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There is a well-established link between physical activity and brain health. As

such, the effectiveness of physical exercise as a therapeutic strategy has been

explored in a variety of neurological contexts. To determine the extent to

which physical exercise could be most beneficial under different circumstances,

studies are needed to uncover the underlying mechanisms behind the benefits

of physical activity. Interest has grown in understanding how physical activity

can regulate microglia, the resident immune cells of the central nervous system.

Microglia are key mediators of neuroinflammatory processes and play a role

in maintaining brain homeostasis in healthy and pathological settings. Here,

we explore the evidence suggesting that physical activity has the potential to

regulate microglia activity in various animal models. We emphasize key areas

where future research could contribute to uncovering the therapeutic benefits

of engaging in physical exercise.
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Introduction

It is largely accepted that physical exercise (PE) can promote brain health and cognitive
function. Reports in humans show that moderate to vigorous PE can enhance cognition
(Colcombe and Kramer, 2003; Angevaren et al., 2008; Hamer et al., 2018; Cheval et al., 2023;
James et al., 2023; Li W. et al., 2023). However, the cellular mechanisms that underlie this
phenomenon are still an active area of exploration. Traditionally, studies have examined
how PE regulates wiring of neuronal connections to enhance cognitive function (Festa et al.,
2023). However, recent focus has shifted toward how exercise may regulate inflammation
and the immune response in the central nervous system (CNS).

Microglia are the resident immune cells of the CNS responsible for mediating
inflammatory responses, tissue maintenance, and synapse remodeling (Li and Barres,
2018; Whitelaw et al., 2023). Many therapeutics are designed to target microglia activity,
as it is tightly linked to neuronal health and cognitive function. Under homeostatic
conditions, microglia are highly ramified and maintain discrete territories with uniform
dispersal throughout the brain (Nimmerjahn et al., 2005). Plasticity, the brain’s ability to
adapt both functionally and structurally to intrinsic and extrinsic stimuli, is an ongoing
process that begins in development and continues throughout a lifespan. Microglia are
active participants in plasticity, perpetually undergoing functional and structural changes,
extending and retracting their processes to survey their environment and monitor the
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functional state of the brain (Nimmerjahn et al., 2005; Wake et al.,
2009). In doing this, microglia dynamically interact with synaptic
elements to facilitate synapse remodeling (Wake et al., 2009;
Tremblay et al., 2010; Paolicelli et al., 2011; Nebeling et al., 2023).
These interactions are governed by a variety of signaling pathways
and molecules reviewed in Whitelaw et al. (2023), including
norepinephrine and BDNF which are known to be produced
during PE (see “Exercise Increases Known Modulators of Microglia
Activity”). Beyond synapse regulation, microglia serve critical
functions in regulating myelination, injury and inflammatory
responses, and neurogenesis, reviewed in Bobotis et al. (2024).
Perturbations of microglial function have been described in
numerous neurological diseases and disorders. Functional changes
in microglia are often accompanied by alterations in microglial
morphology, number, distribution, and phenotype characterized
by altered expression of various molecules (Paolicelli et al., 2022;
Bobotis et al., 2024). In certain circumstances, microglial activity
can decrease or shift to different functions resulting in a diminished
ability to migrate, respond to injury and clear debris (Hefendehl
et al., 2014; Thomas et al., 2022). In other cases, microglia can
engage in excessive synaptic pruning, or release pro-inflammatory
factors that can contribute to cognitive decline (Hong et al.,
2016; Pinto et al., 2020). By targeting microglia activity, these
processes can be differentially impacted in health and disease. Thus,
discovering strategies to modulate microglia activity is of great
interest. However, the overall effects of PE on deficits in function
and cognition depend on the timing of the exercise intervention.
For more discussion on how changes in microglial activity and
function can impact the brain during development as well as in
health and disease, please see Paolicelli and Ferretti (2017) and Gao
et al. (2023).

This review focuses on how PE has been shown to modulate
microglia function in different animal models and highlight
areas where further research could be beneficial (Figure 1).
An overview of the comprehensive review process is shown
in Supplementary Figure 1. Studies were reviewed from the
PUBMED search query: ((((exercise[Title/Abstract]) OR (physical
exercise[Title/Abstract])) OR (physical activity[Title/Abstract]))
AND (microglia[Title/Abstract])) NOT (review[Publication
Type]). This resulted in a list of studies which were published
over a twenty-year span (between 2003 and November 21, 2023;
Figure 2A). Select research studies within the scope of this
review which were found manually outside the search parameters
stated above were also included. Only peer reviewed, primary
research studies were included. Data was manually extracted from
each study on microglia parameters in various exercise animal
models. Studies which only analyzed cytokines were excluded
due to their possible contributions from multiple cell types. For
a detailed review on how different exercise paradigms impact
pro and anti-inflammatory cytokines (please see Mee-Inta et al.,
2019). Cytokines were included as a parameter measured if the
study measured cytokines from isolated hippocampal microglial
or in conjunction with other microglial parameters. Phenotypic
parameters encompass measurements of microglia expression of
different markers and molecules, including, but not limited to
cluster of differentiation 68 (CD68), C-X3-C motif chemokine
receptor 1 (CX3CR1), cluster of differentiation 86 (CD86), major
histocompatibility complex class 2 (MHCII), insulin-like growth
factor 1 (IGF-1), brain-derived neurotrophic factor (BDNF),

Complement C1q A Chain (C1QA), mannose receptor (CD206),
and galectin-3 (Gal-3). Studies were excluded if they were not
available in English, did not use animal models, did not directly
measure microglia parameters, or did not include an exercise
intervention (Supplementary Figure 1). Studies using the types of
exercise described in Figure 2E were included in this review, which
led to the exclusion of one study using “foraging exercise.” All
studies included in this review and their information is reported in
Supplementary Table 1.

Physical exercise and microglial
activity

There is a clear increase in interest in the effects of physical
exercise on microglial function, with more studies being published
over time which examine microglial functions in response to
physical exercise (Figure 2A). Of these studies, the majority used
male mice (66.9%), and fewer used females (20.4%). A small percent
of studies examined both males and females (7%; Figure 2B).
Studies in humans have demonstrated sex-differences in sensitivity
to exercise, with women showing smaller BDNF changes after
exercise on average (Szuhany et al., 2015), highlighting the necessity
to use both sexes in animal studies. Furthermore, as microglia
phenotypes are sex-dependent (Guneykaya et al., 2018; Ochocka
and Kaminska, 2021), there is a clear need for more studies
which directly compare male and female responses to physical
exercise. Most studies used mouse models (Figure 2B), and while
many different brain regions were examined, the hippocampus
was the most frequently studied brain area (Figure 2C). As
microglia are regionally heterogenous and exhibit functional
differences in different regions (Tan et al., 2020; Ochocka and
Kaminska, 2021), it is important for studies to perform regional
comparisons in the future. Various microglial parameters were
assessed, with most studies examining cell number, phenotype,
and morphology (Figure 2D). Surprisingly, few have explored how
exercise may influence microglia dynamic activities, such as process
motility and surveying capacity or soma translocation (Figure 2D).
When examining the different types of exercise implemented, the
majority used treadmill running, a running wheel, and swimming
(Figure 2E). Additionally, different durations of physical exercise
were used, where most animals underwent 1 to 2 months of exercise
(Figure 2F). Lastly, most studies examined the effects of physical
exercise in models of neurodegeneration, followed by stroke, and
aging (Figure 2G).

