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On the performance of seizure
prediction machine learning
methods across di�erent
databases: the sample and
alarm-based perspectives

Inês Andrade*, César Teixeira and Mauro Pinto

University of Coimbra, Centre for Informatics and Systems, Department of Informatics Engineering,

Coimbra, Portugal

Epilepsy a�ects 1% of the global population, with approximately one-third of

patients resistant to anti-seizure medications (ASMs), posing risks of physical

injuries and psychological issues. Seizure prediction algorithms aim to enhance

the quality of life for these individuals by providing timely alerts. This study

presents a patient-specific seizure prediction algorithm applied to diverse

databases (EPILEPSIAE, CHB-MIT, AES, and Epilepsy Ecosystem). The proposed

algorithm undergoes a standardized framework, including data preprocessing,

feature extraction, training, testing, and postprocessing. Various databases

necessitate adaptations in the algorithm, considering di�erences in data

availability and characteristics. The algorithm exhibited variable performance

across databases, taking into account sensitivity, FPR/h, specificity, and AUC

score. This study distinguishes between sample-based approaches, which

often yield better results by disregarding the temporal aspect of seizures, and

alarm-based approaches, which aim to simulate real-life conditions but produce

less favorable outcomes. Statistical assessment reveals challenges in surpassing

chance levels, emphasizing the rarity of seizure events. Comparative analyses

with existing studies highlight the complexity of standardized assessments, given

diverse methodologies and dataset variations. Rigorous methodologies aiming

to simulate real-life conditions produce less favorable outcomes, emphasizing

the importance of realistic assumptions and comprehensive, long-term, and

systematically structured datasets for future research.

KEYWORDS

seizure prediction, epilepsy, databases, machine learning, EEG

1 Introduction

Epilepsy, a prevalent neurological disorder, affects approximately 1% of the

global population. Characterized by irregular brain activity, this condition leads

to rare and unpredictable epileptic seizures. The primary strategy for managing

seizures involves administering anti-seizure medications (ASMs). However,

approximately one-third of patients do not respond effectively to this approach,

posing significant risks for those with Drug-Resistant Epilepsy (DRE). Apart from

the immediate physical dangers like accidental injuries and cerebral damage,

epilepsy can trigger psychological and social disorders such as anxiety, depression,

and neuropsychological deficits (Perucca et al., 2018; Mehdizadeh et al., 2019).
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Improving the quality of life for these patients involves

integrating seizure prediction into intervention or alert systems to

prevent or minimize the adverse effects of epileptic seizures. The

primary goal is to develop an algorithm to predict an impending

epileptic seizure and trigger an alert before the seizure onset (Assi

et al., 2017). Within this context, the existence of a preictal period

is presumed, marked by the transition from normal brain activity

to a seizure. Electroencephalogram (EEG) signals can capture this

stage, along with the three other stages that define a seizure: ictal

(during the seizure), postictal (after the seizure), and interictal

(between the postictal and preictal stages of two successive seizures)

(Cui et al., 2018). The goal of a prediction algorithm is to identify

brain patterns associated with the preictal period. The group by

Iasemidis et al. was the first one to show the existence and quantify

the duration of a preictal period and, based on this, to develop

the first seizure prediction algorithm (Iasemidis, 2003; Iasemidis

et al., 2003, 2005; Chaovalitwongse et al., 2005; Sackellares et al.,

2006). Assessment of seizure prediction algorithms may divide the

preictal period into two periods (that then become algorithms’

parameters): the Seizure Prediction Horizon (SPH), a period within

which a warning of an upcoming seizure may be issued and

intervention may occur, and the Seizure Occurrence Period (SOP),

a period following SPH within which the seizure itself may occur

(Winterhalder et al., 2003; Schelter et al., 2006).

The selected database profoundly impacts the performance

of a seizure prediction algorithm, necessitating the development

of a model with universal applicability for direct comparison

of outcomes across databases. This study primarily focused

on constructing a patient-specific seizure prediction algorithm

using a subset of European Epilepsy Database (EPILEPSIAE)

data. Subsequently, the algorithm was adapted for application to

the Children’s Hospital Boston from the Massachusetts Institute

of Technology (CHB-MIT), American Epilepsy Society (AES),

and Epilepsy Ecosystem databases, enabling the assessment and

comparison of their performance.

