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The brain consists of a vastly interconnected network of regions, the connectome. 
By estimating the statistical interdependence of neurophysiological time series, 
we can measure the functional connectivity (FC) of this connectome. Pearson’s 
correlation (rP) is a common metric of coupling in FC studies. Yet rP does not account 
properly for the non-stationarity of the signals recorded in neuroimaging. In this 
study, we introduced a novel estimator of coupled dynamics termed multiscale 
detrended cross-correlation coefficient (MDC3). Firstly, we showed that MDC3 had 
higher accuracy compared to rP and lagged covariance using simulated time series 
with known coupling, as well as simulated functional magnetic resonance imaging 
(fMRI) signals with known underlying structural connectivity. Next, we computed 
functional brain networks based on empirical magnetoencephalography (MEG) 
and fMRI. We found that by using MDC3 we could construct networks of healthy 
populations with significantly different properties compared to rP networks. 
Based on our results, we believe that MDC3 is a valid alternative to rP that should 
be incorporated in future FC studies.
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Introduction

Neuroscientific research has undergone a profound transformation in the last 100 years. 
Berger’s invention of electroencephalography (EEG) (Berger, 1929) made it possible to record 
and evaluate neural activity in a non-invasive manner. Initially, studies relied on univariate 
(i.e., single time series) analysis of the brain dynamics. This started to change toward the end 
of the 20th century with the first functional connectivity (FC) studies (Friston et al., 1993; 
Biswal et al., 1995). This new field does not rely only on anatomical connections, it rather 
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studies functional connections that can be created between directly 
or indirectly coupled neuronal populations. In more mathematical 
terms, the brain regions are considered nodes on a graph, 
interconnected by edges (Rubinov and Sporns, 2010). These edges are 
defined by the statistical relationship of the neuronal time series 
under investigation.

Several different FC estimators have been introduced with 
Pearson’s correlation (rP) being one of the first applied in FC studies 
(Friston et al., 1993; Biswal et al., 1995). Some drawbacks of this 
method (e.g., unreliable assessment of non-linear relationships) and 
the growing interest in exploring other aspects of FC, lead to the 
introduction of newer methodologies such as phase locking value 
(PLV) (Lachaux et al., 1999; Bruña et al., 2018), phase lag index 
(PLI) (Stam et al., 2007), synchronization likelihood (SL) (Stam and 
Van Dijk, 2002) and mutual information (MI) (Steuer et al., 2002; 
van den Heuvel and Fornito, 2014). The use of different FC 
estimators can greatly influence the topology of the networks 
(Lindquist, 2020; Mukli et al., 2021; Stylianou et al., 2021a). Such 
differences can be  especially problematic when non-healthy 
populations are being investigated, − e.g., in Alzheimer’s disease 
patients (Jalili, 2016) – complicating the reproducibility and meta-
analysis of studies. It is then important that an informed choice 
should be made for selecting an FC estimator. Nevertheless, rP is 
still widely used (Fornito et  al., 2016) due to its simplicity and 
interpretability. An important advantage of rP is the capacity to 
identify positive and negative correlations, which is not always the 
case with other estimators.

Signals can be divided into two categories: (i) stationary and (ii) 
non-stationary. A time series Xt – where t indicates the discrete time 
– is completely stationary when the joint probability distributions of 
{Xt1, Xt2, Xt3 …, Xtn} and {Xt1 + k, Xt2 + k, Xt3 + k …, Xtn + k} are identical for 
any set of time points t1, t2, t3…, tn and any integer k. While this 
definition is easily understood, it is rather unrealistic. Hence, a less 
strict definition for weak stationarity has been used to classify 
physiological signals. According to this, the mean and variance of 
a time series remain constant. In line with that, the covariance of 
two weakly stationary signals will also be constant throughout the 
propagation of time. On the other hand, non-stationary signals 
have varying mean and variance. Additionally, the covariance 
between two non-stationary signals will be  time-dependent 
(Priestley, 1988). Figure 1 shows an exemplary case of these weakly-
stationary and non-stationary signals. From now on, any reference 
to stationary signals corresponds to weakly-stationary signals. Most 
biosignals are non-stationary (Semmlow, 2018). As a result, 
calculating the rP – a standardized covariance – of two biosignals 
can be  misleading. A solution to this issue was given with the 
introduction of the detrended cross-correlation coefficient (DCCC) 
(Zebende, 2011). DCCC makes use of the averaged variance and 
covariance of smaller sections of the signals (see Section “Multiscale 
detrended cross-correlation coefficient” below). In this study, 
we propose an extension of DCCC termed multiscale detrended 
cross-correlation coefficient (MDC3). Contrary to DCCC, the output 
of MDC3 does not depend on the scale (window length) resulting 
in easier interpretation of the results. To show this, we compared 
MDC3 to rP (and its directed equivalent) using simulated time series 
with: (i) known coupling and (ii) known causal interactions [i.e., 
effective connectivity (EC)]. We also demonstrated the differences 
between the two estimators in magnetoencephalography (MEG) 
and functional magnetic resonance imaging (fMRI) recordings.