Physical exercise and microglia in
the healthy brain

In the healthy brain, exercise can improve cognitive function
in both humans (Colcombe and Kramer, 2003; Angevaren et al.,
2008; Hamer et al., 2018; Cheval et al., 2023; James et al., 2023)
and rodents (van Praag et al., 1999a,b). Understanding how
exercise modulates microglia activity in the healthy brain could
provide insight into the mechanisms behind the positive benefits
of exercise, as microglia play important roles in circuit maturation
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FIGURE 1

Physical exercise regulates microglia activity in rodent models. Figure made with Biorender.com.

and synaptic remodeling in different brain areas (Wake et al., 2009;
Tremblay et al., 2010; Paolicelli et al., 2011; Nebeling et al., 2023).
There are a limited number of investigations into how exercise may
regulate microglia activity exclusively under healthy conditions
using rodent models (Figure 3A). Males were most frequently used
in experiments, with half as many studies employing both males
and females (Figure 3B). Mouse models were more commonly
employed compared to rat models, with C57BL/6 mice being
the most utilized strain (Figure 3B). Most studies examined the
hippocampus (<60%, Figure 3C), highlighting a gap in studies
examining exercise regulation of microglia in a healthy setting
in other brain areas, such as the cerebellum. Studies measured
microglial parameters including number, proliferation, phenotype,
morphology, cytokines, dynamics, and area (Figure 3D). Most used
a running wheel for exercise (Figure 3E) and animals underwent
exercise for either 1-2 or 3-4 weeks (Figure 3F). In healthy rats
and mice, increased microglial numbers have been reported in the
hippocampus (Xu et al., 2016; Sun et al., 2017) and hypothalamus
(Soch et al., 2016). In healthy mice, 10 days of voluntary wheel
running (VWR) can change microglial proliferation within specific
brain areas, with increased proliferation reported in several cortical
layers and the hippocampus (Ehninger and Kempermann, 2003;
Olah et al., 2009; Ehninger et al., 2011). Despite this increase
in proliferation, no changes in morphology were observed (Olah
et al., 2009). However, longer durations of VWR can induce
changes in the hippocampal microglial phenotype (alterations
in CD86/MHCII+, mammalian target of rapamycin (mTOR),
CX3CR1 expression) in a healthy setting (Kohman et al., 2013;
Lloyd et al., 2017; Williams et al., 2023). Until recently, the
effects of exercise on the normal basal surveillance carried out by
microglial processes had not been examined. In recent a study,
we found one month of VWR did not have effects on primary
somatosensory cortical (S1) microglial number, morphology, or
dynamics in healthy male or female mice (Strohm et al., 2024).

However, it is possible that other forms of exercise, such as
treadmill running, or longer durations of exercise could impact
microglial dynamics. It is also possible that microglial dynamics
are more sensitive to exercise in other brain areas, such as the
hippocampus. Of note, hippocampal microglial process dynamics
can be regulated by BNDF (Onodera et al., 2021), which is
increased with exercise (see below). This was demonstrated by
Onodera et al. who observed increases in hippocampal microglial
process motility and engulfment of mossy fibers when BDNF was
pharmacologically blocked in hippocampal slices (Onodera et al.,
2021). Whether exercise is sufficient to alter microglial dynamics
in the hippocampus through changes in BDNF remain to be
determined. A comprehensive study of different PE paradigms may
provide insight into the regional and sex- dependent effects of
exercise microglia in healthy settings. Hence, further research is
required to draw conclusions regarding the capacity of physical
exercise to regulate microglia activity under healthy conditions and
the consequences of exercise-induced microglial changes on circuit
maintenance.

Physical exercise and microglia in
neurodevelopmental models

Microglial play crucial roles in neurodevelopment, engaging
in synaptic pruning, regulating neuronal viability and migration,
as well as axonal sprouting (Paolicelli and Ferretti, 2017).
Dysregulation of their activity is thought to contribute to the
pathology of neurodevelopmental disorders. Recent meta-analyses
show that physical exercise can improve executive function in
children with atypical neurodevelopment (Shi et al., 2024) and
reduce social disorders as well as repetitive behaviors in children
with autism spectrum disorder (Wang S. et al., 2023). A modest
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FIGURE 2

Summary of physical exercise and microglia activity. (A) Percent of studies published each year within the scope of this review. Total number of
studies included in review = 142. (B) Percent of studies utilizing male, female, or both sexes (top) and species used (bottom). (C) Percent of studies
which examine microglia in the brain regions shown. (D) Percent of studies which measured microglia parameters shown. (E) Percent of studies
utilizing different types of exercise paradigms. (F) Number of studies implementing exercise paradigms of various durations. (G) Percent of studies
published on each topic shown. Numbers of studies are included next to the bars for percentage plots. For (C–E), percentages exceed 100% as some
studies measured more than one microglial parameter, examined more than one brain region, or implemented more than one form of exercise.

number of studies have sought to understand how PE may regulate
microglial function during the progression of neurodevelopmental
disorders using rodent models (Figures 4A,B). Most of these
studies have focused on neurodevelopmental outcomes in males
(Figure 4C, 57.1%), with Wistar rats being the most utilized strain
(Figure 4C). Most studies measured microglial parameters in the
hippocampus, followed by the cerebellum (Figures 4D, E). Exercise
inventions were conducted using running wheels, treadmills,
or swimming (Figure 4F). Interestingly, Shariat et al. (2024)
showed that aquatic exercises are effective at improving motor
and social skills in children with neurodevelopmental disorders,
making the effects of swimming intervention on microglial
activity of interest. One study investigated the effectiveness of
a swimming intervention in a mouse model of prenatal Zika
virus exposure, finding swimming exercise during ZIKA exposure
during pregnancy prevented behavioral defects, brain atrophy,
and microglial reactivity in the hippocampus (De Sousa et al.,
2022). Most studies implemented exercise protocols for 1 month
(Figure 4G), although one study utilized a 12-day exercise regimen
(Gursky et al., 2020) and two implemented exercise protocols for
approximately 2 months (Vetreno et al., 2017; Guo et al., 2022).

Physical exercise and microglia in fetal
alcohol spectrum disorders

There is evidence suggesting that exercise may offer benefits
to children with fetal alcohol spectrum disorders (FASD), as
improvements in executive function have been observed following
exercise intervention, persisting for up to 3 months post-
intervention (Pritchard Orr et al., 2018). Microglia have been
suggested to play a role in FASD pathology although this is still
under active investigation. In mice, microglia dynamics appear to
be minimally affected in both the cortex (Wong et al., 2021) and
lobule 4/5 of the cerebellum (Cealie et al., 2023) in a third-trimester
equivalent mouse alcohol exposure model of FASD. However,
Gursky et al. showed that a similar alcohol exposure increased
microglial density and reduced ramification in lobules 1-4 of the
cerebellum. Additionally, alcohol-exposed mice exercising for 12
days had decreased microglial density and increased number of
ameboid microglia in lobules 1-4 of the cerebellum (Gursky et al.,
2020), demonstrating the potential for exercise to reverse some
microglial effects in models of alcohol exposure. Furthermore,
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FIGURE 3

Physical exercise and microglia in the healthy brain. (A) Percent of studies published each year examining effects of physical exercise on microglia in
a healthy setting. Total number of studies = 8. (B) Percent of studies utilizing male, female, or both sexes (top), various species (middle), and strain
(bottom). (C) Percent of studies which examine microglia in the brain regions shown. (D) Percent of studies which measured microglia parameters
shown. (E) Percent of studies utilizing running wheel or treadmill exercise. (F) Number of studies implementing exercise paradigms of various
durations. Numbers of studies are included next to the bars for percentage plots. For (C,D), percentages exceed 100% as some studies measured
more than one microglial parameter or examined more than one brain region.

exercising for 2 months can counteract adolescent intermittent
alcohol exposure-induced increases in microglial number (Vetreno
et al., 2017), morphological activation (Guo et al., 2022), and
pro-inflammatory cytokine production (Guo et al., 2022). Further
studies on how PE may regulate microglial function in FASD
models could help uncover the therapeutic potential of exercise in
FASD.

