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BayesianSpikeFusion:
accelerating spiking neural
network inference via Bayesian
fusion of early prediction

Takehiro Habara*, Takashi Sato and Hiromitsu Awano

Department of Communications and Computer Engineering, Graduate School of Informatics, Kyoto

University, Kyoto, Japan

Spiking neural networks (SNNs) have garnered significant attention due to their

notable energy e�ciency. However, conventional SNNs rely on spike firing

frequency to encode information, necessitating a fixed sampling time and leaving

room for further optimization. This study presents a novel approach to reduce

sampling time and conserve energy by extracting early prediction results from

the intermediate layer of the network and integrating them with the final layer’s

predictions in a Bayesian fashion. Experimental evaluations conducted on image

classification tasks using MNIST, CIFAR-10, and CIFAR-100 datasets demonstrate

the e�cacy of our proposed method when applied to VGGNets and ResNets

models. Results indicate a substantial energy reduction of 38.8% in VGGNets

and 48.0% in ResNets, illustrating the potential for achieving significant e�ciency

gains in spiking neural networks. These findings contribute to the ongoing

research in enhancing the performance of SNNs, facilitating their deployment

in resource-constrained environments. Our code is available on GitHub: https://

github.com/hanebarla/BayesianSpikeFusion.

KEYWORDS

spiking neural network, Bayesian inference, neuromorphic computing, image
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1 Introduction

In recent years, there has been extensive research on neural networks that aim tomimic

the human brain. Notably, in fields like image classification and object recognition, state-

of-the-art neural networks such as YOLO (Redmon et al., 2016) and Vision Transformer

(ViT) (Dosovitskiy et al., 2020) have demonstrated remarkable performance, surpassing

even human discrimination capabilities.

Most widely used neural networks today are based on the formal neuron model,

forming what is known as Artificial Neural Networks (ANNs) (Hopfield and Tank, 1985;

Dong et al., 2021; Sharifani and Amini, 2023). As show in Figure 1A, ANNs employ

the formal neuron model to calculate the weighted sum of inputs, followed by a non-

linear activation function like ReLU or Sigmoid. Typically, activations and weights are

represented as single-precision floating-point or 8-bit integer values. While the energy

required for each multiplication may seem negligible at around 0.2 pJ per operation with

8-bit precision (Courbariaux et al., 2016), modern neural networks consist of millions of

neurons, resulting in significant overall energy consumption during inference (Bernstein

et al., 2021). Therefore, reducing the energy required for multiplications is crucial to

minimize power consumption during neural network inference.
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Spiking Neural Networks (SNNs) (Maass, 1997; Taherkhani

et al., 2020; Nunes et al., 2022; Eshraghian et al., 2023) have

gained attention as an alternative to ANNs. As shown in Figure 1B,

SNNs emulate the biological brain’s functionality, representing

activations as spike trains comprising binary spike states (spike

firing or absence of firing). This sparse spike representation offers

two advantages when considering hardware accelerators. Firstly,

the expensive integer or floating-point multiplications in ANNs

can be replaced with additions. Unlike ANNs where activations are

multiplied by synaptic weights, SNNs track changes in membrane

potential by simply adding the synaptic weight upon receiving a

spike event, as spikes are binary. Secondly, SNNs only require

updating membrane potentials when they receive spikes, aligning

well with asynchronous circuits and further reducing energy

consumption. Leveraging the sparsity of spike events and event-

driven computation, SNNs offer exceptional power efficiency,

making them a preferred choice for neuromorphic architectures.

Notably, IBM’s TrueNorth (Akopyan et al., 2015) and Intel’s

Loihi (Davies et al., 2018) are hardware accelerators designed

specifically for SNNs, successfully achieving significant energy

reductions through asynchronous communication.

In addition to their low energy consumption, the learning

algorithms for SNNs have dramatically improved in recent years.

One such algorithm is the Surrogate Gradient (SG) method,

which treats the non-differentiable spikes as differentiable smooth

functions, allowing the SNN to be treated as a Recurrent Neural

Network (RNN) and learned through Backpropagation through

time (BPTT) algorithm. However, because the BPTT unfolds the

SNN in the time direction for learning, the gradient propagates

in the time direction, extending the propagation distance of

the gradient. This can easily cause gradient vanishing/explosion,

making it difficult to achieve sufficient inference performance in

large-scale neural networks (Zenke and Vogels, 2021; Sun et al.,

2022; Guo et al., 2023). Therefore, the ANN-SNN conversion,

which maps the parameters learned by the ANN to the SNN,

has been developed, making it possible to infer the SNN while

maintaining the same accuracy as the ANN (Sengupta et al.,

2019; Hu et al., 2021). The accuracy of models trained with

each method using the CIFAR-10 dataset is shown in Table 1.

From Table 1, it can be seen that when the parameters of the

FIGURE 1

(A) Neuron of ANN, (B) Neuron of SNN.

SNN are determined by the ANN-SNN conversion, inference

performance comparable to that of the ANN can be achieved,

but the performance obtained by the SG method is significantly

inferior compared to the ANN. The ANN-SNN conversion is

also used for complex tasks other than class classification, such

as object detection. Kim et al. (2020) showed that by converting

YoLo to SNN, an energy efficiency 280 times that of the ANN

implementation can be achieved.

Despite the superior characteristics of SNNs over ANNs, there

is still potential for energy and latency reduction. SNNs rely on

spike firing probabilities to represent information, necessitating

sufficiently long spike firing sequences to accurately measure

these probabilities.

In this paper, we propose a method to reduce inference

energy and latency in SNNs based on Bayesian fusion. Spikes

can be represented as binary variables indicating firing or non-

firing states. The observed number of spike firings in a given

time period can be modeled using a binomial distribution.

In other words, decoding information represented by a spike

firing sequence is equivalent to determining the most probable

parameters of the binomial distribution that generated the observed

spike firing sequence. In general, there is a trade-off between

inference accuracy, latency, and energy consumption. Longer

observation of spike firing sequences allows for higher accuracy

in parameter estimation but increases latency and reduces energy

efficiency. In this study, we reduce energy consumption and

latency while maintaining inference accuracy by compensating

for information degradation resulting from shortened spike

sequence observations using prior knowledge about spike firing

probabilities. Specifically, we predict the probability of firing

for neurons in the final output layer based on the firing

sequences of neurons in the shallow layers of the network. We

employ Bayesian fusion with the firing sequences observed in

the final output layer to reduce the required length of spike

firing sequence observations without compromising the accuracy

of firing probability estimation. Numerical experiments utilizing

VGGs and ResNets demonstrate that we can achieve up to 48.0%

energy reduction while maintaining inference accuracy in image

classification tasks involving MNIST, CIFAR-10, and CIFAR-100

datasets.
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TABLE 1 Inference accuracy of models trained with SG and ANN-SNN

conversion.

