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Introduction: Mind-wandering is a highly dynamic phenomenon involving

frequent fluctuations in cognition. However, the dynamics of functional

connectivity between brain regions during mind-wandering have not been

extensively studied.

Methods: We employed an analytical approach aimed at extracting recurring

network states of multilayer networks built using amplitude envelope

correlation and imaginary phase-locking value of delta, theta, alpha, beta,

or gamma frequency band. These networks were constructed based on

electroencephalograph (EEG) data collected while participants engaged in a

video-learning task with mind-wandering and focused learning conditions.

Recurring multilayer network states were defined via clustering based on

overlapping node closeness centrality.

Results: We observed similar multilayer network states across the five frequency

bands. Furthermore, the transition patterns of network states were not entirely

random. We also found significant di�erences in metrics that characterize the

dynamics of multilayer network states between mind-wandering and focused

learning. Finally, we designed a classification algorithm, based on a hidden

Markov model using state sequences as input, that achieved a 0.888 mean area

under the receiver operating characteristic curve for within-participant detection

of mind-wandering.

Discussion: Our approach o�ers a novel perspective on analyzing the dynamics

of EEG data and shows potential application to mind-wandering detection.

KEYWORDS

multiplex networks, electroencephalograph, mind wandering, video-learning,

functional connectivity

1 Introduction

During concentrated learning of live or recorded lectures, the human mind is prone
to turning inwards. This inherent mental process is often referred to as mind-wandering
(MW). Generally, MW is defined by attention oriented away from an external task
toward our internal, self-generated thoughts (Dong et al., 2021). Extended periods of
MW correlate negatively with direct educational outcomes, manifesting as decreased
information retention and comprehension (Risko et al., 2012; Szpunar et al., 2014).
Additionally, MW may indirectly affect learning outcomes, potentially impairing note-
taking abilities (Lindquist and McLean, 2011). However, our current understanding of the
neural mechanisms of MW remains incomplete, and there is a lack of reliable and objective
methods to accurately detect it (Dhindsa et al., 2019), which are critical for the development
of strategies to mitigate the negative impact of MW.

In MW detection, task-related assessments (Zhang and Kumada, 2018) and
physiological measures such as eye movement, pupillometry (Faber et al., 2018), heart
rate, skin conductance, and synchronization between respiration and sensory pressure
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(Zheng et al., 2019) are commonly-used. Neural measures,
including functional magnetic resonance imaging (fMRI) and
electroencephalography (EEG), provide direct insights into this
mental state (Dong et al., 2021). FMRI offers detailed spatial
resolution, but with low temporal precision. Conversely, EEG
captures brain activity at high temporal resolution and is cost-
effective and wearable, but lacks the spatial accuracy of fMRI,
especially for deep brain sources.

Recent studies have focused on using event-related potentials
and spectral features to classify MW. A sustained attention
task showed decreased P300 amplitude during MW (Smallwood
et al., 2008), and other experimental studies support the idea
that MW reduces cognitive resources for task processing (Kam
and Handy, 2013; Kam et al., 2012; O’Connell et al., 2009). An
experiment focusing on mindful breathing revealed lower occipital
alpha and fronto-lateral beta power during MW compared to
breath focus (Braboszcz and Delorme, 2011). Similar conclusions
have been found in another study (van Son et al., 2019).
Functional connectivity is an important feature in studying MW.
Investigations using fMRI on MW suggest that it is associated
with the default mode network (DMN) and the executive control
network. The DMN is composed of brain regions that remain
activation during rest and is linked to MW (Mason et al., 2007).
A study found DMN to be active during self-reported instances
of MW (Mooneyham and Schooler, 2013). However, DMN also
exhibits heightened activity during purposeful internal thought,
including future planning and episodic memory retrieval (Spreng
et al., 2009; Buckner et al., 2008; Andrews-Hanna, 2012). This
means activation of the DMN is not a specific indicator of MW.

MW is a highly dynamic process characterized by rapid
fluctuations and spontaneity in thought, but the corresponding
changes in functional connectivity networks over time are often
overlooked (Konjedi and Maleeh, 2021; Christoff et al., 2016).
Considering the dynamics during MW is thus crucial for
better understanding and detection. Compared to fMRI, EEG
offers higher temporal resolution, enabling better capture of the
dynamical aspects of brain functional connectivity. However, to
our knowledge, there is currently no EEG functional connectivity
analysis for MW (Kam et al., 2022). Traditional brain network
analysis often overlooks critical information, such as frequency
or time domain relationships. Multilayer networks can integrate
multiple data sources, capturing connectivity across different
frequency bands, time scales, and variations in connectivity during
different tasks. For example, in epilepsy, multilayer EEG networks
revealed less variable activity during absence seizures (Leitgeb
et al., 2020). In stroke, they showed reduced global connectivity
and robustness (Hao et al., 2024); while in Alzheimer’s disease,
multiplex networks indicated disrupted brain activity and achieved
high classification accuracy (Cai et al., 2020). A time-window-based
multilayer model also enhanced understanding of brain dynamics
during driving (Chang et al., 2022). These examples highlight
how multilayer networks improve insights into brain function
and cognition. Considering the above, our study will analyze
the dynamic characteristics of multilayer functional connectivity
networks built from EEG during MW.