Physical exercise and microglia in other
models of neurodevelopmental disorders

Other rodent models of neurodevelopmental disorders have
studied exercise effects on microglia, including developmental

valproic acid exposure, cyclin-dependent kinase-like 5-deficiency
disorder, and maternal immune activation (Figure 4B). In a
developmental valproic acid exposure model, Cho et al. (2016)
found that treadmill exercise after birth for 1 month ameliorated
motor dysfunction and inhibited microglial reactivity in the
cerebellum. In a mouse model of cyclin-dependent kinase-like
5-deficiency disorder—a developmental encephalopathy resulting
from genetic mutations in the CDKL5 gene—VWR for 1 month
in adulthood improved behavioral outcomes and neurogenesis,
while also preventing increases in microglial density and cell
body size (Mottolese et al., 2023). Furthermore, Andoh et al.
(2019) found that VWR in adulthood could reverse behavioral and
synaptic deficits in offspring after maternal immune activation,
probably by enhancing microglial pruning in the hippocampus.
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FIGURE 4

Physical exercise and microglia in neurodevelopmental models. (A) Percent studies published by year examining effects of physical exercise on
microglia in neurodevelopmental models. Total number of studies = 7. (B) Percent of studies using various neurodevelopmental models. (C) Percent
of studies utilizing male, female, or both sexes (top), various species (middle), and strains (bottom). (D) Percent of studies which examine microglia in
the brain regions shown. (E) Percent of studies which measured microglia parameters shown. (F) Percent of studies utilizing different types of
exercise paradigms. (G) Number of studies implementing exercise paradigms of various durations. Numbers of studies are included next to the bars
for percentage plots. For (C–E), percentages exceed 100% as some studies used multiple strains, measured more than one microglial parameter, or
examined more than one brain region.

These changes were observed in the absence of changes in the
density of microglia or CD68 volume. This highlights the ability
of exercise to stimulate microglial phagocytic activity, which could
be beneficial in neurodevelopmental diseases where microglia fail
to prune synapses. Together these studies provide evidence that
exercise may be beneficial in counteracting changes in microglia
function associated with neurodevelopmental deficiencies.

Novel avenues to explore the role of
physical exercise in neurodevelopmental
models

There are several other mouse models of autism that could
also been used to test the effects of physical activity on
microglial function. It would be interesting to test whether exercise
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intervention in adulthood would also be useful in the Neuroligin-
3 (NL3R451C) mouse model of autism, where microglial density,
morphology and injury response has been shown to be altered
(Matta et al., 2020; Guneykaya et al., 2023). It may also be
interesting to test the effectiveness of exercise intervention in
multiple ankyrin repeat domains 3 (Shank3) mutant mice, which
model autism spectrum disorder, Phelan-McDermid Syndrome,
and schizophrenia. Shank3 is an abundant excitatory post-synaptic
scaffolding protein and mutant mice show synaptic and behavioral
deficits. Microglia exhibit a sex specific expression of Shank 3,
with lower expression in male microglia compared to female
microglia (Villa et al., 2018). Microglia morphology and density are
reported to be unaltered in adult Shank3 mutant mice (Cope et al.,
2016). However, a newer report shows changes in transcriptomic
expression of microglial genes in several regions between juvenile
and adult Shank3 mutant mice (Yoo et al., 2022). It is therefore
possible that microglia may have altered functions at different
developmental stages in this model. Whether physical activity could
counter some of these microglial changes in these models have not
yet been tested.

It is also possible that the benefits of exercise could extend to
other neurodevelopmental diseases, such as fragile X syndrome.
Fragile X syndrome is the most common cause of inherited
intellectual disability caused by hypermethylation of the Fmr1 gene,
which impairs translation of Fragile X messenger ribonucleoprotein
1 protein (FMRP). Exercise can regulate FMRP expression in
wild type mice (Yan et al., 2023) and stimulate hippocampal
neurogenesis in FMRP-/- mice (Pinar et al., 2018). However, no
studies have reported the effects of exercise on microglia activity
in a mouse model of fragile X. Moreover, exercise may serve as
a beneficial intervention for Rhett syndrome, a severe disorder
that is caused by the loss of function of X-linked methyl-CpG-
binding protein 2 (Mecp2). In humans, some reports suggest
treadmill walking may benefit females with Rett syndrome (Larsson
et al., 2018; Stahlhut et al., 2020). These results are mirrored
in mouse models of Rhett syndrome, where forced exercise
improved coordination and anxiety in Mecp2-null mice (Yue et al.,
2021). Microglia have been implicated in the pathogenesis of Rett
syndrome in MECP2-null mice both in the early (Zhao et al., 2017)
and end stages of the disease (Schafer et al., 2016). Therefore,
testing different durations and timing of exercise intervention in
this model could help uncover whether benefits of exercise may
be tied to changes in microglial activity. Altogether, knowledge on
the effects of physical activity in neurodevelopmental model remain
limited and there is great opportunity for further research.

Physical exercise regulates microglia
during aging

As the population continues to age, understanding how PE may
regulate microglia during aging holds significant value. In elderly
humans, increasing evidence indicates that higher levels of PE
can regulate microglial morphology, potentially predicting changes
in synaptic protein expression or cognitive function (Casaletto
et al., 2022). There is a consensus that cognitive function declines
without widespread neuronal loss during healthy aging (Gómez-
Isla et al., 1996; Freeman et al., 2008), contrasting observations in

neurodegenerative diseases where cognitive deficits are associated
with synaptic loss and abnormalities. In congruence with this,
microglial phenotypes observed in aging are thought to be distinct
from those seen in neurodegenerative diseases. In the aging
rodent brain, microglia become “primed” with an exaggerated
inflammatory response (Perry and Holmes, 2014) and shift to more
pro-inflammatory phenotype characterized by increases in MHCII,
CD68, CD86, and complement receptor 3 (CR3) expression (Perry
et al., 1993; Kohman et al., 2013; Giorgetti et al., 2019), rendering
them more sensitive to insults or stimuli. An example of this
“primed” response to insult was demonstrated in stroke models,
where aged microglia exhibited distinct differences in expression of
interferon regulatory factors 4 and 5 in vivo (Ngwa et al., 2022) and
enhanced phagocytosis capacity and more cytoplasmic inclusions
in vitro (Ngwa et al., 2021) following stroke. Furthermore, microglia
in aged mice exhibit differences in morphology and number
compared to adult mice, mirroring changes observed in post-
mortem human samples (Davies et al., 2017; Edler et al., 2021).
Generally, microglia display less ramified processes with increased
cell soma size with age (Perry et al., 1993; Hefendehl et al.,
2014; Davies et al., 2017; Tejera et al., 2019). Such decreases in
microglial process ramification have been reported in multiple
brain regions with age, including the cortex (Hefendehl et al., 2014;
Davies et al., 2017; Tejera et al., 2019), hippocampus (Aires et al.,
2021), and retina (Damani et al., 2011; Choi et al., 2022). Changes
in microglia numbers and distribution with age are conflicting,
with some studies reporting increases in microglia density in the
hippocampus (Mouton et al., 2002), cortex (Tremblay et al., 2012)
and retina (Damani et al., 2011), while others report no differences
(Long et al., 1998; Choi et al., 2022), and some show decreases
(Hayakawa et al., 2007; Adachi et al., 2010). In the spinal cord,
the overall microglial cell area was increased in aged mice with
a non-significant trend toward increased cell numbers (Giorgetti
et al., 2019). The substantia nigra follows a similar trend, with
age-related increases in microglial area and number (Wang T. F.
et al., 2022). Microglial dynamics also change with age and by
region. In the cortex, microglia process motility decreases with age,
while soma movement increases (Hefendehl et al., 2014). Similar
age-related decreases in microglial motility have been observed in
the retina (Damani et al., 2011). In the hippocampus, microglia
process surveillance decreases in aged mice, with no alterations in
motility (Aires et al., 2021). Overall, there is strong evidence that
aged microglia function differently than younger microglia, and
regulating or preventing some of these morphological, dynamic,
and phenotypic changes could be used in the treatment of age-
related neurocognitive diseases.