ANN SG ANN-SNN
conversion

VGG11 92.2% 86.3% 92.2%

VGG16 93.9% 80.8% 93.7%

VGG19 93.6% 71.6% 93.6%

2 Related works

2.1 Enhancing inference e�ciency in SNN

Research focused on reducing the inference time steps of

Spiking Neural Networks (SNNs) converted from Artificial Neural

Networks (ANNs) is actively pursued (Hwang et al., 2021; Bu et al.,

2023; Rathi and Roy, 2023). Various techniques for converting

ANNs into efficiently inferable SNNs have been proposed, such as

Robust Normalization (Rueckauer et al., 2017) RTS (Deng and Gu,

2021) and RMP (Han et al., 2020). Methods addressing the discrete

spike sequences of SNNs include using clip functions or quantized

ReLU functions instead of ReLU during pre-conversion training,

as seen in TCL (Ho and Chang, 2021) and QCFS (Bu et al., 2023).

Innovations applied directly to SNN neuronmodels, like the “reset-

by-subtraction” method for resetting neuron firing potentials,

minimize information loss compared to resetting methods that

force the membrane potential to zero, thereby enabling faster

inference (Diehl et al., 2015; Hwang et al., 2021; Rathi and Roy,

2023).

Apart from techniques for converting to efficiently inferable

SNNs, strategies to enhance network structure for reducing

inference time have also been proposed. For example, the early

exit model outputs the final classification result from shallow layers

without waiting for deeper layer results when input classification is

straightforward (Chen et al., 2023; Li Y. et al., 2023). This model

incorporates an internal classifier (IC) that predicts the final output

from activations in internal layers of a multi-layer neural network

(Li C. et al., 2023). In this approach, inference terminates early and

outputs the final prediction once the confidence in predictions from

the IC exceeds a predefined threshold.

Traditionally, methods have primarily focused on early

termination or reduction of inference time in the final classifier

layer, switching between early termination based on confidence in

the IC or final classifier (FC), limiting accuracy to the precision

of the IC or FC alone. Therefore, the proposed method achieves

higher performance by statistically integrating outputs from both

intermediate and final classifiers, surpassing what a single classifier

can achieve.

2.2 Hardware accelerator for SNN

The sparse representation of spikes suits well with hardware,

and a variety of SNN chips have been proposed, led by IBM’s

TrueNorth. TrueNorth is a highly specialized processor that can

handle a specific model of spiking neurons (Akopyan et al., 2015).

TrueNorth consists of 4,096 cores, each of which has a crossbar

TABLE 2 Comparison of ANN and SNN.

ANN SNN

Neuron model Formal neuron model IF Neuron model

Time-dependency No Yes

Data transmitted

between neurons

Single-precision Binary spikes

Floating-point number

8-bit integers

Representation of data Activation Spike firing

Probability

Operation cost The number of

connections between

neurons

Event-Driven (the

number of spikes)

Hardware to execute CPU Neuromorphic

GPU Hardware

TPU (IBM TrueNorth et

al.)

consisting of 256 axons and 256 neurons. The cores are connected

to each other by a two-dimensional mesh network, and any neuron

can be connected to any axon. In order to reduce the circuit

size of the neurons, a virtual neuron scheme is adopted where a

single neuron circuit is time-shared. Each neuron in TrueNorth

uses an event-driven circuit that updates the membrane potential

upon receiving a spike, which has succeeded in significantly

reducing power consumption. For example, the TrueNorh chip,

manufactured in a 28 nm process, uses 5.4 billion transistors, yet

requires only 63 mW to recognize a 400×240 pixel image input at

30 FPS. The energy consumption per spike ignition is 26 pJ.

Another SNN accelerator is the SpiNNaker (Merolla et al.,

2014) being developed at the University of Manchester, which

consists of 18 ARM9s, a lightweight general-purpose processor

core developed by ARM, and a dedicated processor that handles

the interprocessor connections. In contrast to TrueNorth, which

specializes in efficient simulation of integrate-and-fire models,

SpiNNaker, which uses general-purpose processors, can run

arbitrary neuron models. In addition, SpiNNaker can efficiently

transfer spike information through multicast communication, and

a single board with 48 chips can simulate a neural network of

250,000 neurons and 80 million synapses in real time.

Table 2 summarizes the differences between ANNs and SNNs.

3 Preliminary

3.1 Artificial neural network

Each neuron in the ANN takes the product of the input

activation x and the synaptic coupling weights w, and adds a bias

b. This is then passed through a nonlinear function f to obtain the

output activation y as follows Equation (1):

y = f

(

n
∑

i=1

wixi + b

)

. (1)
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Activation values are often represented by single-precision or

half-precision floating-point numbers, or by 8-bit integers.

In ANN, when the parameters of one layer change during

training, the input distribution for the subsequent layers changes.

Since this change increases as the layer depth increases, it is

difficult to take a large learning rate in order to suppress learning

divergence, which is known to be a “covariate shift” problem. To

solve this problem, the Batch Normalization (BN) technique has

been proposed (Ioffe and Szegedy, 2015). BN normalizes the input

of the layers in each mini-batch to have mean 0 and variance 1,

followed by scaling and biasing processes using learnable scaling

factors and bias parameters. More specifically, the operation of BN

layer is represented as follows Equation (2):

y′ = γ
y− µ√
σ 2 + ǫ

+ β , (2)

where µ and σ 2 are the mean and variance for each mini-batch,

respectively, and γ and β are the learnable scaling factor and bias

parameter. Since µ, σ 2, γ , and β are fixed and treated as constants

during inference, the batch normalization layer can be fused into

the previous linear layer during inference to reduce the number of

operations. Specifically, they can be integrated into the weights of

the previous layer, as shown in Equations (3, 4).

ŵi =
γ

σ
wi (3)

b̂ = γ

σ

(

b− µ
)

+ β (4)

3.2 Spiking neural network

The biological brain is believed to represent information by

transient voltage signals called spike firing, and a computational

model that mimics this mechanism is called the spiking neural

network (SNN). In this study, we use the integrate-and-fire (IF)

model, which is considered to be the most popular model and

has been proposed in many hardware implementations. In the

IF model, a neuron is represented as a node with a membrane

potential as its internal state. When a neuron receives a spike from

another neuron, it updates its membrane potential according to

the synaptic connection weights between it and that neuron. This

behavior can be described as follows:

V t
i = V t−1

i +
∑

j

wijVth2
t
j + bi, (5)

where V t
i is the membrane potential of neuron i at time t, wij is

the synaptic weight from i-th neuron to j-th neuron, Vth is the

threshold voltage, and bi is the bias value of the i-th neuron. 2t
j

is a binary variable that represents the presence or absence of

spike firing of j-th neuron at time t. This is a binary variable that

represents the presence or absence of spike firing in j-th neuron

at time t, and is calculated from the membrane potential of j-th

neuron as follows:

2t
j =

{

1 V t
j > Vth

0 otherwise.
(6)

Each neuron resets its membrane potential after firing a spike.