In this study, we developed a multilayer network analysis
framework that integrates different functional connection
definitions, with network nodes representing electrodes. To

sidestep the difficulties associated with selecting window size and
sliding step size in traditional sliding window data segmentation
methods (Xu et al., 2023), we improved our previous segmentation
algorithm to apply it to multilayer networks. Our multilayer
network features two layers: one using amplitude envelope
correlation (AEC) for intra-layer edge weights and the other
employing imaginary phase-locking value (IPLV) for intra-layer
edge weights. In this study we used only two layers, but our
method is scalable to more layers. The network is a weighted
undirected multiplex network for each time segment. Quantified
by overlapping node closeness centrality vectors, we clustered these
networks into four states, each representing a recurring motif,
and discretized EEG segments into time series of network state
labels. Finally, we implemented a hidden Markov model to classify
presence of MW based on these state sequences, assessing the
effectiveness of our multilayer analysis.

The remainder of the article is organized as follows. We present
a detailed description of the proposed method in Section. 2. We
present results in Section 3. Finally, we discuss our work in Section
4 and conclude in Section 5.

2 Method

2.1 EEG data and pre-processing

2.1.1 Dataset
In this work, we conducted a detailed analysis of our EEG

dataset that has been previously published (Tang et al., 2023). For
more comprehensive methodological details, see that article; a brief
summary is below.

2.1.2 Participants and task design
A total of 14 healthy participants (six females and eight males;

average age 23.36± 4.75 years) were engaged in the study. The two
distinct experimental conditions were: the focused learning (FL)
condition, during which the two most highly-rated (for interest)
lecture videos chosen by each participant was shown to him or
her; and the future planning condition, during which the two least
interesting videos were shown. In the future planning condition,
in which participants engaged in personal future planning cued
by images (previously collected from them) displayed on screen
before the lecture video. Following each video, participants
provided feedback through rating scales, assessing their estimates
of percentage of time focused on the video and percentage of time
in intentional and unintentional mind-wandering. In this study,
the mental state during the future planning condition is assumed
to be MW (and called the MW condition hereafter), while that in
the FL condition is assumed to be non-MW. During the video,
participants could press a key to indicate deviation from the task
in each condition, data thus marked are not analyzed here.

2.1.3 EEG acquisition and pre-processing
The EEG data analyzed here were collected using an 8-channel

system (Yiwu Jielian Electronic Technology Co., Ltd, China) at a
sampling rate of 1,000 Hz. The low channel count was intended
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to make the system more easily deployable. Electrodes were
positioned at F3, F4, T3, C3, C4, T4, O1, and O2 according to the
International 10-20 EEG system, with the reference electrode at CZ.
The raw data underwent high-pass filtering at 1 Hz, down-sampling
to 256 Hz, and notch filtering at 48–52 Hz. To mitigate noise
interference, we implemented artifact subspace reconstruction
(ASR) using the clean raw data plugin of EEGLab. Pre-task
resting-state signals served as calibration data, with artifacts
being either removed or corrected based on specific parameters
(“BurstCriterion"=30 and “WindowCriterion" = 0.3) (Kothe and
Jung, 2016). Additionally, we employed an amplitude threshold-
based method to further detect and eliminate noise-contaminated
time segments. Subsequently, EEG signals were band-pass filtered
into delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30
Hz), and gamma (30–80 Hz) frequency bands using windowed-
Hamming finite impulse response filters, using the default filtering
method and settings of MNE-Python (Gramfort et al., 2013).

2.2 Multilayer network construction

2.2.1 Design of multilayer networks
In this study, we construct weighted multilayer networks which

integrate two types of functional connectivity. Taking a segment of
EEG data as an example (see Figure 1A), we assessed the functional
connectivity between each pair of EEG channels using AEC and
separately IPLV. Thus, two 8×8 connectivity matrices are obtained,
as illustrated in Figure 1B. We construct a two-layer weighted
network (see Figure 1C), where nodes of the network correspond
to channels.