Methods

Multiscale detrended cross-correlation 
coefficient

Before introducing MDC3 we briefly describe DCCC (Zebende, 
2011), upon which MDC3 is based. DCCC was introduced as a more 
accurate coupling estimator between non-stationary time series. 
DCCC is calculated for several scales (s) (or window lengths) as 
follows. For every scale (window length), the two signals X and Y are 
divided into N non-overlapping windows1 of length s. In every 
window the linear trend is removed, leaving the detrended signals 

ˆ iX  and ˆ iY , where i is the index of the window. Detrending is 
performed in order to counteract (at least partially) any spurious 
coupling emerging due to autocorrelation effects (Horvatic et al., 
2011). Then, the covariance between the two signals and the variances 
of the two signals are estimated for every window. Finally, the ratio 
of average covariance and the square root of the product of average 
variances is calculated. Equation 1 provides the mathematical 
formulation of these steps.
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DCCC is reminiscent of rP since both estimators range between 
−1 and 1 with negative values corresponding to anticorrelation and 
positive values corresponding to correlation (Podobnik et al., 2011). 
In 2014 Kristoufek showed that DCCC was more accurate than rP 
(Kristoufek, 2014) in synthetic non-stationary signals of known 
coupling. These results warrant the use of DCCC in FC studies, since 
neuronal time series are non-stationary (Semmlow, 2018). 
Unfortunately, the use of a multitude of scales (window lengths) 
makes it hard to interpret. Figure 2 shows a case where different 
scales (window lengths) result in different coupling estimation, 
sometimes even with a different sign. Are the two signals correlated 
or anticorrelated and to what extent? It is not possible to draw a clear 
conclusion. We  believe that MDC3 could offer a mathematically 
sound solution to this problem.

The estimation of MDC3 starts by calculating DCCC for different 
scales (window lengths). To avoid any arbitrary choice of scales 
(window lengths), we define frequencies (f) for which we would like 
to study the coupling of the time series. These frequencies can 
be converted to scales (window lengths) using the sampling rate (SR) 
of the signals (s = SR/f). First the DCCC for every frequency is 
calculated. Then, the two signals are detrended – in this case as a 
whole – and their cross-spectral density is estimated. We  finally 
calculate the weighted average of DCCC, based on the relative power 
of each frequency in the cross-spectral density (Equation 2). The 
distribution of DCCC – similarly to rP‘s distribution – can be skewed, 
so DCCC values are normalized using Fisher’s z transform 

1 Preliminary analysis with 50% overlapping windows did not show significant 

benefits compared to non-overlapping windows. For the sake of computational 

speed, non-overlapping windows were chosen.
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(Alexander, 1990; Corey et al., 1998) before the calculation of the 
weighted average.
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Where sw  is the weight of every scale, 1tanh−  is the inverse 
hyperbolic tangent2, tanh is the hyperbolic tangent3, α is the minimal 
scale and ω is the maximal scale.

In its current form MDC3 cannot construct directed graphs, i.e., 
the FC matrix obtained is symmetric. We also developed the directed 
MDC3 (dMDC3). For the estimation of dMDC3 instead of calculating 
the covariance between ˆ iX  and ˆ iY , we  calculate the lagged 
covariance (LG). ˆ iX  is shifted from -L-1 to L-1 datapoints, where L 
is the length of the two signals in datapoints. Such shifts are term lags, 
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e.g., a − 50 lag means that ˆ iX  was shifted 50 datapoints earlier than ˆ iY . 
We then estimate the covariance of the two signals for every lag. 
Negative lags correspond to the cases where ˆ iX  is leading and 
positive lags correspond to the cases where ˆ iX  is lagging the 
connection. Here the terms leading/lagging indicate the causal effect 
or effective connectivity (EC) between the two signals. ˆ iX  leading 
ˆ iY  means that changes in ˆ iX  will influence ˆ iY . On the contrary, 
ˆ iX  lagging ˆ iY  means that changes in ˆ iY  will influence ˆ iX . For 

both the leading and lagging cases we  estimated the maximal 
covariance, in absolute terms. As a result, for every connection 
we had two covariance values, one for when the ˆ iX  is leading and 
one for when it is lagging. Details about MDC3 can be  found in 
Figure 3 and the pseudo-code in Table 1. MATLAB, Python, and R 
versions of MDC3 are available at: https://github.com/
BrainModes/mdc3.