The interest in understanding how PE can regulate microglial
activity during aging has remained relatively steady (Figure 5A).
Many studies exclusively used males (Figure 5B, > 65%), again
underscoring the necessity for more research including females.
Among these studies, the majority employed mouse models,
with C57BL/6 mice being the most utilized strain (Figure 5B).
The overwhelming majority of studies investigated microglial
parameters in the hippocampus (Figure 5C, > 70%), highlighting a
significant gap in our understanding of how exercise may modulate
aged microglial activity in other brain regions (Figures 5C,D). Most
studies utilized a running wheel as the form of exercise, where
most subjects underwent exercise for a duration of 1–2 months
(Figures 5E,F). PE can regulate the phenotype of microglia in
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aged mice across various brain regions, including the spinal cord,
hippocampus, and cortex (Kohman et al., 2012, 2013; Littlefield
et al., 2015; Soto et al., 2015; Giorgetti et al., 2019; Mela et al.,
2020). These changes encompass decreased expression of activation
markers such as CD86 and MHC II (Kohman et al., 2013) as well
as components of the complement pathway (Soto et al., 2015),
alongside increased expression of neurotrophic factors like IGF-1
and BDNF in aged microglia (Kohman et al., 2012; Littlefield et al.,
2015). Furthermore, exercise can modulate age-related changes in
inflammation (interleukin 1- beta (IL-1β)) and signs of senescence
(as evidenced by expression of β-Galactosidase and p16I NK 4A)
(Mela et al., 2020). Additionally, Mela et al. (2020) found that
microglia isolated from aged mice that exercised exhibited altered
phagocytic capacity and reduced glycolysis. In aged mice, longer
durations of physical exercise ranging from 5 weeks to 6 months
consistently reduce numbers of microglia in the hippocampus
(Kohman et al., 2012, 2013; Littlefield et al., 2015; He et al., 2017),
cortex (Soto et al., 2015; He et al., 2017), and substantia nigra
(Wang T. F. et al., 2022). However, two studies implementing an
exercise duration of 4 weeks reported no changes in microglial
numbers in the hippocampus of aged mice (Vukovic et al., 2012;
Singhal et al., 2021). Collectively, these findings indicate a strong
effect of exercise on microglial function during aging. Whether
exercise can mitigate age-induced changes in microglial soma and
process dynamics remains to be determined.

Moreover, exercise has been demonstrated to regulate
microglial responses to secondary insults in aged rodents.
For instance, exercise prevented E. coli infection-induced
inflammatory cytokine production and age-related priming
in rats (Barrientos et al., 2011). Littlefield et al. found exercise
increased the proportion of BDNF+/ ionized calcium-binding
adapter molecule 1 (Iba1)+ cells in the hippocampus of aged
mice, even in mice subjected to LPS administration (Littlefield
et al., 2015). This suggests strong beneficial effects of exercise even
in the presence of secondary injury. Microglial morphology has
also been shown to be influenced by interactions between age,
enriched environments containing running wheels, and Piry viral
infection (de Sousa et al., 2015). However, some reports show aged
microglia have a dampened injury response to laser ablation in
the cortex (Hefendehl et al., 2014; Brawek et al., 2021) and retina
(Damani et al., 2011), implying that a decreased response to injury
might contribute to exacerbated pathology as individuals age.
Whether exercise can ameliorate these differential responses of
microglia to different insults with age should be examined.

Physical exercise regulates microglia
in neurodegenerative models

Microglia are pivotal in both the development and progression
of neurodegenerative disease. When in a reactive state, microglia
aid in clearing debris, phagocytose and eliminate protein
aggregates, and offer neurotrophic support. Dysfunction in these
processes can lead to the accumulation of toxic protein aggregates,
further exacerbating neurodegeneration. However, prolonged
activation of microglia can trigger chronic neuroinflammation,
marked by the release of pro-inflammatory cytokines and reactive
oxygen species, thereby promoting neurodegeneration. Notably,

“reactive,” ameboid microglia have been observed in tissue from
human patients with many neurodegenerative diseases (McGeer
et al., 1988), including Huntington’s disease (HD) (Vonsattel
et al., 1985; Sapp et al., 2001), amyotrophic lateral sclerosis (ALS)
(Brettschneider et al., 2012; Dols-Icardo et al., 2020), Alzheimer’s
disease (AD) (Itagaki et al., 1989; Davies et al., 2017; Paasila
et al., 2019; Franco-Bocanegra et al., 2021), Multiple sclerosis
(MS) (Prineas et al., 2001; van Horssen et al., 2012; Singh et al.,
2013; Kuhlmann et al., 2017), and Parkinson’s disease (PD) (Knott
et al., 1999; Imamura et al., 2003). There has been a growing
interest in understanding how PE may influence the activity of
microglia in neurodegenerative diseases (Figure 6A). The effects
of PE on microglia activity are well-studied in the context of
neurodegeneration, particularly in rodent models of MS, AD
and PD (Figure 6B). The majority of studies primarily used
male mice (Figure 6C, 75%), which poses a problem considering
that several neurodegenerative diseases, such as AD and MS,
exhibit higher prevalence in females compared to males (Cao
et al., 2020; Walton et al., 2020). Possible explanations for the
higher experimental usage of males compared to females include
historical sex-bias toward male animals in research, variability
in experimental results due to the estrous cycle in females, and
limited availability of transgenic models of both sexes. Most of
these studies used mouse models (Figure 6C, 85%) employing
various strains to model different neurodegenerative diseases
and processes (Figure 6C). Although various brain regions have
been investigated, most studies assessed microglial parameters
in the hippocampus (Figures 6D, E, 75%). Treadmill exercise
was predominantly employed (Figure 6F, 50%), closely followed
by running wheels (Figure 6F, 30%). Additionally, most studies
implemented exercise protocols lasting between 3 weeks and 6
months (Figure 6G).

Physical exercise and microglia in
Alzheimer’s disease

AD is the most common form of dementia, estimated to
account for 60–70% of cases, and is characterized by tau and
amyloid pathology leading to substantial cognitive impairment
(World Health Organization, 2023). However, it is important to
note that there are individuals with neuropathological features
of AD that do not develop cognitive deficits (Bjorklund et al.,
2012). In the case of AD, there is substantial evidence showing
PE can exert beneficial effects on cognitive function (López-Ortiz
et al., 2023). A recent systematic review of 21 studies showed
exercise was associated with a lower risk of AD in humans (López-
Ortiz et al., 2023). Physical exercise can also increase network
connectivity in humans with mild cognitive impairment (Won
et al., 2023). While numerous animal models of AD exist, no
model recapitulates all aspects of AD pathology seen in humans.
AD animal models commonly utilize mutations in genes related
to amyloid beta [amyloid protein precursor (APP), presenilin-1
(PSEN1), presenilin-2 (PSEN2)] and tau [microtubule-associated
protein tau (MAPT)] processing, which lead to the formation
of plaques and neurofibrillary tangles (Sanchez-Varo et al., 2022;
Yokoyama et al., 2022). The predominant strain utilized to study
the impact of physical exercise on microglia in AD in animals is
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FIGURE 5

Physical exercise regulates microglia during aging. (A) Percent studies published by year examining effects of physical exercise on microglia during
aging. Total number of studies = 15. (B) Percent of studies utilizing male, female, or both sexes (top), various species (middle), and strains (bottom).
(C) Percent of studies which examine microglia in the brain regions shown. (D) Percent of studies which measured microglia parameters shown.
(E) Percent of studies utilizing different types of exercise paradigms. (F) Number of studies implementing exercise paradigms of various durations.
Numbers of studies are included next to the bars for percentage plots. For (B–D), percentages exceed 100% as some studies used multiple strains,
measured more than one microglial parameter, or examined more than one brain region.

the APP/PS1 mouse model (Figure 6C), in which transgenic mice
express human mutant APP and PS1 (Jankowsky et al., 2004).
In rodent models, many studies mirror the regulatory effect of
exercise on AD pathology seen in humans. Nonetheless, there are
some reports that physical exercise is ineffective in regulating AD
pathology in 5XFAD, APP/PS1, and Tg2576 mouse models, all
characterized by the presence of plaques in the absence of tau
pathology (Nichol et al., 2008; Xu et al., 2013; Zhang J. et al.,
2018; Belaya et al., 2020; Svensson et al., 2020). One study using
female Tg601 mice, which overexpress the wild-type human tau
sequence (2N4R), showed exercise promoted neuroinflammation

by increasing the number Iba1-positive microglial cells and levels
of inflammatory cytokines IL-1β and IL-18 in the hippocampus
(Elahi et al., 2016). In terms of specific microglial parameters,
conflicting evidence exists regarding the impact of exercise on
microglial numbers in AD mice. Some studies suggest that exercise
leads to a decrease in microglial numbers (Ke et al., 2011; Leem
et al., 2011; Rodríguez et al., 2015; Wang Y. et al., 2023; Yang et al.,
2023), while others indicate an increase (Elahi et al., 2016; Xu et al.,
2016; Hashiguchi et al., 2020; Zhang S. et al., 2022; Campos et al.,
2023), and some findings show no significant change in microglial
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FIGURE 6