There are two methods of resetting the membrane potential:

setting the membrane potential to zero or subtracting the threshold

voltage. The latter method is known to cause less information

degradation (Rueckauer et al., 2017), so we adopt the latter method

in this study. The method is described as follows:

V t
i = V t

i − Vth2
t
i . (7)

Combining Equations (5–7), we can derive an update rule for

the membrane potential of the ith neuron in the lth layer as:

V t
l,i = V t−1

l,i
+
∑

j

wijVth2
t
l−1,j + bi − Vth2

t
l,i. (8)

3.3 ANN-to-SNN conversion

While information transfer using binary spikes greatly

improves the energy efficiency of SNNs, it also makes learning by

backpropagation, which requires gradient computation, difficult.

There is some research using the STDP rule, which changes

the synaptic connection weights according to the time difference

between spikes, which is considered to be one of the basic learning

algorithms of the biological brain (Bi and Poo, 1998). However, its

application is limited to simple tasks such as MNIST, and it is still

difficult to perform very complex tasks such as those realized by

modern DNNs (Diehl and Cook, 2015). To solve this problem, a

method was proposed to convert the weights learned in the ANN to

SNNs and only perform inference in SNNs (Rueckauer et al., 2017).

The basic principle of converting ANNs into SNNs is to match

the output activity value of ReLU with the firing rate of spiking

neurons. To obtain the conversion equation from ANN to SNN,

we first accumulate (Equation 8) over the simulation timestep

from time 1 to T, divide both sides of the equation by T, and yield

Equation (9):

V t
l,i

T
=

V0
l,i

T
+

N
∑

j=1

wij

T
∑

t=1

Vth2
t
l−1,j

T
+ bi − Vth

T
∑

t=1

2t
l,i

T
. (9)

Let pl,i =
∑T

t=1 2t
l,i
/T be the spike firing probability of the i-th

neuron in the l-th layer, and written as:

pl,i =
1

Vth





N
∑

j=1

wi,jVthpl−1,j + bi −
V t
l,i
− V0

l,i

T



 . (10)

From Equation (10), it can be inferred that the spike firing rate

is proportional to the weighted sum of the input spike firing rate,

excluding (V t
l,i
− V0

l,i
)/T. Note that the membrane potential has an

initial value at t = 0, whereas spikes are observed starting from

t = 1.

4 Error analysis of converted SNN

In order to improve the energy efficiency of SNNs, it is

important to first analyze the error factors in detail. To this end,
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we firstly classify the error factors into two types: errors that

are incurred during the ANN to SNN conversion process and

those incurred when decoding the spike firing representation of

the information.

4.1 Errors induced during ANN to SNN
conversion process

The error El,i in the ANN-SNN conversion can be calculated

as the difference between the activation value yl,i of the ANN and

the firing rate Vthpl,i of the SNN scaled by the threshold, i.e., El,i =
yl,i −Vthpl,i. The application of the ANN-SNN conversion assumes

the use of the ReLU function as the activation function of the ANN,

and El,i is given by Equation (11):

El,i = ReLU





n
∑

j=1

wi,jyl−1,j + bi





−





N
∑

j=1

wi,jVthpl−1,j + bi −
V t
l,i
− V0

i,i

T





(11)

where yl,i represents the activation value of neuron i in layer l and T

represents a simulation timestep, which is a positive integer. If the

input to the ReLU function,
∑n

j=1 wi,jyl−1,j + bi, is positive, El,i is

given by

El,i =
N
∑

j=1

wi,j

(

yl−1,j − Vthpl−1,j

)

+
V t
l,i
− V0

l,i

T
. (12)

Noting that yl−1,j − Vthpl−1,j = El−1,j, this equation can be

further written as Equation (13):

El,i =
N
∑

j=1

wi,jEl−1,j +
V t
l,i
− V0

l,i

T
. (13)

This shows that the error in the activation values of the ANN

and SNN at layer l is the sum of the weighted errors at layer l − 1

plus (V t
l,i
− V0

l,i
)/T. On the other hand, if the input to the ReLU

function,
∑n

j=1 wi,jyl−1,j + bi, is negative, the neuron does not fire,

pl,i = 0, and therefore El,i = 0.

The error E1,i at the input layer depends on the coding scheme

of the input. In SNNs, a method called direct coding, which directly

uses floating point values as the input to the first layer, is common,

and in this case, E1,i = 0 (Rathi and Roy, 2023). Conventionally,

the membrane potential V0
l,i
of the SNN is initialized to 0 and the

threshold Vth is fixed at 1, so Equations (10, 12) can be simplified as

follows Equations (14, 15):

pl,i =
N
∑

j=1

wi,jpl−1,j + bi −
V t
l,i

T
(14)

El,i =
N
∑

j=1

(yl−1,j − pl−1,j)+
V t
l,i

T
. (15)

In the following, we assume that the membrane potential V0
l,i
is

initialized to 0 and the threshold Vth is fixed at 1.

According to Equation (15), we notice that the conversion of

ANN to SNN induces an error term V
(t)
l,i

/T, which is inversely

proportional to the integration time T. Although increasing T

will decrease the estimation error, it will also increase the energy

required for inference. Hence, there is a trade-off between inference

accuracy and energy.We also notice that the spike firing probability

pl,i is restricted to a range of [0, 1], whereas ANNs typically have

no such constraints. For instance, if the threshold Vth is extremely

high compared to the synaptic weights, it takes a long time for the

membrane potential to reach Vth, resulting in a low spike firing

probability. Conversely, if Vth is extremely small compared to the

synaptic weight, the membrane potential will exceed Vth regardless

of the spike input, which again causes information degradation.

Hence, synaptic weight Wl,i,j should be carefully normalized

to avoid too low or too high spike firing probability. To

this end, various data-driven normalization methods have been

proposed (Cao et al., 2015; Diehl et al., 2015). One of the well-

known methods is “layer-wise normalization” proposed by Diehl

et al. (2015), where the synaptic weights are normalized so that

the maximum activations calculated using the training dataset does

not exceed Vth (i.e. 1.0). Hence, the synaptic weights w
SNN
l

are

calculated as follows:

w
SNN
l = λl−1

λl
wl, b

SNN
l = 1

λl
bl, (16)

where λl is the maximum activations in l-th layer calculated

by using the training dataset. Later, a modified layer-wise

normalization has been proposed, where λl is selected to be 99.9th

percentile of the maximum activations to improve the robustness

to outliers (Rueckauer et al., 2017). More recently, Kim et al.

have proposed “channel-wise normalization” (Kim et al., 2020).

In addition to this normalization, methods for reducing errors by

adjusting the threshold have also been developed (Sengupta et al.,

2019; Park et al., 2020).

Furthermore, techniques have been proposed to reduce SNN

errors by pre-charging the initial membrane potential to promote

early firing of the first spike (Hwang et al., 2021). Bu et al. (2023)

demonstrated that neurons fire more uniformly by using floor

and clipping functions instead of the ReLU function during ANN

training and initializing the membrane potential to half of the

threshold during SNN inference.