The edge weights in the first layer are determined by AEC. The
computational procedure for AEC is delineated by the following
rules (Bruns et al., 2000; Zamm et al., 2018): amplitude envelopes
were generated via Hilbert transform of the EEG data in the
segment; Pearson correlations were then computed between all
amplitude envelopes across all combinations of channel pairs.
Finally, we calculated the absolute values of the correlation
coefficients to prevent cancellations during averaging, as envelope
correlations can be negative. Additionally, negative values lack
practical significance in brain network analysis for our purposes.

Considering that the edges in the first layer are calculated
from the perspective of amplitude, to minimize overlap with the
information of the first layer, we chose IPLV to measure functional
connectivity strength in the second layer. The calculation of IPLV
is as follows (Sadaghiani et al., 2012):

IPLV =
1

N
| Im(

N
∑

n=1

exp[i(φchannel1(n)− φchannel2(n))]) |, (1)

where N is the total number of time points within an EEG
data segment, and | · | denotes the complex modulus. The Hilbert
transformation is used to calculate the analytic phase at time point
n as φchannel_j(n) = arctan[u(n)/v(n)], where v is the real part of
the analytic signal, u is the Hilbert transform or the imaginary part
Im(·) of the analytic signal.

The two crucial questions for constructing multilayer networks
are: (1) whether there are differences between interlayer and
intralayer connections; (2) whether different layers hold distinct

meaning. We set a one-to-one correspondence between nodes
in different layers based on the position of EEG channels, and
interlayer connections exclusively link a node to its corresponding
node in the other layer. This type of multilayer network is also
known as a weighted multiplex network (Boccaletti et al., 2014).
The interlayer edge weights are unconstrained, that is, there is
no traversal cost associated with interlayer edges. Considering the
possibility of different scales for edge weights between layers, we
normalize each edge ei of the layer i in our multilayer network as
follows:

ei =
ei − rmin,i

rmax,i − rmin,i
, (2)

where rmin,i and rmax,i represent the minimum and maximum
values e of the edges of layer i.

2.2.2 EEG segmentation
To avoid an EEG data segment containing more than one

network motif, we segmented EEG based on network structure
using the DMCC (distance measure/closeness centrality) variant of
our previously published segmentation method (Xu et al., 2023).
Our method was previously designed for single-layer networks,
thus we here improve the method by comparing each layer between
time windows, and we call the new variant the extend DMCC
(EDMCC). Given two time periods T1 and T2, the extended
procedure computes the following distance measure:

d(C(T1),C(T2)) =

√

√

√

√

n
∑

i=1

(

1

m

m
∑

l=1

c
[l]
i (T1)−

1

m

m
∑

l=1

c
[l]
i (T2)

)2

,

(3)

where n is the number of channels.m denotes the number of the
network layers. c[l]i (T1) denotes the closeness centrality of the node
i in the layer l of multilayer network G(T1). C(T1) is a matrix of size
n×m, consisting of the node centralities of each node of each layer.
The most sensitive parameters of the segmentation algorithm were
set thusly: reference window length Wr = 2s, probability of outlier
selection pKDE = 0.96. Other parameter settings are the same as in
our previous work (Xu et al., 2023).

Using this method, the EEG data were divided into segments
of varying lengths (delta: 1.95 ± 0.835, theta: 1.998 ± 0.888,
alpha: 2.07 ± 0.951, beta: 1.984 ± 0.843, gamma: 1.995 ± 0.859;
average ± standard deviation seconds per segment). Compared
with sliding windows of the same length (2 s for all bands), EDMCC
performs better (see Figure 2A) in terms of an index that measures
the difference in structure between segments compared to within
segments [details on this pdiff index can be found in Xu et al.
(2023)].

2.2.3 Multilayer centrality metrics
We measure the structural characteristics of one multilayer

network by calculating the node closeness centrality (CC) at each
node and examine the differences between layers. CC quantifies the
average length of the shortest path between the target node and
all other nodes in the graph and encodes information about the
information transmission latency across the network topology. For
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FIGURE 1

Diagram of analytical methods. (A) Segmentation of 8-channel EEG data based on changes in network structure. (B) Construction of functional

connectivity networks for each segment using AEC and IPLV for the first and second layer, respectively. (C) Weighted multiplex networks are formed.

