 
different regions of the brain and how they work together. The 
calculation indicators were detailed in the Supplementary material.

1 http://dbm.neuro.uni-jena.de/vbm
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Selection of network density range

The conundrum here is that applying an absolute threshold to the 
correlation matrix can result in uneven numbers of nodes and edges 
within the two network groups, thereby complicating succeeding group 
comparisons. To circumvent this predicament, we employed a uniform 
network density (D) range for group comparisons. Here, D is defined 
as the ratio of the actual number of edges to the theoretical maximum 
edge count. For the purpose of this study, we decided on a network 
density range of 0.22 ≤ D ≤ 0.5. Concretely, the lower bound of this 
range is representative of the minimum density wherein both network 
groups lack isolated nodes (Dmin = 0.22). Conversely, the upper bound 
signifies the maximum density limit (Dmax = 0.5), beyond which the 
network begins to emulate random network characteristics.

Global network parameters

At the overarching global level, our study considered several 
globally acknowledged attribute analysis indicators. These encompass 
(Vecchio et al., 2014; Xu et al., 2019):

 1 The Normalized Clustering Coefficient (γ). It serves to gauge 
the network’s ‘separation’ function;

 2 The Normalized Characteristic Path Length (λ). This 
measurement plays a role in determining the ‘integration’ 
function of the network;

 3 The Small World Properties (σ). This attribute considers the 
balance between both ‘separation’ and ‘integration’ functions 
within the network;

 4 The Clustering Coefficient (Cp). This metric assesses the extent 
of the network’s collectivization;

 5 The Characteristic Path Length (Lp). This provides a measure 
of the resources required for information transmission within 
the system;

 6 The Transfer Coefficient (T). Defined as the variability of the 
clustering index computed at a global level;

 7 The Global Efficiency (Eg). This metric evaluates the network’s 
overall data conveyance capabilities, and finally;

 8 The Local Efficiency (Eloc). Advocating for a measure of the 
network’s local information transmission efficiency.

Please refer to Supplementary Table S2 for a comprehensive list of 
definitions and significances attached to the globally-relevant attribute 
parameters employed in the study of the brain network.

Regional network parameter

Nodal degree computed the sum of weights of edges connected to 
the node, which was a simple measurement of connectivity of a node 
with the rest of the nodes in the network (Park et al., 2017; Wang et al., 
2022).Examining the network at the node level, we have opted for the 
following attributes for analysis:

 1 The Betweenness Centrality (Bc) of a node, a metric that 
measures the influence of a specific node on the flow of 
information between other nodes in the network;

 2 The Degree Centrality (Dc) of a node, a measure that quantifies 
the capability of a given node to communicate information 
within the functional network.

Degree distribution

Degree distribution showed the degree patterns of all the nodes 
in the network, indicating the resilience of specific network from 
random failure and targeted attack (Lambiotte et  al., 2012). If a 
network retained a high degree distribution, it might be vulnerable 
to network impairment (Albert et al., 2000; He et al., 2008). Previous 
studies had revealed that if a structural covariance network meets a 
truncated power-law distribution (He et al., 2008; Lambiotte et al., 
2012), it might contain a number of areas with mean nodal degree, 
and also a few of areas with higher nodal degree. The formulation for 
deducing the distribution was as P(d) ~ [d (e − 1) * exp. (−d/dc)], 
where P(d) was the probability of the network area degree (d), dc was 
the cutoff degree, showing the boundary for the probability of the 
nodes with high degree to be  exponentially decayed, e was the 
exponent representing the scaling scheme (Lambiotte et al., 2012). To 
minimize the influence of noise on smaller data sets, the cumulative 
degree distribution was adopted (Xu et al., 2019).