2 Material and methods

We initially developed a patient-specific algorithm for

predicting seizures using EPILEPSIAE data and then adapted it

for broader applicability to other databases (CHB-MIT, AES, and

Epilepsy Ecosystem). To achieve this, we followed a common

framework for seizure prediction, illustrated in the Figure 1. This

framework included sequential stages: data preprocessing, feature

extraction, training, testing, and postprocessing.

Raw EEG data underwent preprocessing and segmentation into

non-overlapping 5-second windows to extract relevant features.

Subsequently, the data was divided into a training set for parameter

optimization and classifier training and a testing set for prediction

and classifier evaluation. Variations in algorithms tailored for other

databases were influenced by several factors, with how the data is

made available being the primary determinant.

This study also involved a phase of statistical assessment to

verify that the model’s performance is grounded in its ability to

recognize patterns associated with seizures rather than random

phenomena within EEG signals. This consideration is essential

given the rare event nature of seizure prediction, leading to a

notable imbalance between interictal and preictal periods.

2.1 Data

Detailed information about the data used from each database is

available in the Supplementary material.

2.1.1 EPILEPSIAE
In this study, we used data from a subset of 40 patients

diagnosed with Temporal Lobe Epilepsy (TLE), comprising 17

females and 23 males, with an average age of 41.4 ± 15.7

years. The EPILEPSIAE dataset (EPILEPSIAE, 2008) comprises

scalp EEG recordings acquired from 19 electrodes, aligned with

the International 10–20 System, during pre-surgical monitoring

sessions conducted at a sampling frequency of 256 Hz.

The selection criteria ensured the inclusion of patients who

had experienced a minimum of four independent seizures, with a

minimum interval of 4.5 h between each seizure. This approach

avoided analyzing seizures belonging to the same seizure cluster.

Approval for the utilization of this data for research purposes

was granted by the Ethics Committee of the three hospitals

involved in the development of the EPILEPSIAE database (Ethik-

Kommission der Albert-Ludwigs-Universität, Freiburg; Comité

consultatif sur le traitement de l’information en matiére de

recherche dans le domaine de la santé, Hospital Universitário

Pitié-Salpětriére; and Ethics Committee of the Centro Hospitalar

e Universitário de Coimbra). All studies followed applicable

guidelines and regulations, with written informed consent obtained

from each patient.

2.1.2 CHB-MIT
From the CHB-MIT dataset (CHB-MIT, 2010), we chose 6

out of the 24 cases. These 6 cases involve data from three female

patients, two male patients, and one patient of unknown gender.

The data were recorded at a sampling frequency of 256 Hz using 23

or 32 electrodes, following the International 10–20 System.

The selection of these cases followed the criteria applied to

the EPILEPSIAE data. Specifically, cases chb12, chb13, and chb18

were excluded, not due to a failure to meet the aforementioned

requirements but rather because they exhibited multiple electrode

changes or insufficient data. The selected data covers 244 hours,

with a total of 32 seizures. The data is available for research

purposes, and access is open to all, subject to specified terms.

2.1.3 AES
We also incorporated data from all participants in the AES

database (AES, 2014), which includes five dogs and two humans.

This dataset consists of Intracranial Electroencephalogram (iEEG)

data, with long-term ambulatory recordings collected at a sampling

frequency of 400 Hz from five canines with naturally occurring

epilepsy and pre-surgical recordings collected at a sampling

frequency of 5 kHz from two human subjects. The number of

electrodes varied from 15 to 24.
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FIGURE 1

General overview of the proposed patient-specific pipeline for a real-life simulation. Asterisks indicate the inclusion of a Logistic Regression classifier

in the model training phase.

The dataset includes long-term data, but only a portion

is accessible, comprising 1-hour recordings divided into

6 individual files categorized as interictal or preictal. This

dataset lacks temporal information, making it impractical to

establish temporal relationships between files. Therefore, for

this study, we utilized 627.6 hours of recordings containing

51 seizures. Access to the data in this dataset is public,

and its usage was permitted after the conclusion of the

Kaggle competition.

