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Multimodal medical fusion images (MMFI) are formed by fusing medical images

of two or more modalities with the aim of displaying as much valuable

information as possible in a single image. However, due to the different

strategies of various fusion algorithms, the quality of the generated fused images

is uneven. Thus, an effective blind image quality assessment (BIQA) method is

urgently required. The challenge of MMFI quality assessment is to enable the

network to perceive the nuances between fused images of different qualities,

and the key point for the success of BIQA is the availability of valid reference

information. To this end, this work proposes a generative adversarial network

(GAN) -guided nuance perceptual attention network (G2NPAN) to implement

BIQA for MMFI. Specifically, we achieve the blind evaluation style via the design

of a GAN and develop a Unique Feature Warehouse module to learn the effective

features of fused images from the pixel level. The redesigned loss function

guides the network to perceive the image quality. In the end, the class activation

mapping supervised quality assessment network is employed to obtain the MMFI

quality score. Extensive experiments and validation have been conducted in a

database of medical fusion images, and the proposed method is superior to the

state-of-the-art BIQA method.

KEYWORDS

generative adversarial networks, image quality assessment, multimodal medical fusion
image, perceptual, objective evaluation metrics

1 Introduction

Over the past decade, medical images such as computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography (PET) and single photon
emission computed tomography (SPECT) have played an increasingly important role in
diagnosis, treatment, follow-up recommendations and intraoperative navigation of diseases
(Zhou et al., 2020; He et al., 2023; Honkamaa et al., 2023). Depending on the theory
of medical imaging techniques and the image features characterized by each modality,
multimodal medical images can be simply divided into structural and functional images.
The former can precisely locate the lesion and show the structural changes of the lesion,
while the latter can sensitively reflect the physiological, biochemical and functional changes
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of the tissues and organs in the body, making it easier to detect the
lesion. For instance, Figure 1A shows an MR image of a brain with
glioma, from which the localization information and the internal
structure of the tumor can be known, while the edematous region
can be found to occupy almost more than half of the area of
this tomography. Unfortunately, radiologists are not yet able to
recognize the pathological features of the tumor from this image
alone. Figure 1B shows the PET image of this case. The images of
this modality do not have detailed information on brain structure,
but it is very easy to identify the lesions with significant abnormal
foci of radioactive concentration in the area of the lesion. Based on
the imaging features of the above two modalities, the radiologists
can then diagnose this disease and even complete a preliminary
pathological grading, as shown in Figure 1C. Similarly, Figure 1
also displays a group of cerebral infarction cases where the images
of the two modalities express different imaging features. As can be
seen from the example, the diagnosis of a particular disease may
require reference to multiple modalities at the same time. In view of
the fact that the mono-modal image may not be enough to support
the conclusion of disease diagnosis, some studies have gradually
proposed to integrate the feature advantages of various modalities
of medical images through image fusion technology. In addition,
many literatures have reported that radiologists can significantly
improve the accuracy of disease diagnosis, when they view medical
images in multiple modalities simultaneously (Li and Zhu, 2020; Xu
and Ma, 2021; Zhou et al., 2023).

Multi-modality medical image fusion (MMIF) is a technique
that integrates the medical images obtained from two or more
medical imaging devices, extracts the useful information from
their respective modalities to maximize, and ultimately forms a
comprehensive image (Zhang et al., 2020; Zhang G. et al., 2023; Liu
et al., 2024b). Nowadays, image fusion methods specifically for the
field of medical images have been vigorously developed, and various
excellent fusion algorithms have also been proven in practice.
However, due to the different principles of these fusion algorithms,
the quality of the generated fusion images is uneven, which needs to
be measured by a unified set of standards. Generally, the most direct
way to assess the fused image is to have the fused image observed
and analyzed by a radiologist. Although this subjective evaluation
method can give a score consistent with the human visual system
(HVS), but, the quality score of the fused image is influenced by
the environment, and cannot be directly analyzed quantitatively
due to the direct human involvement. More importantly, subjective
assessment is a time-consuming and labor-intensive process (Lei
et al., 2022; Liu et al., 2022). This would not be permissible in an
already rushed clinical setting.