Network fault tolerance and 
anti-aggression analysis

In the context of human brain networks, ‘fault tolerance’ and ‘anti-
aggression’ alluded to the network’s resilience in the face of random 
faults and targeted attacks. ‘Targeted attack’ was defined here as the 
deliberate deletion of nodes in descending order of nodal degree, 
while a ‘random fault’ implies the random deletion of nodes in the 
network (Sporns et al., 2005; Bullmore and Sporns, 2009). This study 
utilized a model that either randomly or specifically deleted nodes to 
evaluate network fault tolerance and anti-aggression capabilities. In 
the analysis of fault tolerance, we  measured the variations in the 
network’s largest remaining component after certain nodes were 
excluded. To ensure the stability of the results, each analysis was 
repeated 1,000 times. Regarding anti-aggression analysis, we gauged 
the alteration in the largest remaining network component after 
eliminating nodes in decreasing order of degree.

Statistical analysis

In this study, we  utilized R language,2 a free software 
environment for statistical computing and graphics, to analyze the 
demographic and clinical data across the two groups. Depending on 
the nature of the data, we applied either the Independent sample 
t-test or nonparametric test for intergroup comparison of 
measurement data. Data conforming to a normal distribution were 
expressed as mean ± standard deviation, whereas, for data not 

2 https://www.r-project.org/
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conforming to a normal distribution, we  used the median and 
interquartile range to characterize them. In the non-parametric 
permutation approach, the study reassigned the group labels to 
create a correlation matrix for randomly formed groups. This 
correlation matrix was then thresholded across various network 
densities to derive a binary correlation matrix. Subsequently, the 
network properties of all binary correlation matrices were 
computed, and the differences between random groups at each 
network density were assessed. The divergence between the original 
and randomly assembled groups constituted a permutation map. 
Age, sex and TIV were included as covariates in the calculations to 
eliminate potential confounds. Based on the actual difference value, 
the p-value was ascertained at the pertinent position on the 
permutation map. Furthermore, Global and local network 
parameters were calculated using Graph Attention Networks (GAT), 
and the Area Under the Curve (AUC) value of the global network 
parameters was appraised. To address multiple comparisons, 
corrections were applied utilizing the False Discovery Rate (FDR) 
method. A statistical significance level of p < 0.05 was set for inter-
group differences.

Results

Demographic data and clinical data

Table  1 encapsulated the clinical data pertaining to the TLE 
patients and NC group. Pertinently, the observed variables including 
sex, age, and education level exhibited no significant discrepancy 
between the two groups. However, clear differential patterns were 
noted in the scores of MMSE, MoCA, HAMA, and HAMD across 
the TLE and NC groups — all with a significant level of difference 
(p < 0.001).

Comparison of global network metrics

In the network density of D = 0.22 ~ 0.50, the normalized clustering 
coefficient (γ) was >1, the normalized characteristic path length (λ) was 
≈1, and the small world properties (σ) was >1 in the TLE group and NC 

group, which indicates that the structural covariance network of the two 
groups conforms to the characteristics of “small world” (Figure 1).

When compared to the NC group, TLE group showed a significant 
increase in σ (p < 0.001) and γ (p < 0.001, Cohen’s d = 3.205), and a 
significant decrease in T. These differences between the two groups 
were statistically significant (p < 0.001, Cohen’s d = 1.750). Aside from 
these three indicators, while differences were present between groups, 
they did not reach statistical significance (p > 0.05).Details were shown 
in Table 2 and Figure 2.