Simulated time series

ARFIMA processes
In order to validate the efficacy of MDC3 we simulated pairs of 

auto-regressive fractionally integrated moving-average (ARFIMA) 

FIGURE 1

Example of weakly-stationary and non-stationary signals generated using auto-regressive fractionally integrated moving-average (ARFIMA) processes (see 
Simulated time series). The mean and variance of weakly-stationary signals remain constant throughout time, while they vary in non-stationary signals.
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processes with known cross-correlation, as in Kristoufek (2014). These 
series are created as follows:
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Aε  is sampled from a standard normal distribution. In order to 
inject cross-correlation ρ between the two time series, we  set 

21B Aε ρε ε ρ= + − , with ε  being sampled from a standard normal 
distribution (see Appendix for proof). ( ) ( )

( ) ( )1n
n d

d
n d

α
Γ +

=
Γ + Γ

, where Γ is 
the gamma function. The parameter d defines the non-stationarity of 
the simulated signal; 0.5d <  corresponds to stationary time series, 

0.5d ≥  corresponds to non-stationary time series. Higher values of d  
indicate a higher level of non-stationarity.

We wanted to study the coupling for both stationary and 
non-stationary time series. So we employed the same parameters as 
Kristoufek (2014): (i) [ ]0.1,1.4d =  with increments of 0.1 and (ii) 

[ ]0.9,0.9ρ = −  with increments of 0.1. To demonstrate the benefits 
of MDC3 in real-life neuronal time series, our simulations consisted 
of two types. The first type aimed to emulate EEG/MEG signals with 
three different lengths: 1000, 5,000 and 10,000 data points. 
We assumed that their sampling rate was 250 Hz, corresponding to 
4, 20 and 40 s of recordings. MDC3 was calculated for frequencies 
between 0.5 and 31 Hz with increments of 0.5. In the second type, 
we wanted to study how lower sampling rates, seen in fMRI, will 

affect our methodology. The created signals consisted of 100, 200 
and 500 data points. In this case we assumed that the sampling rate 
was 1 Hz, meaning that the simulated time series corresponded to 
100, 200 and 500 s. MDC3 was calculated for frequencies between 
0.01 and 0.12 Hz with increments of 0.01. In both types, the 
maximum frequencies were selected so there were at least 8 data 
points in every window. We decided to detrend the time series using 
a second-degree polynomial, since preliminary analysis showed 
better results compared to linear detrending. We  ran 1,000 
simulations for each model.

We wanted to see how closely the two estimators (MDC3 and rP) 
are to the real coupling. For every d , ρ and signal length 
we calculated the root mean squared error (RMSE) of MDC3 and 
rP. Then, simulations of the same d  and signal length were grouped 
together. As a result, we ended up with 14 pairs (one for each value 
of d) of 19-points (one for each value of ρ) distributions, for every 
signal length (see Figure 4 for a graphical representation of the 
distributions). We compared every pair of distributions using a 
paired t-test or Wilcoxon signed rank test, depending on the 
normality of the underlying distributions (evaluated using Lilliefors 
test). Finally, Benjamini-Hochberg (BH) correction (for each signal 
length, i.e. 14 p values) (Benjamini and Hochberg, 1995) was used 
to counteract the effect of multiple comparisons. Throughout the 
manuscript a comparison was considered statistically significant 
when BH-adjusted p < 0.05.

Simulated fMRI
While ARFIMA processes can create signals with known coupling, 

they do not represent realistic neuronal time series. We simulated the 

FIGURE 2

Detrended cross-correlation coefficient (DCCC) values for a 4  s-long pair of MEG signals at different scales (window lengths).
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fMRI of 100 “subjects” using The Virtual Brain (TVB) (Sanz Leon 
et al., 2013; Schirner et al., 2022). Based on the structural connectivity 
(SC) matrix of each subject (see next paragraph), we simulated the 

fMRI signal of 68 brain regions – according to the Desikan-Killiany 
atlas (Desikan et al., 2006) – using the Reduced Wong Wang (Deco 
et al., 2013) neural mass model:

FIGURE 3

Demonstration of multiscale detrended cross-correlation coefficient (MDC3) using a 4  s-long pair of MEG signals with a sampling rate of 1,000  Hz. 
(A) The two signals (green and purple) are divided into smaller non-overlapping windows of length s, in this example s  =  500. (B) Each window is 
detrended. (C) The variances (upper panel) and covariance (lower panel) are calculated for every window. (D) The detrended cross-correlation 
coefficient (DCCC) is estimated for several scales (window lengths). The black bar is the DCCC when s  =  500. (E) The cross-spectral density of the two 
time series is calculated. The red asterisks correspond to the frequencies used for the estimation of DCCC, while the blue disk corresponds to 2  Hz (i.e., 
s  =  500). MDC3 is calculated by taking the weighted average of DCCC, where the weight of each frequency is defined by the relative proportion of its 
power to the total cross-spectral power.
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( )kH x  and kS  correspond to the firing rate and synaptic gating 
variable of the population at the kth cerebral region, respectively. G  is a 

global scaling factor and kjC  is the structural connection strength 
between the kth and jth regions. The description and default values of the 
rest of parameters can be found in Table 12 of Sanz-Leon et al. (2015).