4.2 Error induced during decoding spike
outputs

Since SNNs represent information in terms of spike firing

frequency, the inference results of SNNs need to be decoded again

into a continuous value representation. Let a spike train of an

output neuron be 2 =
(

2(1),2(2), · · · ,2(T)
)

. Since 2(t) can be

assumed to follow a Bernoulli distribution, its probability function

can be modeled by the following Bernoulli distribution:

P(2(t)|p) = p2(t)
(1− p)1−2(t)

. (17)

The conventional approach to recover original ANN activations

from the spike trains 2 is based onmaximum likelihood estimation
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(MLE). Hence, finding the spike firing probability is equivalent

to finding the parameters of Bernoulli distribution, i.e. p, so that

the probability of observing 2 is maximized. The likelihood of

observing 2 is equal to:

P(2|p) =
T
∏

t=1

P(2(t)|p), (18)

where T is observation time. Substituting Equation (17) into

Equation (18), we have:

P(2|p) = pM(1− p)T−M , (19)

where M is the number of spike firings observed and is given by

M =
∑T

i=1 2(t). Our objective here is to find p that maximizes

Equation (19) given a spike train 2. To this end, we first take

logarithm of Equation (19) and obtain:

log
[

P(2|p)
]

= M log p+ (T −M) log(1− p). (20)

Since logarithm is a monotonically increasing function,

maximizing Equation (20) is equivalent to maximizing

Equation (19). Hence, the gradient of log[p(2|p] should be

zero at the optimal popt as Equation (21):

∂

∂p
log

[

P(2|p)
]

∣

∣

∣

∣

p=popt

= M

popt
− T −M

1− popt
= 0. (21)

Although MLE results in an unbiased estimation of p without

relying on any prior knowledge, it frequently suffers from degraded

estimation accuracy. Let us take an unfair coin toss example, where

the unknown probability of head, p, is estimated given a sequence

of heads and tails resulting from tossing an unfair coin N times.

Figure 2 shows the estimated probability of head p as a function of

a number of coin-tosses Nex. The horizontal line shows the golden

probability of 0.3. To show the randomness, the same experiment

is repeated 100 times. We notice that to estimate the unknown

probability p within 5% accuracy, approximately 1000 times coin

tosses are required.

As described above, the SNN converted from the ANN

expresses values based on spike firing probabilities, so there is a

trade-off between the accuracy and the period of time that spike

firings are observed. In other words, if spike firing can be observed

for a long enough period of time, the firing probability can be

estimated with high accuracy, but the energy and latency will

increase. Thus, this study improves this trade-off by incorporating

Bayesian methods into the estimation of spike firing probabilities.

5 Methods

As we saw in the previous section, MLE-based estimation

requires hundreds of spikes to be observed for estimating the

spike firing probability with an acceptable accuracy. To alleviate

this problem, we propose to incorporate the prior knowledge

of the spike firing probability with the observed spike train to

improve the estimation accuracy. Our proposal is based on the

FIGURE 2

Predicted probability that the coin will turn up from the result of the

coin toss: The vertical axis shows the probability and the horizontal

axis shows the number of times the coin was tossed. The blue line

shows the mean of the predicted probabilities, and the light blue

area shows the standard deviation of the probabilities. The red area

indicates the region within a 5% error of the golden probability of

0.3.

observation that the activations of neurons at an early layer

of DNN may often carry sufficient information for predicting

activations of neurons in the final layer (Teerapittayanon et al.,

2016). Hence, by exploiting the spike firing probability of neurons

at an early layer as prior knowledge, we may compensate for

the information degradation caused by reducing the number of

spikes to be observed. In the following, we firstly derive the

detailed formulation of BayesianSpikeFusion and demonstrate its

effectiveness compared with MLE using the coin toss example

again. Then, we provide the method to transform the early layer

activations into the prior knowledge. Finally, the detailed algorithm

is provided.

5.1 Definition of prior distribution

To formulate the spike firing probability estimation problem

with the Bayesian model, we have to firstly find a way to encode

the prior knowledge of the spike firing probability. To this end, we

exploit Beta distribution whose probability density function (PDF)

is given by:

p(p|α,β) = pα−1(1− p)β−1

B(α,β)
, (22)

where B(·, ·) is Beta function defined as Equation (23):

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt. (23)

Figure 3 shows the probability density function of Beta

distribution with different values of α and β , which reveals three

important properties of Beta distribution. First, Beta distribution is

defined over [0, 1] which covers all possible spike firing probability.
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FIGURE 3

Probability density function of Beta distribution.

Second, the PDF of Beta distribution has a peak at a particular value

which is called as “mode” of distribution. Third, when one of α and

β becomes larger, the peak is biased toward the edge.

Suppose pprior be the spike firing probability estimated from

the activations of neurons at an early layer. To encode the prior

knowledge, the prior distribution should have peaked at pprior .

Hence, we set up the following constraint for the hyperparameter

α and β :

pprior =
α − 1

α + β − 2
. (24)

Equation (24) can be rewritten as:

β =
(1− pprior)(α − 1)

pprior
+ 1. (25)

Substituting Equation (25) into Equation (22), we have:

P(p|α) = pα−1(1− p)

(1−pprior )(α−1)

pprior

B
(

α,
(1−pprior)(α−1)

pprior
+ 1

) . (26)

In Equation (26), there is only one hyper-parameter α. The

selection of α will be discussed in detail in Section 5.4.

5.2 Bayesian estimation of spike firing
probability

With the prior distribution defined, we can now model the

posterior distribution for µ, which represents our belief about µ

after obtaining the spike train 2 as follows:

P(p|2,α) ∝ P(2|p)P(p|α). (27)

FIGURE 4

Top: Comparison of the e�ect of α, Bottom: Comparison of the

e�ect of r. The vertical axis shows the probability and the horizontal

axis shows the number of times the coin was tossed. The blue and

green lines show the change in the Bayesian estimated probabilities

with the parameters described in the legend. The red area indicates

the region within 5% error of the golden probability of 0.3.

Here, we applied Bayes’ theorem to derive the right from the left

side. Substituting Equations (19, 26) into Equation (27), we have:

P(p|2) = pM+α−1(1− p)
N−M+

(1−pprior )(α−1)

pprior

B
(

M + α,N −M + (1−pprior)(α−1)

pprior
+ 1

) . (28)

Since the posterior distribution represents our belief about p

after observing the spike train 2, our goal is to find the value

of pMAP at which the posterior distribution P(p|2) is maximized.