Physical exercise and microglia in neurodegenerative diseases. (A) Percent studies published by year examining effects of physical exercise on
microglia in neurodegenerative models. Total number of studies = 40. (B) Percent of studies using models of various neurodegenerative diseases.
(C) Percent of studies utilizing male, female, or both sexes (top), various species (middle), and strains (bottom). (D) Percent of studies which examine
microglia in the brain regions shown. (E) Percent of studies which measured microglia parameters shown. (F) Percent of studies utilizing different
types of exercise paradigms. (G) Number of studies implementing exercise paradigms of various durations. Numbers of studies are included next to
the bars for percentage plots. For (C–E) percentages exceed 100% as some studies used multiple strains, measured more than one microglial
parameter, or examined more than one brain region.

density in AD mice (Xu et al., 2018; Zhang J. et al., 2018; Ziegler-
Waldkirch et al., 2018; Oroszi et al., 2023). In terms of microglial
phenotype, exercise can regulate CD68+ (Ziegler-Waldkirch et al.,
2018; Zhang S. et al., 2022; Oroszi et al., 2023; Wang Y. et al.,
2023), CD86+ (Lu et al., 2017; Zhang et al., 2019; Feng et al., 2023;
Yang et al., 2023), triggering receptor expressed on myeloid cells
2 (TREM2) (Zhang L. et al., 2022) and inflammatory molecules
(Xu et al., 2016, 2018; Nakanishi et al., 2021; Han et al., 2023) in
AD rodent models. Microglia morphology can also be regulated
by physical exercise in AD mice, with most studies reporting that
exercise reduces the numbers of reactive microglia and increases
process ramification (Ke et al., 2011; Leem et al., 2011; Xiong et al.,
2015; Xu et al., 2016; Lu et al., 2017; Zhang S. et al., 2022; Feng
et al., 2023; Oroszi et al., 2023). However, one study utilizing 3XTg-
AD mice, which exhibit plaque pathology and tau pathology at later
stages, showed that 9 months of exercise increased hippocampal
microglial hypertrophy (microglia surface, volume and somata
volume) (Rodríguez et al., 2015), indicating prolonged exercise
may have differential regulatory effects compared to exercise of
shorter durations. Interestingly, no studies have examined whether
physical exercise can regulate the dynamic behavior of microglia in
AD models. Such studies could help further uncover mechanisms

through which exercise can regulate the function of microglia in
the context of neurodegeneration.

Physical exercise and microglia in
multiple sclerosis

Exercising 60 min per day, 3 times or more per week, for
8–10 weeks can improve memory and cognitive function in MS
patients (Li G. et al., 2023). Several rodent MS models are used
to recapitulate different aspects of MS pathology. The cuprizone
demyelination model is representative of the relapsing remitting
form of MS present in most MS patients, whereas experimental
autoimmune encephalomyelitis (EAE) is representative of chronic
progressive MS (Ransohoff, 2012; Vega-Riquer et al., 2019).
Demyelination, inflammation, microglial activation, astrogliosis,
and behavioral disabilities are present in both cuprizone-treated
and EAE mice (Ransohoff, 2012; Vega-Riquer et al., 2019). The
cuprizone model, however, has a remyelination phase, whereas the
EAE model consistently shows immune cell infiltration in the CNS
(Ransohoff, 2012; Vega-Riquer et al., 2019). Though limited in
number, studies show exercise can regulate microglia function in
both cuprizone and EAE models using female mice (Mandolesi
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et al., 2019; Rizzo et al., 2021; Zaychik et al., 2021). However,
in male mice exercise was unable to prevent cuprizone-induced
increases in hippocampal microglia number (Naghibzadeh et al.,
2018), indicating potential sex-differences in the effectiveness of
exercise intervention. Mifflin et al., also found no effect of exercise
on microglia in males or females using an EAE model (Mifflin et al.,
2017). Further experimentation using both males and females as
well as multiple types and durations of exercise could help uncover
the effectiveness of exercise in MS models.

Physical exercise and microglia in
Parkinson’s disease

PD is the second most common neurodegenerative disease
in the elderly population and is characterized by the loss of
dopaminergic neurons and formation of Lewy bodies (Poewe et al.,
2017). The number of people with PD over age 50 is expected
to double between 2006 and 2030, creating an increasing need
for effective therapeutic inventions (Dorsey et al., 2007). A recent
meta-analysis shows that exercising at least 60 min per day is an
effective intervention for enhancing global cognitive function and
executive function in PD patients (Kim et al., 2023). However, the
mechanisms behind these positive effects remain to be determined.
PD is commonly modeled in rodents using exposure to toxicants,
such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or
Rotenone. The MPTP and rotenone exposure models both replicate
many features of PD, including microglial reactivity, nigrostriatal
dopaminergic degeneration, and behavioral deficits (Betarbet et al.,
2000, 2006; Du et al., 2001; Sedelis et al., 2001; Zhang J. et al.,
2022). However, only the Rotenone exposure model exhibits α-
synuclein accumulation and aggregation with formation of Lewy
body-like inclusions, mimicking human PD, and this model also
shows greater microglia area and numbers in the substantia nigra
than the MPTP model (Betarbet et al., 2000, 2006; Zhang J. et al.,
2022). Microglia numbers are generally shown to increase in the
substantia nigra of PD models, with increases in morphological
and phenotypic signs of reactivity (Sung et al., 2012; Gil-Martínez
et al., 2018; Lee et al., 2018; Wang W. et al., 2021). While VWR
has been reported to be ineffective (Gil-Martínez et al., 2018) in PD
models, treadmill exercise is successful in preventing the increase
in microglial cell numbers seen in these models (Sung et al., 2012;
Lee et al., 2018; Wang W. et al., 2021). One possible explanation is
that treadmill running offers a more controlled environment, where
researchers can precisely adjust factors such as speed, duration, and
incline, which may all impact outcomes. Notably, there is a lack of
information on how exercise may impact PD pathology in females,
as these studies all used male mice. As women develop PD, and
in fact, may experience greater disease severity (Dahodwala et al.,
2016), research is needed to discern the effectiveness of exercise in
female PD models.

Physical exercise and microglia in
Huntington’s disease

Nevertheless, PE may not be universally beneficial for all
neurodegenerative diseases. HD is a genetically inherited disease

caused by a mutation in the gene encoding the Huntington
protein which leads to progressive cognitive decline manifesting
in involuntary motor movements and its progression does not
appear to be sensitive to physical exercise. A systematic review of
seventeen studies in humans examining the effects of exercise and
cognitive interventions found that exercise intervention may be
negligible in HD, even when combined with cognitive interventions
(Huynh et al., 2023). Another report showed an absence of cortical
plasticity in response to an acute bout of cardiorespiratory exercise
in premanifest and early HD patients (Andrews et al., 2022).
Though some rodent models of HD have shown that VWR (Pang
et al., 2006; van Dellen et al., 2008; Harrison et al., 2013) or
treadmill exercise (Stefanko et al., 2017; Caldwell et al., 2020)
can improve cognitive outcomes, in one study VWR surprisingly
accelerated disease onset in male N171-82Q transgenic HD mice
(Potter et al., 2010). Though microglia are believed to facilitate early
neuroinflammatory processes in HD patients (Palpagama et al.,
2019), clear evidence showing PE can regulate microglial function
to alter the manifestation and progression of HD remains to be
established, as none of these animal studies examined microglia in
the context of physical activity intervention.