The simulated SC matrices were based the real SC matrix retrieved 
from https://zenodo.org/record/4263723#.Y7-8Q-zMLMI (found in 
“QL_20120814_Connectivity.zip”). The real SC matrix was divided 
into 4 quadrants. The values within each quadrant were randomly 
shuffled. Additionally, 30% of the connections of each quadrant were 
changed. Their new value was randomly selected from a normal 
distribution of mean and standard deviation based on the SC values of 
each quadrant. This shuffling and random allocation of values was also 
done in the accompanying tract lengths matrix created after loading 
“QL_20120814_Connectivity.zip” on TVB. These steps ensured that 

FIGURE 4

Root mean squared error (RMSE) of multiscale detrended cross-correlation coefficient (MDC3) and Pearson’s correlation for different levels of non-
stationairity (d) and signal length (panels A–F). We simulated auto-regressive fractionally integrated moving-average (ARFIMA) processes with varying d, 
signal length and coupling strength (ρ). ρ was used to estimate the RMSE of MDC3 and Pearson’s correlation. Pairs of distributions whose difference 
was statistically significant (Benjamini-Hochberg adjusted p  <  0.05) are fully colored.

TABLE 1 Multiscale detrended cross-correlation coefficient (MDC3) pseudo-code.

INPUTS: time series X; time series Y; minimum frequency; maximum frequency; frequency step; sampling rate; detrending degree; directed

frequencies = ([minimum frequency, maximum frequency], increment = frequency step)

scales = sampling rate / frequencies

for every window length

for every non-overlapping window

detrend (window of time series X, window of time series Y, degree = detrending degree)

covariance XY (window of time series X, window of time series Y, directed)

variance X (window of time series X)

variance Y (window of time series Y)

dccc = mean (covariance XY) / sqrt([mean (variance X)*mean (variance Y)])

[detrended X, detrended Y] = detrend (time series X, time series Y, degree = detrending degree)

power of frequencies = cross-spectral density (detrended X, detrended Y)

weights = power of each frequency / sum(power of frequencies)

MDC3 = tanh {sum [tanh−1(dccc)*weights]}

OUTPUT: MDC3
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the simulated brains were different enough from the template, but they 
were still biologically plausible. We then proceeded with simulating 
21 min of fMRI time series using the Reduced Wong Wang model. The 
selection of appropriate parameters in brain simulations is crucial. A 
common practice is to perform a grid search with different 
combinations of parameters and compare it to properties of empirical 
brain activity. We varied G, w and J, while using the default values of 
the rest of the parameters. G was in the [0.1, 29.9] range with 
increments of 0.1. w was in the [0,1] range with increments of 0.1. 
Finally, J was in the [0.2609, 0.4609] range with increments of 0.05. 
We estimated the FC matrix of each simulated fMRI dataset using 
rP. We also estimated the FC of the empirical fMRI signal using rP.4 
We then compared the similarities of empirical and simulated FC 
using Spearman’s correlation. The most realistic simulation 
(Spearman’s correlation 0.34) was produced when G = 0.2, w = 0.1 and 
J = 0.42 while the rest of the parameters were kept in their default values.

Having available the SC matrices for every “subject” allowed us to 
use dynamic causal modeling (DCM) (Friston et al., 2003) to calculate 
the EC. Investigation of whole-brain networks with traditional DCM is 
a time-consuming process, which can be accelerated with regression 
dynamic causal modeling (rDCM) (Frässle et al., 2017, 2018, 2021b) 
[available at the Translational Algorithms for Psychiatry-Advancing 
Science (TAPAS) toolbox (Frässle et  al., 2021a)]. rDCM offers a 
simplified version of DCM without severe loss in accuracy [for further 
details please see Frässle et al.]. While FC is simple to understand and 
estimate, it is merely a statistical relationship between signals. On the 
other hand, rDCM’s constraints allow for a depiction of brain 
connectivity based on a more realistic network model of the brain. 
Hence, the EC captured by rDCM was chosen as the ground truth of 
our comparison. In rDCM a realistic SC connectivity matrix is used as 
a template. Applying a forward model to the underlying SC can simulate 
fMRI signals. A parameter of this forward model is an EC matrix, which 
can be fine-tuned to produce realistic fMRI time series. Since rDCM 
can capture the direction of the connection, we employed dMDC3 
which we  compared with the LG (see Multiscale detrended cross-
correlation coefficient). In order to study the effect of signal length 
we analyzed the first 5, 10, 15 and 20 min of the simulated fMRI. This 
resulted in 12 matrices (4 signal lengths x 3 metrics) (Table 2) for every 
simulated brain. Since the rDCM and LG are not constrained between 
−1 and 1 as dMDC3, we calculated the Z-scores of every rDCM, dMDC3 
and LG matrix, which we then used for the comparisons. Using rDCM 
as our ground truth, we calculated the RMSE of dMDC3 and LG for 
each simulation. This resulted in 8 (2 EC estimators x 4 signal lengths) 
100-point (100 simulated brains) distributions. We compared every pair 
of distributions using a paired t-test or Wilcoxon signed rank test, 
depending on the normality of the underlying distributions (evaluated 

4 Also retrieved from https://zenodo.org/record/4263723#.Y7-8Q-zMLMI

using Lilliefors test). The 4 p values were adjusted using BH correction. 
dMDC3 was calculated for the frequencies between 0.011 to 0.17 Hz 
with increments of 0.01. 0.17 Hz was selected as the highest cutoff so 
each window during the estimation of dMDC3 had 8 datapoints. 
Second-degree polynomials were fitted for the detrending in dMDC3.