Connection thickness in visualization indicates edge weight. (D) Analysis of static network topology (one segment). (E) Calculation of overlap node

closeness centrality for each node. (F) Clustering of networks (segments) by their node centrality vectors using the Louvain algorithm, producing

clusters representing typical recurring network states. (G) Discretization of EEG data into a network state sequence based on clustering results. (H)

Computing and analysis of various dynamical features (statistics of state sequences). (I) Classification of network state sequences as mind-wandering

or focused learning via a hidden Markov model.

the multilayer network, we adopted the overlapping CC (referring
to the concept of overlapping nodes across layers). CC of a node i is
defined as:

CCi =
1

m

m
∑

l=1

(
1

n− 1

n
∑

j∈N,j6=i

dij)
−1, (4)

where N is the set of all nodes in the network. dij is the length
of the shortest path between node i and j. The distance between two
adjacent nodes is defined as the inverse of the connection strength.
The distance between layers was zero (unconstrained).

Then, we assessed the heterogeneity of a multilayer network
by calculating the Pearson correlation between the edges in the
different layers (see Figure 1D). A correlation value close to 1
indicates that the edges of the two layers are similar. A correlation
value close to−1 indicates that the edge strengths of the two layers

are in opposite directions. A correlation value close to 0 suggests
that there is no linear relationship in the edges between the two
layers.

2.3 Dynamic analysis of multilayer
networks

2.3.1 Defining network state
To define recurring network motifs across all participants and

trials, we cluster networks based on the similarity of their structure.
Here, we describe the method for one frequency band, and in
practice we repeat this procedure (separately) over bands.

First, we calculate the overlapping node closeness centrality
for each node in the multilayer network, shown in Figure 1E.
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FIGURE 2

(A) Segmentation performance as measured with pdi� (higher values are better) for di�erent frequency bands. EDMCC is an extension of our previous

segmentation method to multilayer networks. SW denotes segmentation into same-length sliding windows. Each data point is the pdi� value of a

block of EEG data in a frequency band. ****p < 0.0001. (B) Correlation of multilayer network states across states (ABCD) and frequency bands. (C)

Average overlapping node closeness centrality of the multilayer networks for each multilayer network state (column). Numerical values under the

topographic maps denote the ratio of total time spent in the network state.

Let the vector ci,j,k = (c(1)
i,j,k, c

(2)
i,j,k, . . . , c

(8)
i,j,k), i = 1, 2, . . . , 14, j =

1, 2, . . . , ni,k, k ∈ {FL − 1, FL − 2,MW − 1,MW − 2}, represent
the overlapping node closeness centrality for the i-th participant
from condition-trial k during time segment tj. The superscript of

c
(l)
i,j,k indicates the l-th channel in the EEG signal. ni,k denotes the
number of EEG segments for participant i in condition-trial k. To
mitigate individual variability among participants, the vectors ci,j,k
of each participant are normalized as follows:

ci,j,k =

ci,j,k −min
j,k

(ci,j,k)

max
j,k

(ci,j,k)−min
j,k

(ci,j,k)
. (5)

Second, to perform clustering we construct a large-scale
network (note, this is not a brain network, but a network for the
clustering process) based on the multilayer network data from all
participants and trials. Each multilayer brain network serves as
a node here, and the edges represent the Spearman correlation
coefficient of the normalized overlapping node closeness centrality
between two networks. We use the Louvain algorithm for
community detection on this large-scale network (Blondel et al.,
2008). In this work, each community is referred to as a class or
category and represents a recurring, typical multilayer network
state (motif). We chose this clustering method because it does not

require the pre-specification of meta parameters. The schematic
diagram for this step is illustrated in Figure 1F.

Finally, the above steps are repeated for data in each frequency
band. The overlapping node closeness centrality values in the
multilayer networks of each class were separately (for different
bands) averaged to obtain the visualization shown in Figure 2C.

The multilayer networks under each frequency band were
ultimately clustered into four categories. From Figure 2C, we can
see that the ratio of each category is relatively uniform (numerical
values under the topographic map in Figure 2C). To assess the
similarity levels between these categories and across frequency
bands, we calculated the Pearson correlation cor(cij, cij) among
states and bands. cij denotes the average (across instances of
the state) overlapping node closeness centrality of the multilayer
network state i in frequency j. The results are illustrated in
Figure 2B. This analysis showed a notably higher correlation
between frequencies for network states A and B, while states C and
D had relatively lower correlations between frequency bands. This
implies the emergence of more similar network structures for states
A and B across all frequency bands. Conversely, states C and D
show more disparities among frequencies.

Examining the topographic maps in Figure 2C, multilayer
network state A displays a notably higher information transmission
efficiency in the right frontal lobe and left occipital lobe
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compared to other brain areas. State B displays lower information
transmission efficiency in the temporal lobes and central region
compared to other brain areas. The topographic maps for states
C and D show some differences across frequency bands, with an
overall lower information transmission efficiency.