2.1.4 Epilepsy ecosystem
Furthermore, we included data from the Epilepsy

Ecosystem (Epilepsy Ecosystem, 2016), corresponding to

data from the three patients exhibiting the worst results

in the NeuroVista database. Collected at a sampling

rate of 400 Hz for 16 channels, these data include iEEG

recordings from female patients with an average age of

41± 13.5 years.

Much like the AES data, this dataset is structured similarly,

with data organized into multiple 10-min files lacking temporal

information. However, not all files are open to the public; some

are designated as private. Thus, we used a total of 935.3 h of

recording. Accessing and using this data involved completing

a form, undergoing security procedures, and consenting to the

specified terms of use.

2.2 Preprocessing

During the preprocessing phase of the EPILEPSIAE data,

we employed a methodology based on Convolutional Neural

Networks (CNNs) developed by Lopes et al. (2021). This model

automatically and efficiently removes artifacts, including eye blinks,

eye movements, muscle activity, cardiac activity, and electrode

interference, producing results comparable to those achieved by

experts.

For the remaining datasets, we implemented low-pass and/or

high-pass filters based on the characteristics of each dataset. For

iEEG data (AES and Epilepsy Ecosystem), we applied a high-pass

filter with a cutoff frequency of 0.5 Hz. For scalp EEG data (CHB-

MIT), alongside the high-pass filter, we incorporated a low-pass

filter with a cutoff frequency of 60 Hz.

For AES and Epilepsy Ecosystem data, downsampling was

necessary due to the higher original sampling frequency exceeding

256 Hz.

2.3 Feature extraction

After completing data preprocessing, we partitioned the EEG

signals into non-overlapping 5-second windows, allowing for the

extraction of relevant features. The selection of this window

duration aligns with the contemporary state-of-the-art in the field
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of seizure prediction (Cook et al., 2013; Teixeira et al., 2014; Direito

et al., 2017; Pinto et al., 2022).

Opting for reduced computational complexity and enhanced

interpretability, we exclusively extracted univariate linear features.

Through a sliding window analysis, we obtained 59 univariate

linear features for each channel. The only variation in this

procedure among different databases pertains to the total number

of features, influenced solely by the varying numbers of channels.

In the frequency domain, the extracted features include the

relative spectral power of delta (0.5–4 Hz), theta (4–8 Hz), alpha

(8–13 Hz), beta (13–30 Hz), and four gamma subbands: gamma

band 1 (30–47 Hz), gamma band 2 (53–75 Hz), gamma band 3 (75–

97 Hz), and gamma band 4 (103–128 Hz). Additionally, features

include the ratio between these bands, spectral edge frequency, and

power at 50%. In the time domain, we computed four statistical

moments (mean, variance, skewness, kurtosis), Hjörth parameters

(activity, mobility, complexity), and decorrelation time. Regarding

time-frequency features, we extracted the energy from five wavelet

detail coefficients (from D1 to D5, using the mother wavelet db4)

(Lopes et al., 2023; Pinto et al., 2023).

2.4 Data splitting

This phase involved partitioning the features into two separate

sets for each patient: one designated for training and the other

for testing. In contrast to the standardized feature extraction

approach, this process demonstrated variations tailored to the

distinct attributes of each dataset.

For the EPILEPSIAE and CHB-MIT data, we assigned the

initial seizures of each patient to the training set, allocating the

subsequent seizures to the testing set. This chronological division

was implemented to replicate a realistic seizure prediction scenario,

wherein the model first learns from a historical set of seizures

before being applied for real-time prediction of future data. For

AES and Epilepsy Ecosystem data, the division could not follow the

same chronological approach due to the unavailability of temporal

seizure data. Instead, the division wasmade based on the number of

available preictal files.We adopted the closest possible ratio of 70/30

for training/testing, ensuring that no preictal files corresponding to

the same seizure were present in both sets.

2.5 Training

Each patient’s training set played a crucial role in determining

optimal parameters, including the optimal number of features for

all datasets and the SOP duration specifically for the EPILEPSIAE

and CHB-MIT data. The identified optimal parameters were then

utilized to train the classifier.