Empirical time series

MEG dataset
The MEG dataset consisted of eyes closed resting-state recordings 

of 20 elderly healthy participants (12 females, aged 71.5 ± 4.03 years), 
acquired using a 306-channel (102 magnetometers and 204 planar 
gradiometers) Vectorview MEG system (Elekta AB, Stockholm, 
Sweden) placed inside a magnetically shielded room (VacuumSchmelze 
GmbH, Hanau, Germany) located at the Laboratory of Cognitive and 
Computational Neuroscience (Madrid, Spain). MEG data were 
acquired with a sampling rate of 1,000 Hz and an online [0.1–330] Hz 
anti-alias band-pass filter. All participants provided informed consent. 
To allow subject-specific source reconstruction, individual 
T1-weighted MRI scans were also available for each participant. MRI 
images were recorded at the Hospital Universitario Clínico San Carlos 
(Madrid, Spain) using a 1.5 T General Electric MRI scanner with a 
high-resolution antenna and a homogenization PURE filter (fast 
spoiled gradient echo sequence, with parameters: repetition time/echo 
time/inversion time = 11.2/4.2/450 ms; flip angle = 12°; slice 
thickness = 1 mm; 256 × 256 matrix; and field of view = 256 mm).

The MEG recordings were preprocessed offline using a tempo-
spatial filtering algorithm (Taulu and Hari, 2009) (Maxfilter Software 
v2.2, correlation limit of 0.9 and correlation window of 10 s) to 
eliminate magnetic noises and compensate for head movements 
during the recording. The continuous MEG data were imported into 
MATLAB (R2017b, Mathworks, Inc.) using the Fieldtrip Toolbox 
(Oostenveld et al., 2011), where an independent component-based 
algorithm was used to remove the effects of ocular and cardiac signals 
from the data, together with external noises. Source reconstruction 
was performed using minimum norm estimates (Hämäläinen and 
Ilmoniemi, 1994) with the software Brainstorm (Tadel et al., 2011). In 
order to model the orientation of macrocolumns of pyramidal 
neurons the dipole orientations were considered to be normal to the 
cortical surface of the participant [see (Tadel et al., 2019)]. Neural time 
series were finally collapsed to the regions of interest (ROI) of the 
Desikan-Killiany atlas (Desikan et  al., 2006) by using the mean 
operator across all vertex-level constrained time series within that 
ROI. The data were band-pass filtered between 0.5 and 45 Hz using 
FIR filtering.

For every participant we analyzed multiple (ranging from 45 to 
61) 4 s segments. We estimated the FC of each segment using MDC3 
and rP. Then, we calculated the node strength of the brain regions by 
summing up the strength of every incoming and outgoing connection 

TABLE 2 Connectivity matrices used in the analysis of simulated fMRI signals.

5 Min dMDC3 10 Min dMDC3 15 Min dMDC3 20 Min dMDC3

5 Min rDCM 10 Min rDCM 15 Min rDCM 20 Min rDCM

5 Min LG 10 Min LG 15 Min LG 20 Min LG

Detrended multiscale detrended cross-correlation (dMDC3), Lagged Covariance (LG) and regression dynamic causal modeling (rDCM) were used to obtain connectivity matrices of the 
simulated fMRI signals. In every subject, the matrices were obtained for the first 5, 10, 15 and 20 min (Min) of the signal.
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for every cortical area. Finally, we averaged the node strengths for all 
segments, so every participant had one set of node strength values. 
Again, we employed a series of paired t-tests or Wilcoxon signed rank 
tests – depending on the normality of the distributions (Lilliefors 
test) – to compare the node strengths of the MDC3 and rP created 
networks. The p-values of each comparison group were adjusted 
using BH correction. MDC3 was calculated for the frequencies 
between 0.5 and 45 Hz. Second-degree polynomials were fitted for the 
detrending in MDC3.

fMRI dataset
Finally, we analyzed 767 healthy, young adults (426 females) from the 

Human Connectome Project (HCP) (Smith et al., 2013). The fMRI time 
series were already preprocessed according to the HCP standards (Glasser 
et al., 2013). Details about the participants can be found in the attached 
CSV file in the Supplementary material (fMRI Subjects Information).

For the FC estimation we used only the first eyes open resting-
state period of 14.4 min. The dataset had a left-to-right and right-to-
left echo-planar imaging (EPI) encoding. We calculated the FC using 
MDC3 and rP for both EPI. We then averaged the FC matrices of the 
two EPI using Fisher’s z transform, as suggested by Smith et  al. 
(2013). This resulted in one MDC3 and one rP FC matrix per subject. 
We compared the strength of each connection through a series of 
Wilcoxon signed rank tests that were later corrected using BH. MDC3 
was calculated for the frequencies between 0.011 and 0.17 Hz with 
increments of 0.01. 0.17 Hz was selected as the highest cutoff, so each 
window had 8 datapoints. Second degree polynomials were fitted for 
the detrending in MDC3.