2.3.2 Dynamic network characteristics
Subsequently, we assign EEG segments to network states

to obtain a state sequence. If contiguous segments share the
same network state, they are consolidated. This process yields a
multilayer network state sequence for each trial (video, four per
participant). A schematic diagram of state sequence construction
is shown in Figure 1G. In order to characterize multilayer network
state sequences, we use the following five metrics (Figure 1H):

(a) Frequency, the average number of occurrences per second of
a given network state.

(b) Average duration, the average length of time a given network
state remains whenever it appears.

(c) Coverage, computed as the time fraction of a given network
state among the whole sequence.

(d) Transition probabilities of a network state X to a state Y,
PX→Y . This is computed as the number of state transitions
from state X to state Y divided by the total number of
transitions in the whole sequence (also called observed
transition probabilities).

In order to test the randomness of the multilayer network state
transitions, we performed a permutation test. The null hypothesis
assumes no association between the current state and the next state.
Consequently, the expected transition probability (due solely to
frequencies) is defined as:

P∗X→Y =
PY · PX

1− PX
, (6)

where PX(PY ) is the number of occurrences of state
X(Y) divided by the number of all states observed. For
each condition, we calculated the average observed transition
probabilities and the average expected transition probabilities.
Then, the average observed transition probabilities and average
expected transition probabilities are randomly permutated n

times. The distance for each permutation is computed using the
formula below:

d =
∑

X,Y

(PX→Y − P∗X→Y )
2

P∗X→Y

. (7)

The actual chi-square distance is the difference between the
average expected transition probability and the average observed
transition probability without permutation. Letm denote the count
of instances where the chi-square distance of random permutation
exceeds the actual chi-square distance. The p-value is then p =

m/n. If the p-value is <0.05, we reject the null hypothesis.
This means that there is structure in the observed transition
values that cannot be attributed solely to the frequencies of
the states.

2.4 Statistical analysis

In our statistical tests, unless explicitly stated otherwise, we
consistently adhere to the following procedure. We use Tukey’s
box plot method for the removal of outlier data points (Tukey
et al., 1977), defined as values exceeding 1.5 times the interquartile
range (IQR) above the upper quartile or below the lower quartile.
Subsequently, we assess the normality assumption of the data. If
normality is not rejected, we proceed to Levene’s test for equality
of variances. Upon passing Levene’s test, we employ t-tests with
equal variance; otherwise, we use t-tests with non-equal variance. In
instances where the normality assumption is rejected, the rank-sum
test is used. Our significance threshold is set at 0.05.We present raw
p-values and significance results, without correction for multiple
comparisons; thus one should expect about 1 in 20 of significant
effects to be spurious.

2.5 Classification

The observed distinctions in the multilayer network state
sequences between the MW and FL conditions suggest the
potential applicability of these sequences for the detection of
MW. To substantiate the efficacy of this approach, we conducted
perparticipant classification using a hidden Markov model (HMM)
based classifier. The schematic diagram for this step is showed in
Figure 1I. The HMM takes as input the discretized state sequence
(with four possible observation classes). The decoding process
is illustrated in Figure 3. The algorithmic procedure is outlined
below:

1. We select one participant from a pool of 14 individuals in
turn. We obtain multilayer network state sequences for the
chosen participant for each of the five frequency bands. For
each frequency band, four sequences are obtained, one per trial
(video).

2. Concatenating state sequences across trials of the same
condition, we perform 8-fold cross-validation to partition the
data into training sets and test sets.

3. We fit parameters (steps iv–vi below) using the training
set of the fold. We choose the frequency band based only
on classification performance in the training set of a cross-
validation fold.

4. Using the Baum-Welch algorithm (Baggenstoss, 2001), the
entire training set for one condition is treated as one sequence
(by concatenation) to construct an HMM in an unsupervised
manner. We set the number of hidden states to 2. The initial
transition probabilities of hidden states A, initial observation
probabilities B, and the initial probabilities for hidden states π

are all set to be uniformly distributed. We obtain two HMMs,
one for MW and one for FL.

5. Each multilayer network state sequence (trial) of the test
set is given to the forward algorithm along with either the
MW HMM or FL HMM obtained in step iv. The forward
algorithm calculates the likelihood P(O|λi) associated with each
condition’s HMM. Assuming a uniform prior, the posterior
probability (which we use as the score of the model) is just the
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FIGURE 3

Flowchart of our method for detection of mind-wandering via HMM.

normalization of the likelihood:

SFL =
P(Yi|λFL)

P(Yi|λFL)+ P(Yi|λMW)
, (8)

where Yi denotes the observed test sequence, while λi

represents the estimated parameters (Ai,Bi,πi) of the HMM
model for state i, where i is FL or MW.