Physical exercise and microglia in
amyotrophic lateral sclerosis

Strikingly, exercise may be harmful for some neurodegenerative
diseases, as is the case for ALS. ALS is the most common
motor neuron disease, and it is both rapidly progressive and
fatal. A systematic review of ninety-three studies found strenuous
anaerobic exercise (such as soccer, long-distance skiing and
American football) was a risk factor for ALS (Chapman et al.,
2023). The underlying mechanisms behind this remain elusive,
though oxidative stress and dysregulated energy metabolism were
highlighted as possible mediators of motor neuron stress and
degeneration in ALS (Chapman et al., 2023). Microglia are linked
to the development of motor neuron pathology in ALS patients
(Cooper-Knock et al., 2017). In a mouse model of ALS, exercise
increased microglial reactivity, shown by changes in morphology
(hypertrophic, intensely stained microglia with thick and stout
processes) (Kassa et al., 2017), further supporting the notion that
exercise may not be beneficial in treating ALS. Nevertheless, there
is some evidence suggesting that exercise can beneficially modulate
microglia dynamics. Mutations in the TAR DNA binding protein 43
kDa (TDP-43) are observed in frontotemporal lobar degeneration
and ALS and are thought to be partially mediated by microglia
dysfunction. A recent study by Wei et al. revealed that microglia
in TDP-43 mutant mice exhibited enhanced phagocytic activity
and dysregulated soma and process dynamics (Wei et al., 2023).
Specifically, TDP-43 induced higher soma migration distances,
reduced microglial process territory, increased process velocity, and
increased the fraction of retracted processes over an hour-long
imaging session (Wei et al., 2023). Two weeks of treadmill exercise
at the pre-symptomatic stage restored normal microglial dynamics,
reduced CD68 expression, restored morphology changes, and
improved motor learning of mutant TDP-43 mice (Wei et al.,
2023). This demonstrates the capacity of exercise to regulate
microglial dynamics and prevent cognitive dysfunction in a model
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of ALS, though further research is needed to explore these effects.
Determining how PE differentially regulates microglia in contexts
where PE may be ineffective or harmful (HD or potentially ALS),
compared to those where PE is reported to be helpful (AD,
MS, PD) could provide useful insights into new therapies for
neurodegenerative disorders.

Physical exercise regulates microglia
function in stroke models

In humans, exercise can improve cognitive function and
motor coordination among patients with cognitive impairments
after stroke (Li W. et al., 2023). In stroke models, microglia
play a complex role- they can promote neuroinflammation,
thereby perpetuating damage, yet they can also release anti-
inflammatory factors that facilitate repair (Wang Y. et al., 2022).
Studies investigating how exercise can regulate microglia functions
in stroke often employ animal models of cerebral ischemia,
spontaneous hypertension, and intracerebral hemorrhage (ICH)
(Figures 7A,B). Notably, a significant proportion of these studies
focused solely on males (Figure 7C, > 80%), indicating a clear
research gap concerning females. Rats were predominantly used in
these studies (Figure 7C, > 80%), with Sprague Dawley rats being
the most frequently utilized (Figure 7C). Microglial parameters
were most frequently examined in the hippocampus, followed by
the striatum and hypothalamus (Figures 7D,E).

Many of these investigations explored how exercise modulates
microglial number and phenotype in stroke models (Figure 7E).
Treadmill exercise has been shown to influence microglial
phenotype after ischemia across various brain regions, including
the striatum, corpus callosum, cortex, basal ganglia, and peri-
ischemic and peri-hematoma zones (Kinoshita et al., 2021; Lu
et al., 2021; Liu et al., 2022; Tamakoshi et al., 2022; Xu
et al., 2023). Furthermore, a transgenerational study selecting
for low capacity and high-capacity runners found male low-
capacity runners had more severe ICH-induced brain injury and
greater numbers of major histocompatibility complex class 2 1a
(OX-6) positive microglia cells, demonstrating transgenerational
regulation of microglia phenotype in a stroke model (He et al.,
2013). Both treadmill and swimming exercise have been found
to regulate microglial numbers in different brain regions, such
as the hypothalamus, hippocampus, basal ganglia, as well as in
peri-infarcted and peri-hematoma zones (Kinoshita et al., 2021;
Xia et al., 2021; Aguilar-Peralta et al., 2022; Li et al., 2022).
However, a single study by Svensson et al. reported no impact
of exercise on hippocampal microglial number or phenotype in a
cerebral ischemic stroke model (Svensson et al., 2016). Moreover,
studies consistently found a decrease in microglia area with exercise
intervention in stroke models (Lovatel et al., 2014; Buttler et al.,
2017; Zhang et al., 2017; Zhang M. et al., 2018; Gao et al., 2022).
Investigations into cytokine levels in stroke models with exercise
intervention consistently report reductions in pro-inflammatory
cytokines, such as tumor necrosis factor alpha (TNF-α), IL-1β, and
interleukin 6 (IL-6) (Masson et al., 2015; Lu et al., 2021; Xia et al.,
2021; Gao et al., 2022). Exercise also shifts microglial morphology
towards a homeostatic state, characterized by increased process
ramification (Li et al., 2022) and length, as well as reduced

microglial cell size (Xia et al., 2021). While there are reports
indicating altered microglial process motility in ischemic stroke
(Morrison and Filosa, 2013), no studies have yet explored how
exercise intervention might influence these dynamic properties of
microglia.

Treadmill exercise was the predominantly used form of PE,
with fewer studies utilizing swimming (Figure 7F). This highlights
a knowledge gap regarding the potential of voluntary interventions,
such as those employing a running wheel, to modulate microglia
function. Given that VWR is perceived as less stressful and mirrors
a more natural rodent behavior, delving into this paradigm is
crucial. Most studies implement injury or ischemia prior to exercise
intervention (Figure 7F), thus limiting our understanding of
potential differences in responses between individuals who were
previously active versus sedentary before injury. Exercise durations
in these studies vary widely, ranging from 1 to approximately
90 days (Figure 7G). Notably, only one study implemented an
exercise intervention lasting longer than 2 months. Consequently,
future research is necessary to determine whether individuals who
engage in regular exercise throughout their lifespan exhibit distinct
responses to stroke compared to those leading predominantly
sedentary lifestyles.

Exercise interacts with lifestyle
factors to modulate microglial
activity

It is believed that lifestyles factors, such as exercise, diet,
stress, alcohol consumption, and toxicant exposure, influence brain
health and cognitive function. Adopting a healthy lifestyle can
play a crucial role in reducing neuroinflammation and lowering
the risk of developing neurodegenerative and psychiatric disorders
(Kip and Parr-Brownlie, 2023). A recent report by Dhana et al.
(2024) showed that adopting a healthy lifestyle may facilitate the
maintenance of cognitive abilities in older adult). In this context,
a healthy lifestyle was characterized by physically activity, eating
healthy (increasing green leafy vegetables, nuts, berries, beans,
whole grains, seafood, poultry relative to red meats, butter, cheese,
sweets, and fried food), and avoiding smoking and limiting alcohol
intake (Dhana et al., 2024). How these lifestyle factors interact to
influence microglial activity, which can in turn regulate neuronal
health, is largely unknown.

In recent years, interest in the influence of physical exercise
on microglial activity in the context of diet, alcohol, stress, and
toxicant exposure has grown (Figure 8A). Numerous studies have
investigated how physical exercise regulates microglial activity in
rodent models of toxicant exposure (Valdez et al., 2020; Kodali
et al., 2021; Wang J. et al., 2021), binge alcohol exposure (Barton
et al., 2017a,b; West et al., 2019), diet (Yi et al., 2012; Lima et al.,
2014; Yoo et al., 2015; Kang et al., 2016; Yin et al., 2018; Klein
et al., 2019; Lang et al., 2020), and chronic stress (Gerecke et al.,
2013; Xiao et al., 2021; Figure 8B). Most of these studies primarily
used male subjects, though females were examined more often
than in studies that focused on disease outcomes (Figure 8C).
Many investigations utilized rat models (Figure 8C, 60%), with
Long-Evans rats and C57BL/6 mice being the most common
strains (Figure 8C). Most studies focused on evaluating microglial
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FIGURE 7

Physical exercise regulates microglia in stroke models. (A) Percent studies published by year examining effects of physical exercise on microglia in
stroke models. Total number of studies = 16. (B) Percent of studies using different stroke models. (C) Percent of studies utilizing male, female, or
both sexes (top), various species (middle), and strain (bottom). (D) Percent of studies which examine microglia in the brain regions shown.
(E) Percent of studies which measured microglia parameters shown. (F) Percent of studies utilizing treadmill or swimming exercise (top) and the
timing of stroke relative to exercise intervention (before, after, before or after, during, not specified; bottom). Studies where exercise intervention
occurs “during” stroke utilized spontaneous hypertensive rats, which exhibit genetically induced increased blood pressure and as such the “stroke”
occurred “during” the exercise intervention (F). (G) Number of studies implementing exercise paradigms of various durations. Numbers of studies are
included next to the bars for percentage plots. For (D,E) percentages exceed 100% as some studies used measured more than one microglial
parameter or examined more than one brain region.
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parameters in the hippocampus (Figures 8D, E, 67%) and cortical
areas. Exercise interventions were conducted using running wheels
(Figure 8F, 53.3%) or treadmills (Figure 8F, 46.7%), and most
studies implemented exercise protocols lasting between 1 and 3
months (Figure 8G). Additionally, it is important to consider the
timing of exercise intervention relative to the dietary, alcohol,
stress, or toxicant exposure. Most studies implemented exercise
protocols before or during the diet, alcohol, stress, or toxicant
exposure (Figure 8F). This reveals a scarcity of literature exploring
the potential benefits of exercise intervention after exposure to
stress, alcohol, dietary, or toxicants.