In contrast to the subjective evaluation, objective evaluation
methods detect some indicators of the image to measure the
quality of the fused image, such as mutual information (MI),
peak signal-to-noise ratio (PSNR), or structural similarity (SSIM).
These metrics have achieved excellent achievements in the field
of natural image quality assessment (Wang J. et al., 2021).
However, it is undeniable that these metrics tend to assess more
general properties of images, and are not suitable for assessing
medical fused images. This is primarily in a clinical setting, a
medical fusion image with excellent quality may not be because
it has a high signal-to-noise or anything, but because this
fusion image effectively helps the physician to make a diagnostic
decision. As mentioned earlier, each modality of medical images

expresses unique imaging features. The traditional image quality
evaluation methods may ignore the unique feature representation
of medical fused images, resulting in the evaluation results that
are inconsistent with those of radiologists. Such analytical findings
motivated us to find way to represent such unique features when
developing MMIF-specific quality evaluation metrics. Particularly,
the mean opinion score (MOS) given by radiologists serves
perfectly as the ground truth for the quality of fused images. If
the network could learn the difference between images with lower
and higher MOS, this will be more valuable for the model to
assess the quality of the fused images. Furthermore, in practical
application scenarios, a completely distortion-free fused reference
image (i.e., optimal quality) is difficult, or even impossible, to
obtain.

To overcome these problems, in this paper, we propose a
GAN-guided nuance perceptual attention network (G2NPAN) for
implementing blind image quality assessment (BIQA). A method
specifically designed for quality assessment of multimodal
medical fusion images.

Specifically, to learn the nuances between different fused
images, we use a generative adversarial network (GAN). It has
been realized in our previous work that effective spatial feature
extraction techniques for image texture and shape can effectively
improve the effectiveness of image quality assessment. Therefore,
we designed an overlapping structure in the generator, named
Unique Feature Warehouse (UFW), to learn spatial features of
the fused images from the pixel level and enhance the ability
of the network to learn the perception of quality differences
between different fused images. Because the purpose of this
paper is to accurately assess multimodal medical fusion images,
rather than to obtain a perfect fusion image, we redesigned
the loss function of the discriminator according to the clinical
requirements for image quality. Although GAN can provide
powerful guidance for the quality assessment of multimodal
medical fusion images, it is still challenging to fully utilize
such information. Therefore, we designed the attention-based
quality assessment network (AQA) using the supervision of
class activation mapping (CAM). Enabling AQA to utilize
the fused images generated by GAN at higher resolution
and also to sufficiently learn high-dimensional features at
lower resolution.

To summarize, the main contribution of this work is in the
following folds: (1) We propose a GAN-guided quality difference
perceptual attention network. It can achieve accurate quality
assessment of multimodal medical fusion images in a blind form.
(2) In the generator, we developed the UFW module for learning
fused image spatial features from the pixel level. (3) A loss function
specifically for multimodal medical fusion image quality perception
is designed based on a generative adversarial network architecture.
(4) With the supervision of CAM, the proposed AQA is able
to learn nonlinear mappings between fused images and objective
quality results from lower and higher resolution, respectively,
which further enhances the efficacy of model assessment.

The rest of this paper is organized as follows. Section 2
“Related work” introduces the related work of this paper. In
Section 3 “Methodology”, the details of the proposed methods are
described. The adequate experimental results and discussion are
presented in Section 4. Finally, we summarize our conclusions at
the end of the paper.
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FIGURE 1

The examples of multimodal medical images. (A, B) are MR-T2-weighted image and the PET image of the same case; (D, E) are CT and
MR-T2-weighted image of the same case. (C, F) show its corresponding image fusion results, respectively.

2 Related work

2.1 Multimodal medical image fusion
(MMIF)

In the medical setting, mono-modality imaging cannot provide
comprehensive body tissue information or lesion characteristics
and is insufficient to support disease diagnosis (Wang et al., 2020).
Therefore, multimodal medical image fusion technology has been
created to improve the utilization of medical imaging information.
This technology can be classified into traditional fusion methods
and deep learning based fusion methods. Traditional image
fusion techniques often face challenges with distortion, whereas
deep learning-based methods for image fusion have seen notable
advancements in recent years (Zhang, 2021; Wang A. et al., 2022;
Karim et al., 2023). For example, Wang et al. (Wang Z. et al.,
2022) designed a self-supervised residual feature learning network
for multi-focus image fusion. Xu and Ma (2021) developed an
unsupervised image fusion network with enhanced information
preservation by surface-level and deep- level constraints. It is
worth specifying that the network is built specifically for medical
images. But, the performance of fusion algorithms and the quality
assessment of fused images are not yet fully understood. Whether
the multimodal image fusion technique can be successfully applied,
the quality assessment of the fused images is the key.