6. The classification result is decided by thresholding the score
SFL, where the threshold is set in the receiver operating
characteristic calculation procedure. We quantify classification
performance by the area under the receiver operating
characteristic curve (AUC).

7. We repeat steps i–vi for each fold in the cross-validation, and
then average the AUC across folds. We then repeat all steps for
each participant.

3 Results

3.1 Static analysis results

First, we conducted statistical analysis on a multilayer network
created from EEG data from all trials (of the same condition) of all
14 participants. Since one network was made from the data in the
entire trial, this is a static analysis. We examined the edges, nodes,
and inter-layer heterogeneity under mind-wandering or focused
learning.

We found significant differences in intra-layer connections
within the multilayer network across frequency bands (Figure 4A).
In the AEC layer, significant differences (indicated by triangles)
were observed in the edges F3-O1 and F4-T3 across the four
frequency bands. Significant differences in edges were mainly

concentrated in the delta, alpha, and beta frequency bands.
In the IPLV layer, significant differences in edges were mainly
concentrated in the theta band.

We found three significant differences in the node closeness
centrality (single layer) of the AEC layer in the delta and alpha
bands (Figure 4B). However, we found no significant difference in
the node closeness centrality in the IPLV layer. We found four
significant differences in the overlapping node closeness centrality
(entire multilayer network) in the alpha and gamma frequency
bands.

Finally, we examined inter-layer heterogeneity via Pearson
correlation of intra-layer connections (for each participant). This
distribution of correlation coefficients (among participants and
trials) is presented in Figure 4C. The analysis results indicate that
the majority of inter-layer correlation coefficients are relatively low,
predominantly concentrated around 0. This means there was not
much in common in the structure between the layers.

3.2 Dynamic analysis results

We examined differences in the dynamic features computed
from the multilayer network state sequences during FL vs. MW,
pooling data across participants-trials (Figures 5, 6).

For the delta frequency band (Figure 5A), MW had a
significantly higher occurrence frequency (p = 0.042) for the
multilayer network state A. MW had significantly lower the state
D frequency (p = 0.009), state A coverage (p = 0.028), and state
D coverage (p = 0.024). As shown in Figure 6A, the transition
probability from state A to state B was significantly higher for
FL (p = 0.000). The transition probability from state D to state
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FIGURE 4

Static analysis results. (A) P-value plot of significant di�erences in edge weights between MW and FL. Color in the heat map indicates the p-value of

the statistical test. Triangles indicate significant di�erences. (B) P-value plot of significant di�erences in node closeness centrality between MW and

FL. (C) Histograms (across participants and trials) of Pearson correlation values between corresponding edges of the two layers.

C was significantly lower for FL (p = 0.011). The permutation
test checking for fully random transitions yielded p=0.204 for FL
and p = 0.001 for MW. This means that there was structure in
the observed transition values (for states found in our analysis)
in the MW condition that cannot be completely attributed to the
frequencies of the states.

For the theta frequency band (Figure 5B),MWhad significantly
lower state C frequency (p = 0.026). As shown in Figure 6B, the
transition probabilities from state C to state D (p = 0.012) and
from state D to state C (p = 0.029) were significantly lower for FL.
The permutation test yielded p = 0.012 for FL and p = 0.000 for

MW. This means that there was structure in the observed transition
values for both conditions that cannot be completely attributed to
the frequencies of the states.

For the alpha frequency band (Figure 5C), MW had
significantly lower state C frequency (p = 0.028) and state B
average duration (p = 0.04). As shown in Figure 6C, the transition
probabilities from state C to state D (p = 0.038) and from state D to
state C (p = 0.026) were significantly lower for FL. The transition
probability from state A to state B (p = 0.039) was significantly
higher for FL. The permutation test yielded p = 0.046 for FL and
p = 0.000 for MW. This means that there was structure in the
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FIGURE 5

Box and whisker plots (across participants) of occurrence frequency, average duration, and coverage of each multilayer network state for delta (A),

theta (B), alpha (C), beta (D), and gamma (E) frequency bands. Statistical significance (dashed boxes) was set at 0.05. *p < 0.05, **p < 0.01,

***p < 0.001.
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FIGURE 6

Diagram of multilayer network state transition probability di�erences between MW and FL for delta (A), theta (B), alpha (C), beta (D), and gamma (E)

frequency bands. Red arrows indicate a significantly higher transition probability in MW compared to FL, while blue arrows indicate a significantly

lower transition probability. Statistical significance was set at 0.05. *p < 0.05, **p < 0.01, ***p < 0.001.

observed transition values for both conditions that cannot be
completely attributed to the frequencies of the states.