Comparison of regional network metrics

We compared nodal degree and nodal betweenness at the 
minimum network density between the TLE and NC groups. The TLE 
patients showed a decreased nodal degree in Amygdala_L, 
Amygdala_R, Frontal_Mid_L, Fusiform_R, Lingual_L, Occipital_
Mid_R, Postcentral_L, Putamen_R, Rolandic_Oper_L, 
SupraMarginal_R and Thalamus_R (p < 0.05, uncorrected) compared 
to the NC group (Figure  3A). The TLE group patients showed a 
decreased nodal betweenness in Lingual_L, Occipital_Mid_R, 
Paracentral_Lobule_R, Precentral_R, Temporal_Mid_R, Temporal_
Sup_L and Thalamus_R (p < 0.05, uncorrected) compared to the NC 
group (Figure  3B). Although there were no significant differences 
between the two groups in terms of nodal degree and nodal betweenness 
even after multiple comparison corrections (FDR, p > 0.05), TLE group 
patients showed both a downward trend in nodal betweenness and 
noda degree in Occipital_Inf_R, SupraMarginal_R and Temporal_
Mid_L compared with the NC group (p < 0.05, uncorrected). For details 
of brain regions, please refer to Supplementary Table S3.

Degree distribution

As shown in Figure 4, the connectivity degree distribution in both 
the TLE and NC groups met an exponentially truncated power law 
(Park et al., 2017). For the TLE, the exponent estimate (e) was 1.23 and 
for NC is 1.04. The cutoff degree (dc) was 7.91 for TLE and 20.49 for 
NC. The R2 value is 0.97 in both the TLE and NC groups. The R2 was 
0.98 for TLE and 0.97 for NC.

TABLE 1 Clinical data of the TLE and NC groups.

Characteristics NC (n  =  47) TLE (n  =  35) Statistic p

Age at examination/year 58.00 (34.00, 65.50) 47.00 (35.50, 52.50) Z = −1.73 0.084

Gender, n (%) χ2 = 1.55 0.213

Male 19 (40.43) 19 (54.29)

Female 28 (59.57) 16 (45.71)

MMSE 28.00 (28.00, 29.00) 27.00 (24.00, 28.00) Z = −4.00 <0.001***

MoCA 27.00 (25.00, 27.00) 22.00 (18.00, 26.00) Z = −4.65 <0.001***

HAMA 5.00 (4.00, 6.00) 8.00 (6.00, 12.00) Z = −3.74 <0.001***

HAMD 3.00 (2.00, 6.00) 8.00 (5.00, 10.50) Z = −4.28 <0.001***

Education/year 12.00 (9.00, 16.00) 12.00 (9.00, 15.00) Z = −0.28 0.780

Disease duration/month – 36.00(12.00,168.00) – –

Z, Mann–Whitney test; χ2: Chi-square test, MMSE, Minimum Mental State Examination; MoCA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale; ***p < 0.001.
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Difference in network resistance between 
the TLE and NC group

The analysis of network fault tolerance and anti-aggression revealed 
that the structural covariance network in TLE patients had significantly 
higher resistance to random faults compared to the NC group. However, 
the TLE group had significantly higher resistance to targeted attacks 
than the NC group for 22–28%, 34–38% and 50–60% of the deleted 
nodes (Figure 5). The AUC analysis in GAT confirmed that there was a 
statistically significant difference between the two groups in terms of 
resistance to random failures (p = 0.01) and targeted attacks (p = 0.03).

Discussion

We constructed and compared the properties of the brain GM 
structural networks between patients with TLE and NC. In our study, 
we discovered that despite the structural covariance network of TLE 
patients adhering to features of a small-world network, the topological 
characteristics of the structural covariance network seem anomalous, 
evident in a significant increase in sigma (σ) and heightened 
susceptibility to random failures. Compared to the NC group, not only 
were global network parameters altered in TLE patients, but the 
regional network parameters were also affected, marked by a decrease 
in nodal degree and betweenness. These results suggest that the 
topological properties of the structural covariance network in patients 

with TLE are reorganized, which provides new evidence for the 
neurobiological mechanism of cognitive impairment in patients with 
TLE from the perspective of the connectome.

TLE-related alterations in global network 
parameters

In this study, we found that the structural covariance network of 
moderate-to-severe TLE patients conforms to small-world 
characteristics. A small-world network incorporates characteristics of 
a regular network, denoted by high clustering, along with a random 
network’s typical short path lengths. This unique blend potentially 
allows for global interconnectivity while preserving substantial local 
connections. Our study’s findings indicate that this small-world 
topology is an integral constituent of the structural organization of 
brain networks.