Results

Simulated time series

As shown in Figure  4 MDC3 is a more accurate estimator of 
coupling in the simulated ARFIMA signals in almost every case. Only 
some small difference can be observed for stationary signals (d < 0.5); 
but as we transition to non-stationary time series (d ≥ 0.5), the RMSE 
of rP is significantly higher. All BH-adjusted p-values can be found in 
the Supplementary material (Statistics).

The same results can be seen in realistic fMRI simulations. As 
Figure 5 shows, the RMSE was significantly smaller when dMDC3 was 
used as an FC estimator in all signal lengths. We also see that as the 
signal length increases, the RMSE of LG increases while the RMSE of 
MDC3 decreases. All BH-adjusted p-values can be  found in the 
Supplementary material (Statistics).

Neurophysiological time series

Figure 6 shows the difference of the node strengths between the 
MDC3 and rP networks as estimated using MEG tracings. Significant 
differences can be seen in 7 channels (10%), where the rP network 
had mainly higher node strengths seen by the blue color. All 
BH-adjusted p-values can be found in the Supplementary material 
(Statistics).

For the last real-life dataset, we analyzed fMRI recordings from 
HCP. As Figure 7 shows, the two networks had different connectivity 

FIGURE 5

Root mean squared error (RMSE) of directed multiscale detrended cross-correlation coefficient (dMDC3) and lagged covariance (LG), for four different 
signal lengths (5  min, 10  min, 15  min and 20  min). We simulated realistic fMRI signals using The Virtual Brain. The effective connectivity of the simulated 
brains – calculated using regression dynamic causal modeling (rDCM)– was used to estimate the RMSE of MDC3 and LG.

https://doi.org/10.3389/fnins.2024.1422085
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Stylianou et al. 10.3389/fnins.2024.1422085

Frontiers in Neuroscience 09 frontiersin.org

strengths. In some instances, rP found higher coupling than MDC3 and 
in some other cases lower. These observations were validated 
statistically, since 97% (69,599 out of 71,631) of the comparisons were 
significantly different. All BH-adjusted p-values can be found in the 
Supplementary material (Statistics).

Discussion

In this study we  introduced the statistical metric MDC3 – a 
weighted average of DCCC – for estimating coupling in a system. Our 
simulations with signals of known coupling showed that MDC3 is a 
more accurate estimator of the model’s coupling parameters than rP or 
LG. The exemplary FC analysis of MEG and fMRI data also showed 

that the use of MDC3 could lead to significant differences in the 
connectivity matrices compared to rP.

We simulated 1,000 pairs of time series of different coupling 
strengths, signal lengths and degrees of non-stationarity. For each 
pair we calculated MDC3 and rP. As explained in the Introduction, 
and shown in Figure 1, the variance and covariance of stationary 
signals remain constant, meaning that MDC3 and rP will be similar. 
This is not the case for non-stationary series whose variance and 
covariance heavily depend on time. Our simulations confirm that, 
since the RMSE of MDC3 was significantly smaller in every case, 
except for fairly stationary signals (Figure  4). The discrepancy 
between the two estimators increased greatly with higher levels of 
non-stationarity. Similar findings have been reported for DCCC in 
Kristoufek (2014). Several studies (Kristoufek, 2014; Zhang et al., 

FIGURE 6

Difference between the node strengths calculated during eyes closed resting-state magnetoencephalography: lateral view (up); medial view (down). 
The colors represent the difference (MDC3-rP) in the node strengths while the numbers indicate the brain regions whose node strength was 
significantly different between the two estimators (BH-adjusted p  <  0.05). The numbers correspond to the regions of interest as defined in the Desikan-
Killiany atlas (Desikan et al., 2006), list provided in Supplementary Table S2 (Additional Analysis).

FIGURE 7

Averaged functional connectivity matrices using multiscale detrended-cross correlation coefficient (MDC3), Pearson’s correlation (rP), and the 
difference between them (MDC3-rP) using eyes open resting-state functional magnetic resonance imaging.

https://doi.org/10.3389/fnins.2024.1422085
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Stylianou et al. 10.3389/fnins.2024.1422085