For the beta frequency band (Figure 5D), MW had significantly
higher state A average duration (p = 0.003) and state A coverage (p
= 0.047). As shown in Figure 6D, the transition probabilities from
state A to state B (p = 0.015) and from state B to state A (p =
0.036) were significantly higher for FL. The transition probability
from state B to state D (p = 0.030) was significantly lower for FL.
The permutation test yielded p = 0.386 for FL and p = 0.000 for
MW. This means that there was structure in the observed transition
values in theMW condition that cannot be completely attributed to
the frequencies of the states.

For the gamma frequency band (Figure 5E), there were no
significant differences between FL and MW in the dynamics
characteristics. As shown in Figure 6E, the transition probability
from state B to state A (p = 0.038) was significantly higher for FL.
The permutation test yielded p = 0.010 for FL and p = 0.002 for
MW. This means that there was structure in the observed transition
values for both conditions that cannot be completely attributed to
the frequencies of the states.

In terms of frequency bands, delta had more pronounced
differences between MW and FL, indicating a closer association
between the delta frequency band andMW. In terms of states, there

was a higher occurrence of significant differences for states A and
B across frequency bands, with state A exhibiting more significant
differences, suggesting its relative importance in MW.

3.3 Classification performance

We used state sequences as input to a HMM based method
for classification of MW vs. FL. The mean (across participants)
classification AUC was 0.888 ± 0.070 [mean ± standard
deviation(std)]. We examined how dependent classification
accuracy was on the length of a sequence by varying the proportion
of the entire testing data sequence used (Figure 7A). Results
indicate that with an increasing amount of testing data, the
accuracy rises: this increase is fast for less than about 25 s of data
and slower for more than 25 seconds of data. Considering that our
decoding algorithm automatically selects frequency band based
on the training data, we conducted a statistical analysis of the
frequency band selection results. From Figure 7B, it is evident that
the delta frequency band was selected most often. This is consistent
with our above findings in terms of dynamics feature differences,
suggesting that delta band has the most useful features. Using the
experimental data examined in this work, Tang et al. employed a
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FIGURE 7

Decoding results using an HMM-based classifier. (A) AUC for di�erent test set lengths. Left vertical axis for AUC corresponds to the red line. Error bars

represent 95% confidence intervals. Right vertical axis for testing set length corresponds to the blue line. Horizontal axis denotes proportion of the

testing set. (B) Number of times each frequency band was automatically chosen during parameter fitting.

radial basis function kernel support vector machine classifier with
Riemannian-processed covariance features. Their approach had
a mean AUC of 0.876 ± 0.070 for within-participant prediction
(Tang et al., 2023).

To compare the classification results from the HMM with
traditional classification methods, we used band-power features of
EEG signals across various frequency bands and static functional
connectivity features (AEC and IPLV were chosen as functional
connectivity measures because they were used to calculate the
multilayer network connections in this study) as inputs to machine
learning models, including radial basis function kernel support
vector machine (SVM), logistic regression (LR), and decision
tree (DT). The parameters of these classifiers were the default
values of the scikit-learn (version 0.24.1) implementations we used.
For these comparison methods, we report the best classification
results among all frequency bands. Note that these traditional
methods employed the same 8-fold cross-validation protocol as
the HMM algorithm. The time segments corresponding to the
training and testing sets were the same as those for the HMM
classification. Furthermore, to provide a more comprehensive
assessment of classification performance, we also report the F1
score, as detailed in Table 1. The classification results showed
that HMM performed better than the comparison methods. The
primary aim of this study is to show that dynamic brain network
analysis can capture differences in brain activity during periods
of MW vs. focused learning. The classification performance of
the HMM using dynamics analysis features further supports the
effectiveness of dynamics analysis for detecting MW.

4 Discussion

We proposed a network dynamics analysis method for EEG
data based on multilayer functional connectivity networks and
a classification method using network state sequences as input
for detecting mind-wandering states. In our work, four typical
multilayer network states were found. Two of these states were

TABLE 1 Results of mind-wandering detection by di�erent classification

methods.