Note here that the posterior distribution P(p|2) in Equation (28)

is in the same probability density family as the prior distribution

P(p|α) in Equation (26) and as we examined in Figure 3, the

posterior distribution has peak at a certain p. Hence, pMAP is given

by the mode of the Beta distribution in Equation (29) as follows:

pMAP = Ml,i + α − 1

N + (α − 1)/r
. (29)

We here demonstrate the power of Bayesian estimation for

estimating unknown probability of occurrence only given a certain

length of observation. To this end, let us take the unfair coin toss

example again. Figure 4 illustrates the MAP estimation result as a

function of the observed trials. We repeated the same experiment

for several α and r configurations to investigate the impact of

a hyper-parameter and the mode of the prior distribution on

the estimation. Figure 4 gives two important observations. First,
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FIGURE 5

Example of BayesianSpikeFusion outline in a network with Internal Classifier (IC).

the prior distribution has a large effect when the sample size

is small, whilst as the sample size increases, the likelihood of

Equation (19) becomes dominant. Hence, with properly selected

prior distribution, we can safely reduce the number of spikes to

be observed without deteriorating the estimation accuracy. Second,

the hyper-parameter α controls the strength of the prior belief;

large α biases the estimation toward the prior distribution while

the smaller α results in the estimation put more emphasis on the

observation. Hence, the selection of α is the integral part to improve

the efficiency. In the followings, we firstly consider the construction

of the prior distribution, followed by the hyper-parameter selection.

5.3 How to build a prior distribution

The effectiveness of Bayesian fusion depends on the design of

the prior distribution. If an appropriate prior distribution can be

set, Bayesian fusion is very effective in improving the convergence

speed, whereas an inappropriate prior distribution can hinder

convergence. To this end, we exploit internal classifiers that have

been presented in several works (Kaya et al., 2019).

Figure 5 outlines an example BayesianSpikeFusion which is

essentially a spiking neural network which includes a final classifier

(FC) and an internal classifier (IC). The IC is strategically integrated

into the network at a specific location, allowing it to predict both

the activations of the output layer and the FC. The IC consists

of two parts: a feature reduction layer and a fully connected

layer to produce internal predictions. Although there are several

possible approaches for implementing the reduction layer, this

paper opts for Global Average Pooling (GAP) due to its simplicity of

implementation and relatively small computational overhead. After

the GAP, a fully connected layer is placed to yield early prediction.

Specifically, in the proposed method, pprior is set to be the average

spike firing probability of neurons at the fully connected layer.

Our empirical evaluations reveal that IC accounts for only 11%

of the whole computational workloads.

5.4 Hyper-parameter selection

As we saw in the previous section, the hyper-parameter α

controls the strength of our belief over r; when α is large, the

prior knowledge is expected to be accurate, and hence the prior

distribution P(r|α) has a narrow peak around its mode r. Since the

accuracy of the prior knowledge may differ from case to case, it

must be adaptively tuned based on the observed spike trains. To

this end, we employ “Empirical Bayes Method” and “Grid Search

Method.”

Empirical Bayes Method: This method selects the

hyperparameter α to maximize the marginal likelihood concerning

p as follows Equation (30):

α = max
α

∫ 1

0
P(2|p)P(p|α)dp

= max
α

B
(

M + α,N −M + (1−pprior)(α−1)

pprior
+ 1

)

B
(

α,
(1−pprior)(α−1)

pprior
+ 1

) . (30)

Grid search method: Utilizing a subset of the training data

grid search is conducted to determine the optimal value of α at

time t. Specifically, commencing at t = 10 and progressing in

increments of 10 up to 1,000, the α value that maximizes the

classification accuracy on the subset of training data is selected.

Figure 6 compares α selected by empirical bayes (Emp) and grid

search (Grid) methods as a function of time step. Notably, it is

observed that the optimal α selected by the grid search method

tends to be initially large during the early stages of sampling

and subsequently decreases as time step increase. This behavior

can be attributed to the fact that when the time step is small,

the spike propagation to deeper layers is insufficient, so the

information from the IC located in the shallow layer is given

more weight for inference accuracy. As the time step increases,

the accuracy of the FC becomes higher, and hence, the weight

assigned to the IC should be reduced for better performance.

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1420119
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Habara et al. 10.3389/fnins.2024.1420119

FIGURE 6

Examples of α and approximate curves when using VGG19 and

CIFAR-10: (Grid) indicates Grid Search Method. (Emp) indicates

Empirical Bayes Method. The value of α rises steeply until about the

first 100 steps. Then, the value drops to around 0 before reaching

500 steps and finally converges to about 0.

To reduce memory usage, the proposed method approximates

the optimal α using a piecewise linear function, storing only the

fitting parameters.

5.5 ANN training

The IC and the FC are trained simultaneously. However, when

attempting to minimize the loss of the IC, the network weights

tend to specialize in classifying at the IC, which compromises the

accuracy of the FC. Therefore, this study focuses on training the

network parameters to minimize a combined loss function that

takes into account both the IC and the FC. Let the loss of the IC and

the FC as LossIC and LossFC, respectively. The overall loss function

of the network is then defined as Equation (31):

Loss = LossFC + τ (e) · LossIC, (31)

where e represents the epoch, and τ (e) is a weighting coefficient that

determines the emphasis on either LossFC or LossIC during training.

Specifically, τ (e) is defined as Equation (32):

τ (e) =
NIC
MAC

NFC
MAC

· e

Nepoch
, (32)

where NIC
MAC and NFC

MAC represent the number of multiply-

accumulate (MAC) operations required for the forward

propagation from the input to the IC and from the input to

the FC, respectively. Nepoch denotes the total number of training

epochs. Hence, at the beginning of the training, the network

primarily focuses on minimizing the classification loss in FC. This

allows the network to acquire effective intermediate representations

for classification purposes. As the training progresses, the weight of

the classification loss in IC is gradually increased. This adjustment

enables the network parameters to be learned in such a way that the

IC can accurately classify using the intermediate representations

obtained during training.

6 Experiment

6.1 Experimental setting

In order to assess the effectiveness of the proposed approach,

a numerical experiment is performed using PyTorch. The

experimental setup involves utilizing networks from the VGGNet

(VGG11, VGG16, and VGG19) and ResNet (ResNet18 and

ResNet34) families. The experiment entails inserting IC after the

ConvBlock or ResBlock, which comprises convolutional layers and

Batch Normalize layers. The network is initially implemented and

trained in the ANN domain. Subsequently, the trained weights

are transformed for SNNs to evaluate the inference accuracy and

the energy consumption of the entire network, including the

Shallow Networks.

The target datasets are MNIST (LeCun et al., 1998), CIFAR-10,

and CIFAR-100 (Krizhevsky and Hinton, 2009). MNIST consists

of black-and-white images of handwritten digits from 0 to 9, 60k

training images, 10k validation images, and their labels. CIFAR-10

and CIFAR-100 are 10- or 100-class image classification datasets for

animals, plants, vehicles, etc., consisting of 50k training images and

10k validation images, and their labels.

The programming language used was Python 3.8, with PyTorch

1.12 as the machine learning library. The hardware accelerator used

was NVIDIA RTX A6000, and the version of CUDA was 11.6.