Although small-world features exist in adult TLE structural 
covariance networks, there are significant intergroup differences in 
terms of multiple global network parameters. Relative to the NC 
group, the TLE group displayed considerably higher values of γ and σ 
(p < 0.001). These findings indicate a noticeable change in the structure 
and function of the brain network in patients with temporal lobe 
epilepsy, characterized by enhanced γ and small world propertiess. 
The standardized clustering coefficient, a measure of interconnectivity 
between a node’s neighboring nodes (Vecchio et al., 2014; Xu et al., 

FIGURE 1

The small world parameters of the structural covariance network of TLE group and NC group. In the network density range of 0.22–0.50, the 
normalized clustering coefficient (γ) (B) of the TLE and NC groups was significantly greater than 1, the normalized characteristic path length (λ) (C) was 
approximately equal to 1, and the small world properties (σ) (A) was significantly greater than 1. These values indicate that the structure of the covariant 
network of the TLE and NC group presents typical “small world” network attributes.

TABLE 2 Comparison between groups of Graph Theory Index parameters under different densities.

Parameters NC (n  =  15) TLE (n  =  15) Statistic p Cohen’s d

Eg, Mean ± SD 0.66 ± 0.06 0.67 ± 0.06 t = −0.46 0.649 0.167

Eloc, Mean ± SD 0.80 ± 0.04 0.82 ± 0.02 t = −0.88 0.391 0.625

Lp, Mean ± SD 1.75 ± 0.18 1.69 ± 0.15 t = 0.91 0.371 0.361

γ, Mean ± SD 1.03 ± 0.01 1.28 ± 0.11 t = −8.60 <0.001*** 3.205

T, Mean ± SD 0.66 ± 0.04 0.59 ± 0.04 t = 4.55 <0.001*** 1.750

σ, M (Q₁, Q₃) 1.08 (1.06, 1.10) 1.29 (1.21, 1.43) Z = −5.57 <0.001***

λ, M (Q₁, Q₃) 1.04 (1.03, 1.07) 1.03 (1.01, 1.05) Z = −1.49 0.137

t, t-test; Z, Mann–Whitney test; SD, standard deviation; M, Median; Q₁, 1st quartile; Q₃, 3st quartile; Eg, global efficiency; Eloc, local efficiency; γ, normalized clustering coefficient; Lp, 
characteristic path length; T, transfer coefficient; σ, small world properties; λ, normalized characteristic path length; ***p < 0.001.
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2019), was elevated. This higher clustering coefficient underscores a 
robust local connective structure within the network, reflecting 
advanced local network interactions in TLE patients. An increase in 
the standardized clustering coefficient would suggest an expanded 

array of local circuits and clumps within the temporal lobe epilepsy 
brain network. While these structures facilitate local information 
processing, they could obstruct global information integration 
(Fornito et al., 2015), potentially leading to cognitive impairment. 

FIGURE 2

Inter-group differences in the global network metrics of the TLE and NC group in the 0.22–0.50 network density range. The 95% confidence interval 
and inter-group difference of the (A) clustering coefficient, (B) shortest path length, (C) small world index, (D) transfer coefficient, (E) global efficiency, 
and (F) local efficiency are shown. The red stars indicate differences between the TLE and NC groups; red stars outside the confidence interval indicate 
significant inter-group differences at the network density (p  <  0.05). Positive values indicate TLE group > NC group, negative values indicate TLE group 
< NC group.
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However, it was observed in this study that the Eg of the TLE group 
remained unaltered. This could be attributed to the maintenance of 
overall network efficiency via compensatory mechanisms or the 
limited sample size utilized in the study. The Small World Propertie, 
here is a refined version of the text enclosed in the brackets:

The small world properties, defined as the ratio of the 
standardized clustering coefficient to the standardized shortest path, 
laid bare distinct insights during this study. The standardized 
clustering coefficient (γ) of the TLE group was significantly higher 
than that of the NC group; however, no statistical variance was 
detected in the standardized shortest path. The small world 
properties essentially embodies a unique connectivity pattern among 
the nodes in the network – a pattern that is highly aggregated and, 

paradoxically, dispersed. The nodes in the network establish 
connections not merely with neighboring nodes, but also with nodes 
that are located distantly. This dual connectivity model endows the 
network with outstanding efficiency in information transmission 
and robustness (van den Heuvel and Hulshoff Pol, 2010). An 
elevation in small world propertiess may denote an intensified 
connection within certain regions of the brain – a compensatory 
measure taken in response to the disruption of some functions or 
pathways. This implies that the brain may attempt to counteract 
cognitive impairments by reorganizing its network structure (Yan 
et al., 2017; Lin et al., 2020).

In the TLE group, T, was observed to be lower compared to the 
NC group, with statistical significance noted between the two 

FIGURE 3

Differences between the TLE and NC groups in regional network metrics (uncorrected). Regions that showed significant differences between TLE and 
NC in nodal degree (A) and nodal betweenness centrality (B) for networks thresholded at the minimum density. Warm colors denote regions with 
significantly higher nodal degree or betweenness in the TLE group compared with the NC group, while cool colors denote regions with significantly 
higher nodal degree or betweenness in the NC group compared to the TLE group.

FIGURE 4

Network Degree distributions. The log–log plot of cumulative degree distributions of (A) TLE and (B) NC networks at threshold of 0.22 density. The rad 
line indicates the exponentially truncated power-law curve which was fitted to the cumulative degree distribution of the networks (blue line) Brain 
Imaging and Behavior.
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groups (p < 0.001). The transfer coefficient is an indicator of the 
information relay efficiency between different regions within the 
brain network (Vecchio et al., 2014; Xu et al., 2019). A decreased 
transfer coefficient in the TLE group could potentially be attributed 
to seizure-induced disruptions in network connectivity. Seizures 
can instigate an excessive neuronal discharge (Engel, 1983), thereby 
impairing neuronal connections and weakening overall information 
relay efficiency within the brain network. Prior research has 
affirmed that slow processing, a vital cognitive side effect of TLE, is 
closely linked with alterations in brain structure and connectivity 
(Hwang et al., 2019). Hence, this study proposes that the observed 
decrease in the transfer coefficient underpins the detrimental 
impacts of seizures on brain network connectivity in patients 
with TLE.

Therefore, the change in global topological properties associated 
with TLE may reflect a less ideal topological organization, which 
provides insight for understanding the relationship between network 
topological properties and the neuropathological state of the disease.

TLE-related alterations in regional network 
parameters

We found abnormal regional network parameters in multiple 
regions of the brain showing both decreased nodal betweenness/
degree in TLE patients compared with the NC group. Although these 
results were not statistically different after a correction for multiple 
comparisons, we  should note that TLE patients showed both a 
decreased nodal betweenness and degree in the Lingual_L, Occipital_
Mid_R and Thalamus_R compared with the NC group, indicating that 
there is a downward trend in nodal betweenness and degree in these 
brain regions.

The Lingual Gyrus, nestled in the medial temporal lobe, forms an 
integral part of the cerebral cortex (Powell et al., 2004; Sundram et al., 
2010; Sormaz et al., 2017; Zanao et al., 2021). Positioned adjacent to 
the hippocampus, it intimately involves in processes like memory 
formation, storage, retrieval, regulation of emotions, and sensory 