2.2 Image quality assessment for MMIF

Based on the different requirements for reference images, the
objective image quality assessment methods (IQA) can be divided

into three categories: full-reference IQA (FR-IQA), reduced-
reference IQA (RR-IQA), and no-reference IQA (NR-IQA) i.e.,
BIQA. Despite FR-IQA and RR-IQA methods have achieved
remarkable success in the past decades, their application fields
are restricted due to their dependence on reference images. This
is because reference images are not always available in practical
application scenarios, and even more, in some fields, it is almost
impossible to obtain them. Therefore, BIQA has gained the
favor of many researchers as it does not require any reference
image for evaluation.

According to the way of feature extraction, BIQA includes:
statistical analysis-based models and learning-based models. Most
existing models based on statistical analysis attempt to detect
concrete types of distortion, such as various forms of blur and noise.
And the learning-based BIQA model aims to reflect the differences
in image quality through effective feature extraction techniques
as well as to design the model to learn the mapping relationship
between features and image quality. Traditional machine learning
approaches assume that either distortion will cause the image to
change in some feature attributes. Therefore, this kind of method
pays more attention to the process of feature extraction. The
quality regression models are then designed by machine learning
methods such as support vector machine (SVM), K-Nearest
Neighbors algorithms, etc. Some classical models are, for example,
BRISQUE (Mittal et al., 2012), NFERM (Gu et al., 2015) and BIBE
(Wang et al., 2016).

However, those method separates the process of feature
extraction and quality score prediction/regression of images. This
leads to models that cannot be implemented in an end-to-end
learning manner. Moreover, feature extraction schemes based on
hand design rely on the experience of the researcher, and the
features obtained from limited understanding of the image may
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not sufficient to describe the image content. Most recently, the
vigorous development of deep learning techniques is gradually
becoming the mainstream of IQA algorithms (Hou et al., 2015;
Madhusudana et al., 2022; Zhang Z. et al., 2023; Liu et al.,
2024a). Earlier, Kang et al. (2014) integrated feature learning
and regression into an optimization process by a simple CNN
architecture and obtained promising generalization results. In
(Wang X. et al., 2021), WANG et al. proposed a novel tone-
mapped image metric using local degradation characteristics and
global statistical properties. Inspired by the observer subjective
assessment process, Sim et al. (2022) proposed a novel BIQA
algorithm based on the semantic recognition task. Yue et al. (2023)
implemented an automated assessment of colonoscopy images by
analyzing brightness, contrast, colorimetry, naturalness, and noise.
But BIQA methods specifically for multimodal medical fusion
images have not been adequately explored. Considering the absence
of referenceable fusion images in a real clinical setting, we design a
novel learning-based BIQA model.

2.3 GAN-based image quality assessment

In the process of image quality assessment, since the reference
image is not always available, it poses a great difficulty in
constructing a learning-based IQA model (Liu et al., 2019). Until
2014, the emergence of GAN has brought new ideas to researchers
in many fields. GAN could attempt to generate better outputs with
adversarial training of generators and discriminators. Therefore,
if the reference image can be generated for the BIQA method, it
will be possible to bridge the performance gap between the FR-IQA
and BIQA methods. Moreover, the concern that standard reference
images for multimodal fusion images are not available in the clinical
setting will be mitigated. A series of GAN-based work has also been
carried out by researchers related to image quality evaluation (Ma
et al., 2019; Guo et al., 2023; Kelkar et al., 2023; Li and He, 2024).
In 2019, Ma et al. (2019) proposed an end-to-end GAN model
for quality assessment of images based on multitasking. And the
superiority of the method was verified in TID2008 and TID2013
datasets. The same year, Yang et al. (2019) designed a BIQA method
with the advantages of self-generated samples and self-feedback
training, called BIQA-GAN. GAN-based methods have the ability
to learn local distortion characteristics and whole quality on the
depth features of the image, and it can accomplish the mapping
fitting of potential features to the target domain. Thus, we introduce
GAN to design our model, and, we tuned the loss function and
architecture of GAN according to the characteristics of medical
images.