6.2 Training of ANN

When training an ANN, we use Xavier’s initialization method

for the initial values of the weights (Glorot and Bengio, 2010).

The input images were normalized with mean (0.5071, 0.4865, and

0.4409) and standard deviation (0.2673, 0.2564, and 0.2762) for

each channel. An augmentation consisting of randomly cropping a

32×32 image after inserting 4 pixels of padding around it, flipping

it left to right with probability 0.5, and randomly rotating it up to

15 degrees was performed. The number of training epochs was set

to 120 epochs.

6.3 Conversion from ANN to SNN and
inference by SNN

The trained weights are transformed for SNN by using

Equation (16) with λ set to be the value at 99.9% of the activation

when 5k images randomly selected from the training data are

propagated through the network. In this experiment, we initialized

all membrane potentials to 0 and set the threshold to 1. We also

used 3,000 time steps for simulation and performed membrane

potential resetting by subtraction.

In our energy calculations, we utilized SpikeSim, a

simulator for SNN hardware accelerators based on in-memory

computing (Moitra et al., 2023). SpikeSim employs multiple
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FIGURE 7

VGG19 network variants compared. Top: VGG19(DL), Middle: VGG19(SL), Bottom: BayesianSpikeFusion.

Processing Elements (PEs) that combine spikes and synaptic

weights. These PEs form the Tile module, which integrates the

accumulation module, the neuron module responsible for storing

membrane potentials and comparing them to thresholds, the

pooling module, and the global buffer that handles storage. These

modules are interconnected in a mesh topology.

Each analog crossbar in SpikeSim consists of rows that receive

spikes as potentials (Vi) and columns that output the weighted sum

of spikes as values (Ij). RRAMdevices are placed at the intersections

of rows and columns. The conductance (Gi,j) of these RRAMs is

adjusted to match the learned synaptic weights. Input spikes flow

through these RRAM devices, following Ohm’s law, resulting in

weighted currents. Additionally, currents generated from each row

are summed according to Kirchhoff’s law. These current values are

converted to digital values through analog-to-digital conversion.

The digitized values are aggregated in the accumulation module

to compute membrane potentials. Finally, membrane potentials are

sent to the neuron module, where they are compared to a threshold

to determine spike firing.

SpikeSim implements each module as synchronous circuits,

and in our study, we set the clock frequency to 250 MHz. The

energy consumption calculated by SpikeSim includes the energy

used for analog crossbar multiplication, other modules like the

neuron module, and inter-module communication.

6.4 Experimental results

Throughout the experiment, we compare three models: a deep

layer model (DL), an SNN converted from a corresponding ANN,

prior to the incorporation of the IC, a shallow layer model (SL), a

model that is composed of sub-network of (DL), i.e., from the input

to the IC, with subsequent layers removed to form a shallowmodel,

and (BayesianSpikeFusion) the proposedmethod that combines the

IC and FC output with a Bayesian approach to obtain the final class

classification outcome. Figure 7 visually depicts the three models

with the IC inserted at the sixth layer.

Figure 8 shows the relationship between inference accuracy

and energy consumption in CIFAR10 inference using VGG19.

VGG19(DL) represents the complete VGG19 model, while

VGG19(SL) excludes layers after the fifth layer. The horizontal line

represents 99% of the accuracy achieved by the original floating-

point VGG19 model before conversion to SNN. The graph also

shows two types of Bayesian spiking fusion (BayesianSpikeFusion):

one with α determined through empirical Bayesian estimation

labeled as BayesianSpikeFusion(Emp) and the other with α

determined via grid search labeled as BayesianSpikeFusion(Grid).

Note that the energy consumed by BayesianSpikeFusion is the sum

of the energy consumed by VGG19(DL) and the energy consumed

by IC. The energy consumption of the IC is significantly lower

than the total energy consumption of the network, amounting

to 0.49 nJ per time step, which is less than 0.5% of the total

energy consumed per timestep. According to Equation (15), the

conversion error to SNN decreases inversely with the simulation

time T. Thus, increasing T enhances inference accuracy but also

raises the number of spike firings, resulting in higher energy

consumption. Moreover, in terms of the rise in accuracy with

respect to energy consumption, VGG19(DL) demonstrates the

slowest increase, while VGG19(SL) exhibits the fastest rise.

Conversely, when sufficient energy is expended, VGG19(DL),

BayesianSpikeFusion(Grid), and BayesianSpikeFusion(Emp)

asymptotically approach the same inference accuracy as the ANN

counterpart, while VGG19(SL) achieves less than 91% accuracy.

This implies that, for VGG19(DL), spikes should travel through

tens of layers to be accumulated at the membrane of the output

neurons, and hence it takes more time to produce accurate outputs,
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FIGURE 8

Relationship between inference accuracy and energy consumption in CIFAR10 inference using VGG19 network.

resulting in a slower increase in inference accuracy. On the other

hand, VGG19(SL) enables early propagation of information,

leading to a quicker rise in inference accuracy owing to fewer

number of layers. However, due to its shallow depth, VGG19(SL)

lacks the discriminative ability necessary to achieve sufficient

inference accuracy even with increased energy consumption.

To address this issue, BayesianSpikeFusion aims to achieve

both high inference performance equivalent to ANN and a

steep rise in inference accuracy by integrating VGG19(DL) and

VGG19(SL) using Bayesian fusion. The graph illustrates that

both BayesianSpikeFusion(Grid) and BayesianSpikeFusion(Emp)

achieve high inference accuracy with lower energy consumption

than VGG19(DL), effectively improving the trade-off between

inference accuracy and energy consumption. Specifically, to achieve

99% of the inference accuracy of ANN counterpart, VGG19(DL)

required 4.33 mJ while BayesianSpikeFusion(Grid) required only

3.58 mJ, leading to a 17.4% reduction.

To quantitatively compare the trade-off between inference

accuracy and energy consumption, the area under the curve

(AUC) was calculated for the curve enclosed by the curve

and the lines y = 0 and x = 1.50 × 10−2. A larger

AUC indicates that high accuracy can be achieved with less

energy consumption. BayesianSpikeFusion achieved an AUC of

1.351× 10−2, representing a 1.01 times improvement compared to

VGG19(SL)’s AUC of 1.340× 10−2, and a 1.05 times improvement

compared to VGG19(DL)’s AUC of 1.281 × 10−2. This indicates

an enhancement in the trade-off between inference accuracy and

energy consumption.

In conventional early-exit methods, switching between IC

and FC was based solely on confidence level. That is when

classifying based on FC, information from IC was discarded.

Therefore, the energy consumption curve when adopting the

early-exit approach corresponds to the higher of either the

energy-accuracy curve for IC or FC (represented by the green

IC curve and blue FC curve connected at the intersection in

Figure 8). In contrast, the red curve of BayesianSpikeFusion (Grid)

surpasses this curve in terms of accuracy in the range from

x = 2.0 × 10−3 to x = 5.0 × 10−3, increasing the AUC

by 1.66 × 10−4 (corresponding to the cross-hatched area in the

Figure 8). Therefore, BayesianSpikeFusion demonstrates higher

energy efficiency compared to early-exit methods that utilize results

from only one IC or FC for classification.