processing (Powell et al., 2004; Sundram et al., 2010; Sormaz et al., 
2017; Zanao et al., 2021). The Lingual Gyrus also contributes to the 
operation of the Default Mode Network (DMN), a network exhibiting 
activity during restful states and is implicated in functions such as 
introspection and mental operations (Zanao et al., 2021). This study 
unveiled a decline in both the nodal betweenness and degree of the 
left lingual gyrus in the TLE group, consistent with the abnormalities 
in the Lingual Gyrus proposed by fMRI graph theory analysis 
(Trimmel et al., 2021). The downslide in the nodal betweenness and 
degree within the Lingual Gyrus points to an alteration in brain 
network connectivity amongst TLE patients. This anomaly may 
indicate the potential causes of negative emotions (as per depression 
scales) and cognitive impairments (indicated by low MoCA scores), 
however, we were unable to further analyze the relationship between 
the abnormalities in local network parameters and the degree of these 
pathological changes.

The Middle Occipital Gyrus, strategically situated on the medial 
surface of the brain’s occipital lobe, adopts a predominantly horizontal 
orientation, occupying the space between the Superior and the 
Inferior Occipital Gyri (Renier et al., 2010). Acting as the domicile for 
the primary visual cortex, the Middle Occipital Gyrus marks the onset 
of visual information processing. Its primary function includes 
assimilating visual signals from the retinas of both eyes, thereby 
initiating their processing. The Middle Occipital Gyrus exhibits a 
pivotal association with visual perception, attention, and cognition 
(Renier et al., 2010; Xiong et al., 2016; Hwang et al., 2019). Through 
an analysis based on VBM, Kim et al. (2016) proposed a noteworthy 
reduction in the volume of the Middle Occipital Gyrus in patients 
afflicted with right temporal lobe epilepsy. This contraction in volume 
potentially disrupts its transmission and processing capacities within 
the network, thereby instigating a varying degree of decrement in the 
nodal betweenness and degree of the Middle Occipital Gyrus. The 
observations from this study lend credibility to this surmise. An 
examination of the brain structure image using graph theory instigates 
the revelation of abnormalities in the network parameters of the 
Middle Occipital Gyrus. This could potentially unmask the underlying 
causes of cognitive anomalies (as measured by MoCA and MMSE) 

FIGURE 5

The maximum remaining component size in the network after random failures and targeted attacks. The red point indicate that the difference in the 
remaining maximum component of the network, between groups at which the node is deleted, is statistically significant.
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and anxiety (as evaluated by HAMA) prevalent within the TLE group 
from a network topology perspective.

The Thalamus, a crucial structure centrally located within the 
brain, is paramount to the transmission of information. Comprising 
various distinct nuclei, it is instrumental in both the transmition and 
integration of neural signals, thereby influencing sensory and motor 
functions as well as levels of consciousness (Sieb, 1990; Romero-Romo 
et al., 2010). As the primary relay station for sensory information 
(excluding smell), the Thalamus is tasked with forwarding these 
signals to the appropriate areas of the cerebral cortex (Wilf et al., 
2016). Moreover, the Thalamus forms a complex network functionality 
with other brain regions, including the cortex, basal ganglia, and brain 
stem. This interplay is vital for the regulation of attention, emotion, 
and memory (Hirata and Castro-Alamancos, 2010; Ramkiran et al., 
2019). The Thalamus’ significance in the pathogenesis of temporal 
lobe epilepsy has been well-established (Labate et al., 2008), numerous 
VBM studies have indicated variances in the shrinkage of the 
Thalamus in patients with temporal lobe epilepsy (Keller and Roberts, 
2008; Labate et al., 2008; Riederer et al., 2008; Jber et al., 2021). Being 
rich in neurons, any reduction in the volume of the grey matter could 
likely trigger a direct descent in nodal betweenness and degree in the 
middle temporal gyrus. This study observed a decrement in the nodal 
betweenness and degree of the left middle temporal gyrus in TLE, 
which aligns with the aforementioned premise. Being a functional 
execution and operation center, the decline in thalamic local network 
parameters suggested by graph theory analysis may unveil the 
complications facing patients with TLE, such as cognitive impairment 
and depression.