Rodent models investigating effects of diet and exercise on
microglia activity include high-fat diet or low-fat diet (Yi et al.,
2012; Kang et al., 2016; Yin et al., 2018; Klein et al., 2019),
diabetes models (Yoo et al., 2015; Lang et al., 2020) as well
as treatment with monosodium glutamate (Lima et al., 2014)
(MSG; Figure 8B). Exercise can attenuate high-fat diet-induced
microglial reactivity in the hypothalamus, white matter internal
capsule, hippocampus, and cortex (Yi et al., 2012; Kang et al.,
2016; Yin et al., 2018; Klein et al., 2019). Although no significant
interaction between MSG and exercise was observed in rats, both
MSG treatment and exercise increased microglial Iba1+ area in
the motor cortex (Lima et al., 2014). In diabetes models, exercise
reduced microglial morphological changes, their number, and pro-
inflammatory cytokine production (Yoo et al., 2015; Lang et al.,
2020). In models of binge alcohol exposure, there is conflicting
evidence on the ability of exercise to regulate microglial numbers
and morphology, with some reports showing that exercise can
regulate these parameters (Barton et al., 2017b; West et al., 2019)
while a study by Barton et al. showed no effects on these parameters
(Barton et al., 2017a). Nonetheless, Barton et al. did show a
significant interaction between binge alcohol exposure and physical
exercise, with exercise increasing the number of MHC II+ microglia
in female mice exposed to binge alcohol, demonstrating the ability
of exercise to regulate microglial phenotype in this model (Barton
et al., 2017a). Overall, these studies suggest exercise can interact
with dietary exposure to influence microglial activity.

Stress is thought to play a pivotal role in both the
development and maintenance of neuropsychiatric disorders like
major depression, anxiety disorders, and post-traumatic stress
disorder, and is often used to model these conditions in rodents.
Although limited, there is evidence that physical exercise can
regulate microglia activity in models of chronic stress. Exercise can
protect against stress-induced increases in microglial expression of
CD68 and Cyclooxygenase 2 (Cox-2), demonstrating the capacity
of exercise to induce phenotypic changes in microglial response
to stress (Gerecke et al., 2013; Xiao et al., 2021). Xiao et al. also
found that exercise attenuated the stressed-induced increases in
the number of microglia and pro-inflammatory cytokine IL-1β

production in the hippocampus (Xiao et al., 2021). Together these
studies suggest that exercise can alleviate stress-induced alterations
in microglial function. However, stress can be induced using diverse
methods, including models of social stress or non-social stress
(such as chronic-restraint stress employed by Gerecke et al., 2013),
administered for various durations. It remains to be determined
how PE may regulate microglia in these various models of stress
and whether these changes are sustained over time.

While environmental toxicants can modulate microglia
activity, inducing changes in dynamics (Lowery et al., 2022) and

morphology (Yi et al., 2012) indicative of classical microglial
reactivity, very few studies have examined exercise regulation of
microglia activity in response to toxicant exposure. The models
that have include fluoride (Wang J. et al., 2021) and ozone (Valdez
et al., 2020) exposure, as well as a model of Gulf war illness, which
encompassed daily exposure to mosquito-repellant N, N-diethyl-
m-toluamide (DEET), insecticide permethrin (PER), and nerve
gas prophylactic drug pyridostigmine bromide (PB), accompanied
by 15 min of restraint stress for 4 weeks (Kodali et al., 2021;
Figure 8B). Wang J. et al. (2021) found that repeated treadmill
running attenuated the morphological changes of microglia in the
hippocampus of fluoride-exposed mice. Kodali et al. (2021) found
that VWR reverses hippocampal microglia morphological changes
in a mouse model of Gulf War illness. Both studies highlight the
capability of exercise to prevent adverse effects caused by toxicant
exposure. In contrast, Valdez et al. found that exercise did not
prevent ozone (O3)-induced (1 ppm O3) microglial morphological
changes in the hippocampus and the hypothalamus (Valdez et al.,
2020). Notably, these studies were restricted to the hippocampus
and hypothalamus, suggesting the necessity for exploration of
other brain regions in future investigations. Future studies should
also examine effects from a broader range of toxicants, considering
that individuals are exposed to numerous toxic substances over the
course of their lifetimes. For instance, lead (Pb) exposure is known
to trigger microglial reactivity and neurological impairment (Liu
et al., 2012; Wu et al., 2021; Shvachiy et al., 2023). One proposed
mechanism of Pb toxicity involves the activation of nucleotide-
binding oligomerization domain, leucine rich repeat and pyrin
domain containing (NLRP) and the inflammasome system, an
important component of the innate immune response triggered by
exposure to other toxicants (Moloudizargari et al., 2019; Su et al.,
2021). PE has been shown to regulate the inflammasome system
and NLRP expression (Tang et al., 2022). Thus, it is possible that
exercise could either prevent or attenuate some of the adverse
effects on microglia activity resulting from Pb exposure or other
toxicants acting through this pathway. Overall, very little is known
regarding PE regulation of microglia activity relative to the vast
number of toxicants known to impact brain health.

Exercise increases known
modulators of microglia activity

The mechanisms by which exercise elicits microglial changes
are unknown, but it is likely that microglia respond to exercise-
induced alterations in signaling molecules that broadly affect
the function of many brain cell types. The benefits of PE have
largely been attributed to increased production of neurotropic
factors and enhanced neurogenesis in the hippocampus (van
Praag et al., 1999a,b; Olah et al., 2009; Szuhany et al., 2015),
which are extensively reviewed elsewhere (Meeusen and De
Meirleir, 1995; Vecchio et al., 2018). Interestingly, many of the
neurotransmitters and neurotrophic factors that are increased
or regulated during PE are known modulators of microglial
activity (Figure 9; Vecchio et al., 2018; Albertini et al., 2020).
Exercise increases neurotrophic factors in both mice and humans,
including those that influence cognition such as BDNF, IGF,
and nerve growth factor (NGF) (Ding et al., 2006; Arvidsson
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FIGURE 8

Physical exercise interacts with lifestyle factors to modulate microglial activity. (A) Percent studies published by year examining effects of physical
exercise and lifestyle factors on microglia activity. Total number of studies = 15. (B) Percent of studies using different lifestyle models. (C) Percent of
studies utilizing male, female, or both sexes (top), various species (middle), and strains (bottom). (D) Percent of studies which examine microglia in
the brain regions shown. (E) Percent of studies which measured microglia parameters shown. (F) Percent of studies utilizing treadmill or running
wheel exercise (top) and the timing of insult (stress, alcohol, environmental, dietary exposure) relative to exercise intervention (before, after, during;
bottom). (G) Number of studies implementing exercise paradigms of various durations. Numbers of studies are included next to the bars for
percentage plots. For (D,E) percentages exceed 100% as some studies used measured more than one microglial parameter or examined more than
one brain region.

et al., 2018; Żebrowska et al., 2018; Kang et al., 2020). Increases
in BDNF with exercise are detected in the hippocampus
and cortex (Russo-Neustadt et al., 1999; Adlard et al., 2004;

Ploughman et al., 2005; Chen and Russo-Neustadt, 2009), where
BDNF can regulate microglia-neuronal interactions, thereby
influencing synapse formation and removal (Parkhurst et al.,
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FIGURE 9

Neurotransmitters and neurotrophic factors that are increased
during exercise are known regulators of microglial activity. Figure
made with Biorender.com.