3 Methodology

In this section, we introduce an end-to-end no-reference
method, namely GAN-guided nuance perceptual attention network
(G2NPAN), for assessing the quality of multimodal medical fusion
images. First, we introduce the framework of the proposed method.
Then, we elaborate on the two main parts of our proposed
G2NPAN, i.e., the GAN-guided nuance perceptual module and
attention-based quality assessment network. Finally, the quality
perception loss function is formulated.

3.1 Overview

The core idea of our proposed method is to assume that
high MOS fused images can indeed help the physician in clinical
analysis. Therefore, learning the nuance between lower and higher
MOS fused images is of high value for quality assessment in the
absence of a reference image. The framework of G2NPAN is shown
in Figure 2. Briefly, our method is specified below. Firstly, G2NPAN
learns the nuances between the fused images with different quality
through generative adversarial networks, and utilizes generators
to generate fused images with the best possible quality. For the
generator, we carefully designed an overlapping structure, UFW,
and repeated it five times to increase the ability to learn the nuances
between different fused images. Then, we redesigned the loss
function of the discriminator according to the scoring criteria of
images in the clinical setting. The aim is to increase the perceptual
weight of the image quality during the network training process.
Next, we subtract the high MOS image generated by the generator
from the original fused image to obtain the difference between
them. Finally, we feed this nuance together with the original
fused image into an attention-based quality assessment network
to obtain a nonlinear mapping between the fused image and the
objective quality results. We will describe this process in detail in
the remaining part of this section.

3.2 GAN-guided nuance perceptual
module

3.2.1 GAN architecture
GAN is a distinctive approach to achieving feature extraction by

generating new fused images in the form of generative adversarial.
This network structure normally consists of two main parts, the
Generator (G) and the Discriminator (D). On the one hand,
GAN has domain adaptive property. For non-discrete distribution
data, like fused images, it is more robust for feature extraction
or learning. On the other hand, the generator can generate fused
images of the same type through adversarial training, and under
the supervision of the discriminator, the generated images are
fitted toward higher quality. The proposed G2NPAN is established
on the framework of GAN, which takes the original fused image
as input and passes the image nuance information to obtain a
quality score of fused images. It is worth noting that the purpose
of high-quality fused images produced by the generator is to
provide reference information, which may contribute to the quality
assessment of the original fusion image. More specifically, it may
help to alleviate the problems associated with the absence of
reference images.

Our network structure of the generator and discriminator is
presented in Figure 3. G takes the fused image Iorg with arbitrary
quality as input and aims to generate a fused image Ihq with the best
quality, i.e., Ihq = G(Iorg). The discriminator exists to distinguish
the real fused image Iorg from the generated version of the fused
image Ihq. Through adversarial training, it is expected that the fused
image with the best quality can be generated with the arbitrary
quality of fused image as input.

Generator: As shown in Figure 3, G is a convolution neural
network consisting of down-sampling and up-sampling phases.
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FIGURE 2

The framework of the proposed GAN-guided nuance perceptual attention network.

FIGURE 3

Network architecture of Generator and Discriminator. (A) Generator: The Generator is a simple down-sampling and up-sampling convolution neural
network with the Unique Feature Warehouse. (B) Discriminator: The Discriminator consists of a simple five-layer convolution neural network.