Degree distribution

Our study revealed that both individuals with TLE and normal 
controls (NC) exhibited grey matter networks that followed an 
exponentially truncated power law distribution (Lambiotte et  al., 
2012). This means that the structural networks consist of numerous 
nodes with relatively low degree and a few nodes with high degree 
(hub nodes). Although the exact biological cause of this network 
topology remains unclear, it is possible to describe mechanisms of 
neuronal development using the concept of exponentially truncated 
power-law mechanisms, which reflect the physical limitations on 
afferent connections that neurons can support (Sporns et al., 2004; 
Lambiotte et al., 2012). Additionally, the slightly altered cutoff degree 
of the distribution in the TLE network, compared to NC, may indicate 
a rearrangement of afferent connections.

TLE-related alterations in network 
resistance

Our results showed the stronger stability of random faults in the 
structural covariance network of TLE patients. Previous studies had 
shown that small-world networks with core nodes are highly 
resistant to random failures and targeted attacks (Stam et al., 2006; 
He et al., 2008). In a previous analysis of structural graph theory in 
other diseases, it was found that the high vulnerability of random 
faults in the structural covariance network of patients (Cao et al., 

2019; Liu et  al., 2020). However, the results of this study 
contradicted this finding, which may reflect the uniqueness of 
epilepsy. The TLE patients’ SCN demonstrated significantly higher 
resistance to random failures compared to the NC group, which 
may be attributed to two possible reasons: First, the neural networks 
in TLE patients might possess more redundancy or compensatory 
mechanisms (Chang et  al., 2012; Jiang et  al., 2021), which help 
maintain function and reduce failures. Second, these networks 
could have adapted to epileptic activity (neuronal abnormal 
discharges) (Engel, 1983), thereby conferring greater resilience to 
random perturbations. Furthermore, our study also observed that 
the fault tolerance of SCNs in TLE tends towards more regular 
networks, aligning with previous findings suggesting that regular 
networks may exhibit weaker resistance to pathological assaults 
(Friston et  al., 2007). From a connectomics perspective, lower 
network fault tolerance may also provide neuroimaging evidence 
for the increased risk of neural damage and cognitive impairments 
in patients with TLE. In comparison to NC, TLE patients 
demonstrated significantly reduced scores in MoCA, MMSE, 
HAMA, and HAMD. These findings indicate that TLE may be more 
susceptible to pathological conditions such as anxiety, depression, 
and cognitive impairments, potentially due to the diminished fault 
tolerance of TLE’s structural covariance networks. However, this 
study was not without limitations; we  were unable to further 
analyze the specific correlation between the network fault tolerance 
of individual TLE patients and these clinical scale scores. 
Consequently, this study merely proposed a hypothesis rather than 
drawing a rigorous conclusion.

Limitations

While this study reports some positive findings, there are several 
limitations that need to be acknowledged. Firstly, the research was 
conducted with a small sample size and the local network parameters 
were not corrected. As a result, future studies necessitate larger sample 
sizes to validate our outcomes. Secondly, this study was unable to 
obtain the relevant network parameters of individual patients; 
therefore, it could not delve into the relationship between clinical scale 
scores and network changes. In future research, we will attempt other 
methods to obtain brain network parameters at the individual level, 
hoping to further understand the changes in the neurobiological 
mechanisms of TLE patients. Lastly, our study was confined to 
constructing a group-level structural covariance network and did not 
take into account an individual-level network. This omission restricts 
the potential to further investigate the associations between network 
parameters and clinical variables.

Conclusion

To conclude, this study demonstrated that structural covariance 
networks in TLE patients were abnormal according to multiple 
network parameters. These findings revealed abnormalities in 
temporal lobe epilepsy from the perspective of network connectivity, 
which may promote our understanding of the neurobiological 
mechanisms in patients with temporal lobe epilepsy.
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