2013; Huang et al., 2021; Onodera et al., 2021). IGF also
increases with exercise in the hippocampus, motor cortex, and
striatum (Carro et al., 2000; Ploughman et al., 2005; Chang
et al., 2011) and can regulate microglial number, morphology, and
mRNA profile (Falomir-Lockhart et al., 2019; Ivan et al., 2023).
Exercise-induced increases in NGF have been observed in the
hippocampus and cortex (Neeper et al., 1996; Molteni et al., 2002),
and can regulate the microglial phenotype, including phagocytic
function (Rizzi et al., 2018; Fodelianaki et al., 2019). Exercise-
induced increases in neurotransmitters, including norepinephrine,
dopamine, and serotonin, are widespread throughout the brain
(Vecchio et al., 2018). Norepinephrine regulates microglial
arborization and dynamics (Gyoneva and Traynelis, 2013; Liu
et al., 2019; Stowell et al., 2019), and has been shown to
increase with exercise in many brain areas, including the
cerebellum, striatum, hypothalamus, midbrain, cortex, spinal cord,
and pons/medulla (Brown et al., 1979; Semenova et al., 1981;
Meeusen and De Meirleir, 1995; Pagliari and Peyrin, 1995; Dunn
et al., 1996; Dishman et al., 2000). Serotonin levels increase in
the hippocampus, midbrain, hypothalamus, striatum, and cortex
with exercise (Bailey et al., 1993; Gomez-Merino et al., 2001),
and serotonin can regulate microglial phagocytic activity (Krabbe
et al., 2012) and directional motility (Kolodziejczak et al., 2015;
Etienne et al., 2019). Additionally, exercise increases dopamine
in the striatum, nucleus accumbens, midbrain, hypothalamus,
and hippocampus (Chaouloff et al., 1987; MacRae et al., 1987;
Mathes et al., 2010) and regulates the RAS activity and levels
of angiotensin receptors in microglia, resulting in an anti-
inflammatory effect (Dominguez-Meijide et al., 2017). Dopamine

also regulates microglia migration (Färber et al., 2005; Mastroeni
et al., 2009), phagocytosis (Fan et al., 2018), and morphology
(Fan et al., 2018). In summary, there is compelling evidence
that exercise could regulate microglia activity through one or
many of these mechanisms. However, the translatability of these
effects to human and how they pertain to changes in cognition
remains to be determined. In humans, there is evidence showing
exercise-related changes in BDNF are associated with improved
executive performance (Hwang et al., 2016). However, a recent
study found cognitive improvement following resistance and
aerobic exercise was not associated with peripheral biomarkers
including adrenaline, noradrenaline, glucose, lactate, cortisol, IGF-
1, or BDNF in humans (Ando et al., 2022). Further research is
needed to tie exercise-induced changes in central or peripheral
biomarkers to altered microglia activity and enhanced cognitive
performance.

New frontiers for understanding
how exercise regulates microglia

Numerous studies have explored how physical activity can
impact microglia in various animal models, yet there are several
understudied areas. Advanced in vivo imaging techniques allow
scientists to track cellular structures over long periods of time,
creating a wealth of opportunity to better understand how
exercise regulates brain physiology. These methods have already
been applied to track blood vessels (Cudmore et al., 2017) and
dendritic spines (Chen et al., 2017) chronically over time in
living mice undergoing different exercise regimens. However,
knowledge regarding how exercise influences microglia dynamic
functions is limited. Given the numerous neurotransmitters and
neurotrophic factors that are known to regulate microglial activity
(Figure 9), investigation of the effects of PE on microglia functions
in other models is warranted. It is also possible that microglial
interactions with specific components of their environment may
also be changed by exercise. For example, microglia are known to
make physical contacts with dendritic spines to facilitate structural
plasticity and regulate neuronal health in different areas of the
brain (Tremblay et al., 2010; Nebeling et al., 2023), and these
interactions could be differentially regulated by physical activity.
Employing reporter mice that label multiple brain structures or cells
for chronic in vivo imaging could provide deeper insights into how
exercise regulates microglial interactions with specific components
of their environment over time.

Advancements in sequencing technologies also provide
great potential for a comprehensive examination of microglia
phenotypes. Several studies reviewed here used bulk tissue RNA
sequencing to elucidate the mechanisms behind exercise effects
on the brain (Wassouf et al., 2018; Wang J. et al., 2021; Yang
et al., 2023). However, this methodology is limited in that it only
provides average gene expression patterns across of population
of heterogenous cells. However, with the emergence of single
cell technologies, which allow researchers to examine changes in
gene expression of individual cells, there is ample opportunity to
examine microglial states in health and disease within the contexts
described in this review (Ochocka and Kaminska, 2021). Indeed, a
recent report by Sun et al., used single-cell transcriptomics in young
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and old mice exercising for 12 months to identify exercise effects
across 14 different tissues (Sun et al., 2023), finding age-related
changes in gene expression and increases in IBA1 expression were
ameliorated by exercise in the cortex, dentate gyrus, cerebellum,
and spinal cord. Intriguingly, the authors found that out all the
tissues examined in the study, the aged central nervous system
tissues were mostly strongly impacted by exercise, reinforcing the
sentiment that there is high potential for exercise to benefit brain
health (Sun et al., 2023). Overall, much remains to be discovered
regarding the influence of physical exercise on microglial functions
within and between brain regions in various diseases states.

Conclusion

There is strong evidence that PE can be beneficial in many
rodent models of disease. Despite this, there are several areas where
more research on exercise-induced changes in microglial function
could yield important insights, particularly in conjunction with
other lifestyle factors, where regional- and sex-dependent responses
to different exercise paradigms may be more nuanced. Additionally,
utilizing PE as an intervention in neurodevelopmental disorders,
while challenging, could prove to be effective. Lastly, using
newer technologies that allow for in vivo tracking of microglia
dynamics simultaneously with other cellular structures, and
carefully phenotyping microglia on the transcriptomic level during
PE could uncover mechanisms underlying the beneficial effects of
exercise on cognition.
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Glossary

PE physical exercise
CNS central nervous system
CD68 cluster of differentiation 68
CX3CR1 C-X3-C motif chemokine receptor 1
CD86 cluster of differentiation 86
MHCII major histocompatibility complex class 2
IGF-1 insulin-like growth factor 1
BDNF brain-derived neurotrophic factor
C1QA complement C1q A Chain
CD206 mannose receptor
Gal-3 galectin-3
FASD fetal alcohol spectrum disorders
mTOR mammalian target of rapamycin
VWR voluntary wheel running
CDLK5 cyclin-dependent kinase-like 5
Shank3 multiple ankyrin repeat domains 3
FMRP fragile X messenger ribonucleoprotein 1 protein
Mecp2 X-linked methyl-CpG-binding protein 2
CR3 complement receptor 3
IL-1β interleukin-1 beta
IL-18 interleukin 18
IL-6 interleukin 6
Iba1 ionized calcium-binding adapter molecule 1
NL3R451C neuroligin-3
HD Huntington’s disease
ALS amyotrophic lateral sclerosis
AD Alzheimer’s disease
MS multiple sclerosis
PD Parkinson’s disease
APP amyloid protein precursor
PSEN1 presenilin-1
PSEN2 presenilin-2
MAPT microtubule-associated protein tau
TREM2 triggering receptor expressed on myeloid cells 2
EAE experimental autoimmune encephalomyeliti
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
TDP-43 TAR DNA binding protein 43 kDa
ICH intracerebral hemorrhage
OX-6 major histocompatibility complex class 2 1a
TNF-α tumor necrosis factor alpha
MSG monosodium glutamate
Cox-2 cyclooxygenase 2
DEET N, N-diethyl-m-toluamide
PER insecticide permethrin
PB pyridostigmine bromide
O3 ozone
Pb lead
NLRP nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing
NGF nerve growth factor
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