Since medical fused images require the network to focus on
more detailed features, the kernel size in the generator is all
set to 3 × 3. The down-sampling operation is composed of
three sequential networks with the same structure. Specifically,
we connect the convolutional layer, the activation function, the
batch normalization (BN), and the residual block to build this
sequential network. For the activation function, a comprehensive
activation algorithm, Lleaky Rectified Line Unit (LeakyReLU), is
used. To make the model more stable, the BN layer is attached
after the activation layer, which can also help the gradient to back
propagate efficiently. For medical fused images, the conventional
simply increasing the depth of the convolution neural network
may cause the model to converge slowly or even be unable
to converge. Therefore, we invoke the residual structure in

the down-sampling process, which consists of three convolution
layers and a skip connection. After the down-sampling operation,
followed by our elaborate UFW structure, which improves the
ability of the network to learn the nuances between different
fused images. We will describe the detailed structure of UFW
in the next subsection. In the up-sampling phase, we designed
a simple four-layer convolutional neural network. Each layer of
the convolutional neural network consists of an up-sampling
operation, a convolutional with a kernel size of 3 × 3, a batch
normalization, and an activation layer. As for the activation
function, we use the LeakReLU activation function in the first three
layers and the Sigmoid activation function in the last layer. So far,
the best quality image Ihq of size 128 × 128 can be obtained by
using the Iorg as the input. The generator’s parameters are only
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renewed by the mean squared error (MSE) and are defined as in
Eq. 1:

L1 =
1
N

N∑
n=1

(G(Iorg)− IGT)2
=

1
N

N∑
n=1

(Ihq − IGT)2, (1)

where N is the total number of generated samples.
IGT means the fused image with high MOS, i.e.,
Ground Truth (GT).

During the training of G, the following objective function (Eq.
2) is minimized:

LG = EIorg∼PdataO [log(1− D(IGT,G(Iorg)))] + θL1, (2)

where PdataO stands for the data distribution of Iorg , and
the EIorg∼PdataO represents the expectation of Iorg . θ is a
weighted hyperparameter.

Discriminator: The discriminator only needs to judge whether
the image conforms to the real data distribution or not. Thus, the
architecture of discriminator is a simple four-layer convolution
neural network, as illustrated in Figure 3. In brief, each network has
one convolutional layer with a kernel size of 3× 3, a stride of 2, and
padding of 1. Then LeakyReLU is used as the activation function
and subsequently processed with BN. Note that with each layer
of the convolutional neural network, the size of the feature map
shrinks to one-fourth of the input. Finally, we add an independent
convolution layer according to the sequential structure, which is
mainly used for classification. The mean absolute error is used as
the loss function to optimize the parameters of discriminator. Thus,
the objective function of discriminator can be expressed as Eq. 3:

LD = EIGT∼PdataGT [logD(IGT)] + EIorg∼IPdataO
[log(1− D(G(Iorg))],

(3)
where PdataGT is the data distribution of IGT , and EIGT∼PdataGT is the
expectation of IGT .

3.2.2 Unique feature warehouse (UFW)
In our previous work, it has been realized that effective spatial

feature extraction techniques for image texture and shape play an
important role in the quality assessment of medical fusion images.
The preservation of anatomical details, the representation of
metabolic information, and the trade-offs of information during the
fusion process are one of the many characteristics to be recognized
in fused image assessment. Thus, an overlapping structure, UFW, is
designed in this paper to enable the model to capture these features
from fused images at multiple scales. The detailed architecture
of the UFW is presented in Figure 4. Note that both the input
and output feature maps are 32 × 32. On the one hand, taking a
full-resolution image as input requires a large amount of memory
consumption. On the other hand, most of the high-dimensional
features appear only at lower resolutions. Therefore, we embedded
the UFW module at the end of the down-sampling stage of the
generator, with a maximum resolution of 32× 32. In addition, with
the overlapping architecture, the network can process the high-
dimensional features multiple times to further learn and weigh their
relationship. Consistent with the design purpose of the generator,
the kernel size we use in UFW are all 3 × 3 to better focus
on subtle spatial features. The UFW structure recognizes image
spatial features from multiple scales and continuously integrates
them in the overlapping structure to achieve effective spatial feature
extraction.

FIGURE 4

Detailed architecture of the Unique Feature Warehouse (UFW)
module.

3.3 Attention-based quality assessment
network

The attention-based quality assessment network is built on the
VGG network, which is a simple convolutional neural network as
shown in Figure 5. The reason for adopting VGG network are
respectively: the VGG network is an easy-to-use CNN, which can
save a lot of effort in modifying its network architecture. Also, with
the guidance of GAN, AQA is not required to extract the feature
representation of the fused image from scratch. Therefore, it is less
necessary to employ a complex network structure. Finally, VGG11,
which has a relatively simple structure and shallow network depth
in VGG networks, was used as the base framework in the AQA.
AQA takes the nuance between the original fused image and the
generated image, and the original fused image as input to obtain an
objective assessment of the fused image.