Classification
methods

AUC (mean
± std)

F1 score
(mean ± std)

HMM 0.888± 0.070 0.851± 0.107

(Tang et al., 2023) 0.876± 0.070 –

Power

SVM 0.851± 0.188 0.802± 0.185

LR 0.876± 0.122 0.774± 0.174

DT 0.795± 0.139 0.796± 0.142

AEC

SVM 0.870± 0.123 0.817± 0.167

LR 0.885± 0.104 0.817± 0.167

DT 0.804± 0.147 0.807± 0.144

IPLV

SVM 0.551± 0.086 0.533± 0.137

LR 0.556± 0.108 0.711± 0.108

DT 0.709± 0.202 0.750± 0.172

similar between frequency bands. We found that statistics of the
multilayer network state sequence (network dynamics features)
were significantly different between MW and focused learning.
Finally, when we used the multilayer network state sequence as
input for an HMM-based classifier, we could detect MWwith 0.888
AUC (within-participant prediction).

While there are limitations on the interpretation of network
analysis when using EEG electrodes as nodes, instead of using
voxels or regions of interest as nodes, due to the possible confound
of volume conduction effects, we have mitigated this to some extent
by choosing AEC and IPLV as the connectivity metrics, which are
known to be relatively less sensitive to volume conduction effects
(Lai et al., 2018; Jian et al., 2017). Still, caution is advised in the
neuroscientific interpretation of our results.

In comparison to the FL condition, the state A during
MW exhibits significantly higher occurrence frequency, average
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duration, and coverage in the delta and beta frequency bands
(Figures 5A, D). In addition, state D shows significantly lower
frequency, average duration, and coverage in the delta and alpha
frequency bands (Figures 5A, C). The state A is characterized by
stronger information transfer in the frontal lobe area and left
occipital lobe area compared to other brain regions. The multilayer
network state D is characterized by weaker information transfer
in the left frontal lobe area compared to other brain regions. This
suggests that the efficiency of information transmission in the
frontal lobe area and left occipital lobe area is higher during MW.

Previous studies indicate a correlation between the prefrontal
cortex activity and MW (Bernhardt et al., 2014; Chou et al., 2017).
Godwin et al. (2023) found that, compared to on-task and task-
related interference, during off-task and inattention states, there is
higher fMRI activation within the inferior frontal gyrus. Braboszcz
and Delorme (2011) found that occipital and fronto-lateral power
was significantly changed in the MW state compared to the
breath focus state. Through EEG recordings during live lectures,
Dhindsa et al. (2019) observed significant changes in power across
occipitoparietal, frontal, temporal, and occipital regions. To our
knowledge, there is little research on the dynamics of functional
connectivity networks of MW. The findings of our study offer a
basis for future research.

EEG MW detection studies have predominantly focused on
event-related potentials (ERP) and spectral features. Dong et al.
(2021) classified attention states both within and across participant
using ERP measures and support vector machines, obtaining
0.715 AUC within participant and 0.613 AUC across participants.
Dhindsa et al. (2019) used common spatial patterns to discover
scalp topologies for individual-level classification ofMW, obtaining
average accuracy of 80–83%. Kawashima and Kumano (2017)
used power and coherence of EEG signals to detect MW during
sustained attention to response tasks. Their findings suggest that
a nonlinear model incorporating multiple electrodes exhibited
higher predictive accuracy for MW compared to a linear model
using individual electrodes. Tang et al. (2023) employed spatial
covariance features, processed through Riemannian geometry
(using the same EEG data as in this study) with a radial basis
function kernel support vector machine classifier. Unlike the above,
in this study, we perform MW detection using multilayer network
state sequences as input for an HMM classifier, offering a promising
new feature construction methodology.

The analysis and results in this study are based on EEG data
from 14 participants, which is relatively small and a limitation of
our work. In the future, we hope to include more participants
to further validate results. While EEG offers superior temporal
resolution compared to fMRI, its spatial resolution is relatively
limited. Since the current study is exploratory in nature, many
results can benefit from verification. Further studies with more
channels and experimental data can help confirm our analyses
and investigate the characteristics of network dynamics under
MW. Notably, our dataset has only eight channels, a deliberate
choice aimed at evaluating methods that are feasible when paired
with a practical recording system. We intend to increase the
number of channels in forthcoming experiments and analyses. The
electrode-level functional connectivity in this study is susceptible
to volume conduction, implying that a portion of the computed

connectivity may originate from physics rather than neural
synchrony. To address this, our future work will incorporate source
localization, facilitating network analysis in terms of brain regions
and mitigating volume conduction effects.

5 Conclusion

We investigated the dynamical characteristics of multilayer
functional connectivity networks during mind-wandering. Our
findings reveal relationships between the dynamical changes in
multilayer networks and mind-wandering. By using multilayer
network state sequences as input features, we were able to
detect participants’ mind-wandering. Our approach demonstrates
the potential to analyze the dynamics of multilayer functional
connectivity networks constructed from EEG data and detect
mind-wandering based on analysis results.
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