In the initial phase, for the EPILEPSIAE and CHB-MIT

data, samples were classified into two distinct classes: preictal

(1) and interictal (0). The preictal class included the SPH and

the SOP. For SOP values, the SPH duration was set at 10

minutes, deemed the most suitable time interval based on the

time required for medication to take effect (Boddu and Kumari,

2020; Bouw et al., 2021; Cloyd et al., 2021). For SOP value, we

analyzed values between 10 and 55 min at 5-min increments. The

preictal period was limited to a maximum of 1 hour, a decision

driven by the practicalities of an alert device algorithm. Extending

beyond this timeframe could compromise the effectiveness of

rescue medication administration and increase patient stress. This

procedural step was skipped for the AES and Epilepsy Ecosystem

data, as the data had already been categorized and separated into

preictal and interictal segments.

Additionally, we applied z-score normalization to standardize

the training set data. During this training phase, addressing

the class imbalance in the EPILEPSIAE and CHB-MIT data

required the development of a class balancing strategy. To

maintain representativeness and address the disparity between

the number of interictal and preictal samples, we implemented

class weights calculated inversely to their frequency. For AES and

Epilepsy Ecosystem data, the balancing process was simplified and

conducted during data splitting by selecting an equal number of

preictal and interictal files.

Before classifier training, we employed a grid-search strategy

with Leave-One-Out Cross Validation (LOOCV) to identify

optimal parameters. This method involves triple cross-validation,

incorporating two seizures for training and one for validating the

training set, particularly in the case of EPILEPSIAE and CHB-

MIT data. In cases where files correspond to interictal and preictal

periods rather than seizures, the data were divided as closely as

possible to a 70/30 ratio for training and validation.

Identification of the chosen parameters involved evaluating the

model’s performance, taking into consideration the Equation (1)

representing the trade-off between sample sensitivity (SS) and

specificity (SP). With the optimal parameters determined, we

trained the chosen classifier - a logistic regression.

√

SSsample · SPsample (1)

2.6 Post-processing

During the testing stage, we employed the same techniques

as in the training stage, excluding class balancing. Following the

classification phase, we implemented the Firing Power method,

proposed by Teixeira et al. (2011), for regularization, aiming to

reduce false alarms. This method employs a moving average filter,

triggering an alarm when surpassing a predefined threshold, set at

0.7 in our case (Pinto et al., 2023). A refractory period, matching the

duration of the preictal period, was also implemented to prevent

consecutive and redundant alerts.

2.7 Performance evaluation

The final step involved assessing the prediction performance

using metrics such as sensitivity, False Prediction Rate per hour

(FPR/h), specificity, and Area Under the ROC Curve (AUC)

score. Sensitivity and FPR/h are real context metrics corresponding

to the alarm-triggering approach. Sensitivity represents the ratio

of predicted seizures (true alarms) to the total number of

seizures, while FPR/h indicates the number of incorrectly predicted
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seizures per hour. To enable comparisons with databases lacking

temporal seizure information and employing a sample approach,

we incorporated specificity and the AUC value.

2.7.1 Alarm and sample-based approaches
We employed two distinct methodologies based on the

availability of temporal seizure data. The alarm approach was

feasible for the EPILEPSIAE and CHB-MIT datasets due to the

comprehensive temporal information available. This allowed us to

chronologically assess the data by triggering alarms, enabling the

calculation of sensitivity and FPR/h. Conversely, for the AES and

Epilepsy Ecosystem datasets, only interictal and preictal files were

provided, precluding a temporal-based approach. Therefore, we

evaluated these datasets sample-by-sample, determining sensitivity,

specificity, and AUC. We also applied this sample-based approach

to the EPILEPSIAE and CHB-MIT data to facilitate comparison

across all datasets.

2.7.2 Statistical assessment
Additionally, we conducted a statistical assessment to

determine whether the algorithm’s performance surpassed chance.

The surrogate time series analysis method involved 30 random

alterations of seizure onset times within the interictal period,

establishing the algorithm’s superiority over chance if its sensitivity

exceeded the statistically significant level (0.05).

3 Results and discussion

Table 1 presents the average values of the metrics calculated for

all databases. For detailed results of each patient’s metrics, refer to

the Supplementary material.