Next, we investigated the impact of the insertion position of

the IC on inference accuracy and energy consumption. Figure 9

illustrates the reduction rate (R) of energy consumption for

inference, while shifting the insertion position of the IC from the

layer after the fourth convolutional layer to the layer after the

fourteenth convolutional layer, one layer at a time. R is defined as

follows Equation (33):

R = 100 ·
Eorig − Eprop

Eorig
, (33)

where Eorig and Eprop represent the energy required for the VGG19

converted to SNN and the VGG19 using BayesianSpikeFusion,

respectively, to achieve 99% of the inference accuracy of the original

ANN before conversion to SNN.
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FIGURE 9

The reduction ratio of energy consumption per image; The vertical

axis shows the reduction ratio and the horizontal axis shows the IC

insertion position, comparing the reduction ratio of energy

consumption required for the SNN to reach 99% of the accuracy of

the ANN before conversion.

From Figure 9, it can be observed that inserting the IC at both

shallow and deep positions does not yield sufficient effectiveness.

This is because when the IC is inserted in shallow layers, there are

insufficient features acquired in those layers to predict the firing

probability of the output layer, resulting in a deterioration in the

construction accuracy of the prior distribution and hindering the

improvement of accuracy through Bayesian fusion. On the other

hand, even when the IC is inserted in deep layers, it takes time

for information to propagate sufficiently to the neurons in the

deep layers, thereby unable to take full advantage of the benefits

of Bayesian fusion. Therefore, it is evident that inserting the IC at

the appropriate position is crucial.

We compared the energy consumption and AUC of an SNN

and BayesianSpikeFusion that were pre-charged with an initial

membrane potential of 0.5. The results of the inference of CIFAR-

10 with the VGG19 model are shown on the top side of Table 3.

From these results, in our experimental settings, setting the initial

membrane potential to 0.5 resulted in a deterioration of energy

consumption and AUC for both the conventional SNN and

BayesianSpikeFusion. We believe this is because spikes that would

normally be difficult to fire are excessively fired, resulting in a

deterioration of the initial inference accuracy.

In addition, we compared the energy consumption and AUC of

an SNN and BayesianSpikeFusion with thresholds set to 0.8 and 1.2.

The results of the inference of CIFAR-10 with the VGG19 model,

similar to the previous experiment, are shown on the bottom side

of Table 3. From Table 3, an SNNwith a threshold set to 0.8 resulted

in a decrease in AUC and an increase in energy consumption

for both the conventional SNN and BayesianSpikeFusion. We

believe this is due to the excessive firing of spikes, similar to the

case where the initial membrane potential was pre-charged. On

the other hand, an SNN with a threshold set to 1.2, although

not as good as BayesianSpikeFusion alone, increased the AUC by

2.7% and reduced energy consumption by 5.0% compared to the

conventional SNN. BayesianSpikeFusion with a threshold set to

TABLE 3 Inference accuracy of CIFAR-10 using VGG19 with varying initial

membrane potential V0 or threshold Vth.

AUC
(

×10−3
)

Energy
(

×10−3
)

[J]

V0 Experiment

Conventional SNN 2.84 4.33

Conventional SNN

(V0 = 0.5)

2.60 (↓ −8.5%) 5.06 (↑ −16.9%)

BayesianSpikeFusion 3.53 3.58

BayesianSpikeFusion

(V0 = 0.5)

3.47 (↓ −1.8%) 4.59 (↑ −28.2%)

Vth Experiment

Conventional SNN 2.84 4.33

Conventional SNN

(Vth = 0.8)

2.72 (↓ −4.2%) 4.59 (↑ −5.9%)

Conventional SNN

(Vth = 1.2)

2.91 (↑ 2.7%) 4.11 (↓ 5.0%)

BayesianSpikeFusion 3.53 3.58

BayesianSpikeFusion

(Vth = 0.8)

3.52 (↓ −0.4%) 4.10 (↑ −14.7%)

BayesianSpikeFusion

(Vth = 1.2)

3.51 (↓ −0.7%) 3.55 (↓ 0.8%)

1.2 had the same AUC and energy consumption as the regular

BayesianSpikeFusion with a threshold of 1.0, and no synergistic

effect was observed.

Finally, to investigate the generality of BayesianSpikeFusion,

we examined the required inference energy to achieve 99% of

the inference accuracy of the ANN counterpart for five network

architectures: VGG11, VGG16, VGG19, ResNet18, and ResNet34,

using three datasets: MNIST, CIFAR10, and CIFAR100. The results

are shown in Table 4. Additionally, AUC was calculated to quantify

the trade-off between inference accuracy and energy consumption,

and the values were added to the table. From Table 4, it can be

seen that BayesianSpikeFusion(Grid) achieved energy reduction

in all conditions. On the other hand, BayesianSpikeFusion(Emp)

showed increased energy consumption in some conditions (CIFAR-

10+ResNet18, CIFAR-100+VGG11, and CIFAR-100+ResNet18),

but achieved equal or higher AUC values. In addition, we

investigated the AUC and energy when inferring Tiny ImageNet (Le

and Yang, 2015), which is a larger dataset than the three datasets,

with the VGG19 model, and the results are shown in Table 5. Tiny

ImageNet is composed of a part of the ImageNet data and is a

set of 100,000 images of 200 classes (500 images each) reduced

to 64×64 color images. From Table 5, both search methods (i.e.,

empirical Bayes method and grid search) improved the trade-

off between energy and accuracy and were able to reduce energy

consumption. We also evaluated the DVS Gesture dataset (Amir

et al., 2017), which consists of time-series neuromorphic data. This

dataset includes 11 types of hand gestures performed by 29 subjects

in three different environments. In experiments using VGG19,

BayesianSpikeFusion (Grid) reduced energy consumption by

50.0% compared to conventional SNNs, while BayesianSpikeFusion

(Emp) reduced energy consumption by 43.7%. This demonstrates

that the proposed method is also effective for neuromorphic

datasets with time-series information.
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TABLE 4 Comparison of AUC and energy consumption.