Frontiers in Neuroscience 10 frontiersin.org

2020; Guedes et al., 2021; Racz et al., 2024) using DCCC integrate 
(cumulatively sum) the signals before its estimation. When ARFIMA 
processes were used as ground truth, the integrating version of MDC3 
performed worse than rP (see Supplementary Figure S1 in Additional 
Analysis). A possible explanation is that by integrating the signal, 
more non-stationary characteristics are introduced, making MDC3 
unreliable. We  suggest that future studies take this into account 
before integrating their signals. We also simulated a series of fMRI 
signals using TVB. We could not simulate realistic neuronal time 
series with known coupling, so we decided to use the rDCM matrices 
of the simulations as ground truth. The results showed that dMDC3 
is closer to rDCM compared to LG (Figure 5). We observed that as 
the length of the signals increased the accuracy of dMDC3 slightly 
increased, while the accuracy of to LG slightly decreased. At this 
point someone might question the benefits of MDC3 over rDCM, 
since we considered rDCM the ground truth. In our opinion, the 
biggest limitation of rDCM is the need of a SC matrix, which is often 
not available in several neuroimaging studies. On the contrary, MDC3 
(as well as the rest of FC estimators) can capture functional 
interdependence without prior knowledge of SC. Smith et al. (2011) 
decided to validate FC estimators using the underlying SC as ground 
truth. While we considered this approach, we decided to use EC 
instead. The choice was based on the two following reasons. Firstly, 
SC cannot entirely predict FC (Honey et al., 2009). Secondly, the lack 
of negative values in SC would not allow for accurate study of 
negatively correlated brain regions. For the sake of completeness, 
we also compared MDC3 and rP of the simulated fMRI signals using 
SC as ground truth. This time, rP was found to be a better estimator, 
albeit with a narrow margin (see Supplementary Figure S2 in 
Additional Analysis). An interesting byproduct of this analysis was 
that rP and MDC3 were similar to SC, while EC and dMDC3 were 
similar to the tract length matrices used for the construction of the 
simulations. While this finding is interesting, it is beyond the scope 
of this study and should be revised in future studies. The matrices of 
each simulation can be found in the Supplementary material (TVB 
Matrices). Finally, we repeated our MDC3 and rP comparisons this 
time using the simulations from Smith et al. (2011). In most cases 
MDC3 was more accurate, especially when EC was used as ground 
truth. The complete results of the additional analysis can be found in 
the Supplementary material (Additional Analysis).

Of course, statistical significance in simulations without real-life 
benefits would not warrant the use of MDC3. To demonstrate its 
advantages, we used MEG and fMRI datasets. As shown in Figure 6, 
using MDC3 and rP as FC estimators resulted in significantly different 
brain networks. In some cases, the node strengths of the rP networks 
were higher, while in others they were lower. After analyzing the FC 
matrices of the fMRI dataset, we saw that almost all connections were 
significantly different between the two matrices (Figure 7). Once 
again, some connections were stronger and some weaker when rP was 
used. A homogenous overestimation or underestimation would not 
have been a serious drawback since FC studies usually rely on relative 
comparisons and not on the exact values themselves. But it seems that 
in some regions rP would give lower values and in others higher, 
presenting a rather false picture of the brain network. At a first glance, 
someone might be  dismissive of this, since it is well known that 
different estimators can lead to different FC matrices (Jalili, 2016; 
Mukli et al., 2021; Stylianou et al., 2021a). This would have been the 
case if we had not seen the higher reliability of MDC3 in simulations 

(Figure 4; Figure 5). We then suggest that MDC3 should be preferred 
over rP. Even if MDC3 is computationally more expensive, today’s 
computational capabilities make the time difference negligible.

Finally, it should be noted that MDC3 is still a linear FC estimator. 
Non-linear estimators like PLV, MI, PLI, and SL still capture dynamics 
that MDC3 cannot. In spite of that, we believe that MDC3 is a valuable 
addition to the FC field due to its ability to capture the sign of 
correlation (i.e., correlation vs. anticorrelation); something that the 
aforementioned non-linear estimators cannot do. A common practice 
in FC studies is the exclusion of anticorrelations (Rubinov and 
Sporns, 2010). Since the human brain operates with several negative 
feedback loops, we believe that it is necessary to study anticorrelation 
in order to obtain more accurate brain architectures, as suggested by 
previous studies (Chen et al., 2011; Zhan et al., 2017). We decided to 
explore this further in the Supplementary material (Additional 
Analysis) using the MEG dataset. Briefly, we  compared the FC 
matrices as estimated with MDC3, rP and PLV using two different 
source reconstruction pipelines, i.e., with constrained and 
unconstrained dipoles. The first method makes it possible to obtain 
a more realistic phase (and sign) of the reconstructed time series. This 
benefit can be overshadowed by the inability of most FC estimators 
to capture the sign of coupling, including PLV. As a result, such 
metrics could mistakenly identify correlation for anticorrelation and 
vice versa. As expected, both MDC3 and rP detected more differences 
between the reconstructions with constrained and unconstrained 
dipoles than PLV (Supplementary Figure S3). It then seems that 
MDC3 and rP offer an advantage when the sign of the correlation is 
important. In the main body of the manuscript, we compared the 
MDC3 and rP using constrained dipoles as source reconstruction for 
the MEG dataset. In the Supplementary material (Additional 
Analysis) we repeated this analysis using unconstrained dipoles. The 
results (Supplementary Figure S4 right panel) showed that even with 
unconstrained dipoles differences were found between the two 
metrics. MDC3 estimated exclusively higher values for all node 
strengths that were found statistically significant in the unconstrained 
version. On the contrary, when we constrained the dipoles, we saw 
both higher and lower values estimated by MDC3 (Figure  6; 
Supplementary Figure S4 left panel). It is clear then that irrespective 
of the source reconstruction method, substantial differences were 
observed between the two FC estimators. Of course, there are several 
other preprocessing steps where different pipelines can 
be  implemented. In some of these pipelines MDC3 and rP could 
capture the same dynamics. Nonetheless, considering that MDC3 had 
lower RMSE in our simulations (Figure 4; Figure 5), we believe that 
MDC3 should be preferred over rP.