Regarding the alarm approach, the sensitivity achieved is

notably low for both EPILEPSIAE and CHB-MIT, with a slightly

higher value for CHB-MIT. FPR/h values for both datasets exceed

the defined ideal threshold of 0.15, considered suitable for practical

real-life applications. Unlike sensitivity, the most favorable value

is now observed for EPILEPSIAE. However, this better outcome is

significantly influenced by instances where, despite the absence of

false alarms, no seizures were predicted.

The analysis, limited to patients with at least one predicted

seizure, reveals improved sensitivity in both datasets. EPILEPSIAE

achieves an average sensitivity of 0.50, while CHB-MIT reaches

0.56. The FPR/h value changes only in the EPILEPSIAE data,

reaching 0.49, highlighting the impact of the previously mentioned

cases on the results.

Concerning the metrics under the sample approach, there is a

marked improvement in sensitivity values for both EPILEPSIAE

and CHB-MIT. This finding leads us to the conclusion that

addressing this issue through a more realistic approach, where

triggering alarms is necessary, results in less favorable outcomes.

The Epilepsy Ecosystem data stands out with a notably

high sensitivity value compared to other databases. However,

this elevated sensitivity comes at the cost of reduced specificity,

in contrast to other databases where specificity is higher. This

observed pattern may be attributed to the average number of

hours available per seizure, with datasets containing more interictal

data contributing to a more accurate classification of the interictal

sample. The time per seizure ratios for these datasets were

20.8, 12.31, 7.8, and 4.4 h for EPILEPSIAE, AES, CHB-MIT,

and Epilepsy Ecosystem, respectively. Finally, the AUC value

consistently exhibited similarity across all databases, reinforcing the

trend that when one metric improves, the other tends to decline.

3.1 Statistical assessment

Table 2 provides an overview of the number and percentage

of patients that successfully passed statistical assessment for

each database under the two approaches (alarm and sample).

Detailed patient-specific results for this step can be found in the

Supplementary material.

The discrepancy in results between approaches is evident.

Out of the 46 patients studied, only 6 demonstrated performance

surpassing the chance level in the alarm-based method. This subset

includes five individuals from the EPILEPSIAE dataset (8,902,

32,702, 80,702, 93,402, and 110,602), as well as one from CHB-

MIT (chb01). On the other hand, in the sample-based approach,

the majority of patients demonstrated performance surpassing the

chance level. Among the 56 patients studied, 50 surpassed the

surrogate predictor. This difference in values between approaches

was already anticipated based on prior findings. The conservative

selection of a 0.7 threshold for Firing Power, along with increased

rigor in the alarm approach, also influences these suboptimal

results. However, this conservative limit precisely ensures that

FPR/h values remain within an acceptable range.

Despite comprehensive database comparisons, it is crucial

to acknowledge the complexity of this task due to numerous

variables and substantial differences in data organization. Even

with a method that maintains a high level of rigor, the distinct

organization of data and the presence of diverse information

introduce complexities in standardizing the process.

3.2 Comparison with the state-of-the-art

As shown in Table 3, we chose eight studies to facilitate

comparisons and gain insights into the primary distinctions

observed when juxtaposed with the current state-of-the-art. This

set comprises four studies with the EPILEPSIAE database, three

with CHB-MIT data, two with AES, and one with data from the

Epilepsy Ecosystem.

In analyzing studies using EPILEPSIAE data, it is noteworthy

that the sensitivity value achieved by the developed methodology

occupies the least favorable position in the table. The only study

exhibiting a similar sensitivity value is the one conducted by Pinto

et al. (2022). However, it is crucial to note that Pinto’s study

examined a significantly larger patient population. Additionally,

this study employs a simplistic classifier, unlike the approach

adopted by Lopes et al. (2023), which incorporates Deep Learning

(DL) methods. Therefore, the expectation in the present study was

a lower sensitivity value. Nevertheless, the FPR/h value achieved is

notably well-positioned, surpassed only by the value obtained by

Pinto et al. (2022).
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TABLE 1 Overall testing results for each dataset.