Architecture Method Accuracy [%] AUC (×10−3) Energy (×10−3) [J]

MNIST

VGG11 Conventional SNN 98.58 0.11 0.24

BayesianSpikeFusion(Grid) 98.57 0.12 (↑ 8.2%) 0.23 (↓ 3.4%)

BayesianSpikeFusion(Emp) 98.58 0.11 (↑ 1.2%) 0.24 (↓ 0.3%)

VGG16 Conventional SNN 98.65 0.48 0.98

BayesianSpikeFusion(Grid) 98.64 0.71 (↑ 49.8%) 0.76 (↓ 22.7%)

BayesianSpikeFusion(Emp) 98.67 0.54 (↑ 13.1%) 0.89 (↓ 8.5%)

VGG19 Conventional SNN 98.59 0.84 1.64

BayesianSpikeFusion(Grid) 98.62 1.24 (↑ 47.7%) 1.00 (↓ 38.8%)

BayesianSpikeFusion(Emp) 98.59 0.89 (↑ 5.6%) 1.55 (↓ 5.1%)

ResNet18 Conventional SNN 98.69 1.08 2.36

BayesianSpikeFusion(Grid) 98.66 1.80 (↑ 66.6%) 1.70 (↓ 27.8%)

BayesianSpikeFusion(Emp) 98.67 1.26 (↑ 16.2%) 2.18 (↓ 7.5%)

ResNet34 Conventional SNN 98.65 10.49 21.66

BayesianSpikeFusion(Grid) 98.65 16.39 (↑ 56.2%) 16.65 (↓ 23.1%)

BayesianSpikeFusion(Emp) 98.65 10.93 (↑ 4.2%) 19.95 (↓ 7.9%)

CIFAR-10

VGG11 Conventional SNN 90.74 0.65 0.93

BayesianSpikeFusion(Grid) 90.73 0.70 (↑ 8.0%) 0.86 (↓ 7.7%)

BayesianSpikeFusion(Emp) 90.75 0.67 (↑ 3.0%) 0.90 (↓ 3.5%)

VGG16 Conventional SNN 92.81 1.89 2.76

BayesianSpikeFusion(Grid) 92.79 2.20 (↑ 16.5%) 2.28 (↓ 17.4%)

BayesianSpikeFusion(Emp) 92.80 1.96 (↑ 4.0%) 2.34 (↓ 15.0%)

VGG19 Conventional SNN 92.55 2.84 4.33

BayesianSpikeFusion(Grid) 92.55 3.53 (↑ 24.6%) 3.58 (↓ 17.4%)

BayesianSpikeFusion(Emp) 92.54 2.98 (↑ 5.1%) 4.24 (↓ 2.0%)

ResNet18 Conventional SNN 93.53 6.72 9.51

BayesianSpikeFusion(Grid) 93.53 6.88 (↑ 2.4%) 9.38 (↓ 1.4%)

BayesianSpikeFusion(Emp) 93.53 6.89 (↑ 2.6%) 9.76 (↑ -2.6%)

ResNet34 Conventional SNN 93.87 21.30 35.14

BayesianSpikeFusion(Grid) 93.90 28.30 (↑ 32.9%) 30.30 (↓ 13.8%)

BayesianSpikeFusion(Emp) 93.88 22.14 (↑ 3.9%) 34.26 (↓ 2.5%)

CIFAR-100

VGG11 Conventional SNN 68.84 0.97 1.74

BayesianSpikeFusion(Grid) 68.84 0.99 (↑ 2.2%) 1.59 (↓ 9.1%)

BayesianSpikeFusion(Emp) 68.84 0.98 (↑ 0.7%) 1.85 (↑ -5.9%)

VGG16 Conventional SNN 70.88 2.57 4.77

BayesianSpikeFusion(Grid) 70.89 2.88 (↑ 12.1%) 4.48 (↓ 6.1%)

BayesianSpikeFusion(Emp) 70.89 2.61 (↑ 1.6%) 4.53 (↓ 5.1%)

VGG19 Conventional SNN 71.06 4.39 8.48

BayesianSpikeFusion(Grid) 71.07 4.99 (↑ 13.5%) 7.51 (↓ 11.4%)

BayesianSpikeFusion(Emp) 71.11 4.44 (↑ 1.1%) 7.12 (↓ 16.0%)

(Continued)
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TABLE 4 (Continued)

Architecture Method Accuracy [%] AUC (×10−3) Energy (×10−3) [J]

ResNet18 Conventional SNN 73.73 6.04 10.99

BayesianSpikeFusion(Grid) 73.72 6.39 (↑ 5.8%) 10.85 (↓ 1.3%)

BayesianSpikeFusion(Emp) 73.73 6.05 (↑ 0.2%) 11.15 (↑ -1.5%)

ResNet34 Conventional SNN 71.01 50.19 88.73

BayesianSpikeFusion(Grid) 71.01 53.94 (↑ 7.5%) 46.11 (↓ 48.0%)

BayesianSpikeFusion(Emp) 71.02 50.52 (↑ 0.7%) 66.89 (↓ 24.6%)

The values written in bold indicate the best performance (i.e., accuracy, AUC, or energy consumption) when comparing each method under the same dataset and model conditions.

TABLE 5 Inference accuracy of Tiny ImageNet using VGG19.

VGG19 Bayesian
SpikeFusion

(Grid)

Bayesian
SpikeFusion

(Emp)

Accuracy [%] 64.9 65.0 64.9

AUC
(

×10−3
)

21.70 23.14 (↑ 6.6%) 21.82 (↑ 0.6%)

Energy
(

×10−3
)

[J]

41.49 38.89 (↓ 6.3%) 41.12 (↓ 0.9%)

The values written in bold indicate the best performance (i.e., accuracy, AUC, or energy

consumption) when comparing each method under the same dataset and model conditions.

TABLE 6 Performance comparison of CIFAR-10 dataset inferred by

VGG16.

Method Accuracy
[%]

Energy
[J]

Timestep

Robust normalization

(Rueckauer et al., 2017)

93.77 1.99× 10−2 2500

RMP (Han et al., 2020) 93.63 1.22× 10−2 1536

RTS (Deng and Gu, 2021) 92.24 1.02× 10−3 128

BayesianSpikeFusion(Grid) 93.57 8.14× 10−3 1024

BayesianSpikeFusion(Grid) 92.22 2.05× 10−3 256

BayesianSpikeFusion(Grid) 88.14 1.02× 10−3 128

Table 6 compares BayesianSpikeFusion with other methods

for reducing inference time steps on the CIFAR-10 dataset using

VGG16. It shows that BayesianSpikeFusion can achieve similar

accuracy while reducing time steps and energy consumption

compared to Robust normalization and RMP. Compared to

RTS, BayesianSpikeFusion also achieves comparable accuracy.

Furthermore, it is noted that BayesianSpikeFusion can be used

concurrently with these methods, potentially further reducing the

inference time steps.

7 Conclusion

We proposed a method for reducing the energy required for

SNN inference by predicting the firing probability of the final layer

from activations in the shallow layers of the network and Bayesian

fusion of these activations with actually observed firing events.

To evaluate the effectiveness of the proposed method, we

implemented VGGs and ResNets with PyTorch and trained

image classification tasks on MNIST, CIFAR10, and CIFAR100.

Comparing the energy required to achieve a 1% degradation in

classification accuracy from the ANN’s inference accuracy, we

achieved a maximum reduction of 42.62mJ and a 48.0% energy

reduction in ratio.
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