DCCC and its extension MDC3 are closely related to the scale-free 
analysis of signals. The numerator and denominator of Equation 1 are 
integral parts of the detrended fluctuation analysis (Peng et al., 1994) 
and detrended cross-correlation analysis (Podobnik and Stanley, 
2008) analysis, respectively. DCCC has been incorporated in surrogate 
testing of fractal (scale-free) coupling already (Podobnik et al., 2011; 
Blythe et al., 2016; Stylianou et al., 2021a, 2021b, 2022). We wanted to 
explore how the scale-free character of the signals affects the 
performance of the MDC3 and rP [see Supplementary material 
(Additional Analysis)]. To achieve this, we  estimated the Hurst 
exponent (i.e., degree of autocorrelation or H) of the simulated 
ARFIMA processes and correlated it with the RMSE of the two FC 
estimators. We  found that H positively correlated with RMSE 
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(Supplementary Figure S5; Supplementary Table S1). As explained in 
the Supplementary material (Additional Analysis) high 
autocorrelation corresponds to high non-stationarity. Hence, these 
results agree with Figure 4 which showed that RMSE increases with 
higher non-stationarity (and by extension higher H). Despite the 
almost perfect correlation between RMSE and H for both estimators, 
RMSE increased in a faster rate when rP was used. This validates our 
original findings and shows that MDC3 is a better option when the 
scale-free nature of the signals is under consideration. DCCC has also 
been employed in multifractal FC (Kwapień et  al., 2015); where 
different exponents capture different sizes of fluctuations. 
Theoretically, a multifractal MDC3 could be created as well. This is 
beyond the scope of the current study because we  focused on 
improving the interpretability of DCCC. The calculation of MDC3 
using different scaling exponents would add another layer of 
complexity to the interpretation of the outputs. Recently, a real-time 
algorithm for the estimation of DCCC was presented (Kaposzta et al., 
2022, 2023), which can be extended for MDC3 as well. This means that 
MDC3 can be used in brain-computer interfaces or clinical monitoring 
of patients, where constant tracking of network dynamics is needed.

Conclusion

We presented a new estimator of coupling between time series 
termed multiscale detrended cross-correlation coefficient. Using 
simulated data, we showed a higher accuracy over rP and LG. The 
differences between the estimators were made apparent in MEG and 
fMRI datasets of healthy populations. Here we explored the benefits 
of MDC3 only in neuronal time series. We  believe that our new 
method has the potential to be used in several other disciplines where 
linear coupling of non-stationary signals is investigated. Of course, 
appropriate validation pipelines specific to each field are 
recommended before any prior use.
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Appendix

Auto-regressive fractionally integrated moving-average processes

Assume two distributions Aε  and εΒ. Aε  is a standard normal distribution, meaning E[ Aε ] = 0 and var( Aε ) = 1. 21Aε ρε ε ρΒ = + − , 
where ε is also standard normal [i.e. E[ε] = 0 and var(ε)=1]. The variance of εΒ can be calculated as follows:

var( ( ) ( ) ( ) ( )2 2 2 2 2 2) var 1 var var 1 var 1 var 1 1B A A Aε ρε ε ρ ρε ε ρ ρ ε ρ ε ρ ρ   = + − = + − = + − = + − =   
   

Then the real coupling between the two distributions can be calculated as:

ρ( , )A Bε ε  =

 

( )
( ) ( )

( ) [ ] [ ] [ ] [ ] ] [

[ ] ( ) [ ]( )

2 2 2 2

22 2 2 2 2

cov ,
cov , 1 1

var var

1 1 var

A B
A B A B A B A B A A A A

A B

A A A A A A A

E E E E E E E

E E E E E E E

ε ε
ε ε ε ε ε ε ε ε ρε ε ε ρ ρε ε ε ρ

ε ε

ρ ε ρ ε ε ρ ε ρ ε ε ρ ε ρ ε ε ρ

   = = − = = + − = + −      

        = + − = + − = = + =              

The two ARFIMA series ( ( ) ( )
100 100

, ,
0 0

,n A t n n B t n
n n

A d B dα ε α ε− −
= =

= =∑ ∑ ) are the cumulative sums of Aε  and εΒ multiplied by a step-specific weight 
[( (n dα )]. The only source of stochasticity of A and B are Aε  and εΒ, meaning that the true coupling between A and B is ρ.
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