Dataset SSAlarm FPR/h SSSample SPSample AUC

EPILEPSIAE 0.13 0.36 0.42 0.69 0.56

CHB-MIT 0.28 0.53 0.45 0.58 0.52

AES - - 0.48 0.64 0.56

Epilepsy ecosystem - - 0.75 0.37 0.54

TABLE 2 Statistical assessment results for each dataset.

Dataset Alarm approach Sample approach

Validated
patients+

% Validated
patients+

Validated
patients+

% Validated
patients+

EPILEPSIAE 5 12.5 39 97.5

CHB-MIT 1 16.7 6 100

AES - - 2 28.6

Epilepsy Ecosystem - - 3 100

+Refer to Section 3.1 for more details.

When examining the percentage of statistically validated

patients, it is clear that Pinto et al. (2021), Pinto et al. (2022),

and Lopes et al. (2023) hold an advantage, presenting a higher

value. Alvarado-Rojas et al. (2014) on the other hand, achieved a

lower percentage of validated patients. Despite this lower value, it

is noteworthy that the approach employed for statistical assessment

differed, with utilizing the random predictor.

Regarding the CHB-MIT dataset, all studies demonstrated

superior performance in both sensitivity and FPR/h compared to

the developed methodology. Moreover, the AUC values obtained

by Li et al. (2023) and Xu et al. (2023) were significantly higher.

Concerning statistical assessment, only (Truong et al., 2018)

executed this stage, achieving an impressive assessment percentage

of 92%, exceeding the results obtained in this study. However, it is

essential to recognize that the approach employed by Truong et al.

(2018) differed, involving the use of the random predictor.

In the context of AES, it is evident that the metrics attained

by Truong et al. (2018) and Li et al. (2023) greatly outperformed

those attained by the developed algorithm. Significantly, Truong

et al. (2018) scored an almost thrice higher statistical assessment

rate (86%) than this study’s rate (29%).

For the Epilepsy Ecosystem dataset, the scarcity of studies

complicates comparative analyses. Our developed algorithm

diverges from the prevailing trend seen in previous databases,

exhibiting an improved sensitivity value (0.75) in comparison to

Stojanović et al. (2020) (0.69). Nevertheless, the specificity registers

a considerable decline (0.37 compared to 0.79). It is crucial to note

that Stojanović et al. (2020) did not undertake statistical assessment,

a critical factor for comparisons, as all participants in our study

exhibited performance above chance levels.

Another noteworthy consideration is the selection of the SPH

value. Studies opting for a 10-min SPH demonstrated results

closely resembling those obtained by our proposed methodology.

In contrast, studies employing shorter SPH values, equal to or less

than 5 min, showcased improved outcomes. However, it is crucial

to highlight that excessively short SPH values may compromise the

effectiveness of rescue medication administration, given the time

required for medication to exert its therapeutic effects (Bouw et al.,

2021).

4 Conclusion

This study aimed to develop a methodology for predicting

epileptic seizures and facilitating comparisons across four distinct

databases. We devised a patient-specific seizure prediction

algorithm, following the prevailing pipeline in the literature for

EPILEPSIAE data, and adapted it for CHB-MIT, AES, and the

Epilepsy Ecosystem datasets.

For the EPILEPSIAE and CHB-MIT datasets, we used alarm

triggering due to the availability of temporal seizure data. In

contrast, for the AES and Epilepsy Ecosystem datasets without

temporal seizure data, we only implemented a sample approach. To

maintain methodological consistency and facilitate comprehensive

database comparisons, the sample approach was also applied to the

EPILEPSIAE and CHB-MIT data.

The evaluation of results leads to a clear conclusion. Dealing

with the problem less rigorously, without considering the temporal

aspect of seizure occurrence and disregarding long-term interictal

data, yields better results. However, this enhanced performance

may not translate into a more accurate representation of real-

life scenarios; it may even have the opposite effect. Indeed,

assumptions crafted to simulate real-life alarm situations result

in unfavorable outcomes, as evidenced by the results derived

from the EPILEPSIAE and CHB-MIT datasets. Nonetheless, these

assumptions remain crucial for addressing the problem and

ensuring practical applicability. Thus, achieving impressive results

proves inconsequential if they lack realism.

The conclusions drawn from comparing test results with

outcomes from other studies that use identical databases align

closely. The initial expectation was for slightly weaker results

due to the use of a relatively simple pipeline, but the extent
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TABLE 3 Seizure prediction performance for studies under comparison.

Database Study No. of
Patients

SPH (min) SS FPR/h SP AUC Validated
Patients+

CHB-MIT Li et al., 2023 18 1 0.97 0.06 0.87 0.94 -

Xu et al., 2023 4 5 0.91 0.11 - 0.89 -

Truong et al., 2018 13 5 0.81 0.16 - - 92%

Our Proposed

Methodology

6 10 0.28 0.53 0.58 0.52 17%

Our Validated

Patients+
1 10 1 0.31 0.46 0.62 -

EPILEPSIAE Lopes et al., 2023 41 10 0.34 0.90 - - 51%

Pinto et al., 2022 93 - 0.16 0.21 - - 32%

Pinto et al., 2021 19 10 0.37 0.79 - - 32%

Alvarado-Rojas

et al., 2014

53 1 0.47 0.94 - - 13%

Our Proposed

Methodology

40 10 0.13 0.36 0.69 0.56 12.5%

Our Validated

Patients+
5 10 0.67 0.24 0.74 0.72 -

AES Li et al., 2023 4 5 0.93 0.03 0.92 0.97 -

Truong et al., 2018 7 5 0.75 0.21 - - 86%

Our proposed

methodology

7 10 0.48 - 0.64 0.56 29%

Our validated

patients+
2 10 0.75 - 0.66 0.71 -

Epilepsy

ecosystem

Stojanović et al.,

2020

3 5 0.69 - 0.79 - -

Our Proposed

Methodology

3 10 0.75 - 0.37 0.54 100%

Our validated

patients+
3 10 0.75 - 0.37 0.54 -

+Refer to Section 3.1 for more details.

of the observed decline was unexpected. Once again, the

prevailing belief is that meticulous care and assumptions made

to enhance the representation of real-life scenarios led to these

low results.

The discrepancies in the CHB-MIT data stand out prominently

in all comparisons with other studies. The assumptions employed

to simulate real-life conditions consistently yield inferior results,

a trend confirmed by observing this pattern even with datasets

recognized for their high performance in the majority of available

studies, such as the CHB-MIT. Nevertheless, the attainment of

positive outcomes loses significance if predicated on unrealistic

assumptions that fail to align with the actual experiences of

individuals living with epilepsy.

Moreover, the lack of statistical assessment in most of

these studies challenges straightforward comparisons. Additionally,

several authors opt to mention or accentuate their most favorable

results, introducing an element of bias in comparative assessments.

For instance, a closer look at the performance metrics obtained

with the methodology we developed, considering all patients vs.

validated patients, underscores the temptation to present only the

most impressive outcomes. However, adopting such a selective

approach would compromise the accuracy of representation to

reality.

Despite clear conclusions, extracting definitive insights from

the obtained results remains challenging. The numerous variables

at play make it difficult to pinpoint specific factors contributing

to the observed differences in values. Even with a meticulous

methodology, the diverse types of data, organizational structures,

and accessibility across different databases introduce substantial

complexity to the standardization process.

To address these limitations, future efforts should replicate

this study using extensive, systematically structured, and fully

annotated long-term datasets. This requires acquiring and

disseminating additional data in public databases. It is crucial

to ensure that this new data is collected in environments

mirroring the patient’s everyday life. Subsequently, making

this data easily accessible to the public, along with essential

information for a realistic problem-solving approach, is

crucial. Furthermore, the developed methodology should

undergo tests with parameter variations, exploring alternative

classifiers and standardizing the preprocessing stage to evaluate

resulting disparities.
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In addition to the limitations above, it is crucial to discuss

the real-world applicability of our model, including the realism

of preprocessing time. We took considerable care to ensure that

our preprocessing phase aligns with real-time constraints. Drawing

from a validated approach documented in prior research (Lopes

et al., 2021), our methodology was designed to be efficient and

applicable within practical timeframes. Furthermore, our deliberate

selection of simple classifiers and univariate features aimed to

streamline computational demands, enhancing the feasibility of

real-time implementation and underscoring the potential impact of

our research in the field of seizure prediction (Teixeira et al., 2011).
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