Specifically, from the structure of GAN this paper takes the
fused image with higher MOS as GT of the generator, thus limiting
its fitting trend. Thus, the nuance between the fused image Iorg
and the higher quality fused image Ihq can be defined as Isub =∣∣Ihq − Iorg

∣∣. idenoting the i-th assessed image, the definition can be
revised to Eq. 4:

Iisub =
∣∣∣Iihq − Iiorg

∣∣∣ , (4)

To ensure the input consistency, Iisuband Iiorgperformed the
convolution operation first separately, and then completed the
concatenation operation.
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For Iiorg , its features extracted in the GAN can also guide the
AQA to obtain more convincing assessment results. So, we copied
the feature map Flast output from the last UFW module, and
implemented concatenation before inputting the fully connected
layer to obtain the feature map Fconca, as shown in Eq. 5:

Fconca = Flast � vgg(Iiorg, I
i
sub), (5)

where vgg(•) denotes the operation of AQA before proceeding to
the fully connected layer.

So far, the image quality assessment has been achieved
objectively by the methods mentioned above. However, for
physicians, the quality of medical images depends not only on the
natural nature of the images, but also on their ability to highlight
the manifestations of disease. The latter is the key to assist doctors
in making a diagnosis. Thus, by using the weights of the last fully
connected layer as a cue, we introduce the attention mechanism,
class activation mapping. With the quality scores of AQA and the
weights of the fully connected layers, CAM obtains the ability to
supervise the attention distribution of the network. Moreover, the
feature map FCAM generated by CAM can also compensate for the
un-interpretability of "black box" models. Let the GT of CAM be
FGT , then the objective function is Eq. 6:

LCAM =
1
N

N∑
n=1

|FCAM − FGT |1, (6)

where |•|1denotes the L1 parametrization.
Further, the predicted score of the fused image is designated as

Qpre and its GT is Qt , then the objective function can be written as
shown in Eq. 7:

LQA = −[Qt log(σ(Qpre))+ (1− Qt) log(1− σ(Qpre))], (7)

where σ(•) denotes the sigmoid function, which is meant to map
Qpreto the interval (0, 1), specified as shown in Eq. 8:

σ(Qpre) =
1

1+ exp(−Qpre)
, (8)

Thus, the loss function of AQA can be expressed as Eq. 9:

LAQA = ϕLCAM + LQA, (9)

ϕ is the weight parameter.

3.4 Perceptual loss function

The design logic of GAN is trained in an adversarial way so
that the generated image can deceive the discriminator, and the
discriminator can distinguish the real image from the generated
image. Although such a network architecture can generate high-
quality fused images, the ultimate goal of G2NPAN is to accurately
evaluate the quality of fused images rather than to obtain fused
images. Moreover, it is clear from the calculation of Insub that it
depends heavily on the generated image Ihq . If Insub is directly
used as the input of AQA without feedback to GAN, the training
process of quality assessment network will be unstable and difficult
to converge. Thus, we design the quality perception loss function
to alleviate the above problem. It is worth clarifying that the

fused images used in this work are based on a further extension
of the database from our previous work (Tang et al., 2020),
and thus the MOS of each medical fused image can take values
from 1 to 5. Typically, ensuring that the MOS remains above 3
does not compromise the diagnostic results provided by medical
professionals. This ensures that the fused medical images do not
adversely impact diagnostic performance. Therefore, the weight can
be expressed as Eq. 10:

Wn
=

{
1, if AQA(In

hq) ≥ 3,

0, if AQA(Inhq) < 3
, (10)

We the weight to further optimize the network and restate the
formula (3) as shown in Eq. 11 below:

LD = EIGT∼PdataGT [logD(IGT)] + EIorg∼IPdataO

[log(1− |D(G(Iorg))−W|)], (11)

The generated images need to be distinguished not only by
the discriminator, but also by the quality assessment network.
The concept of perceptual loss function allows the model to be
optimized as a unit, so that the total loss function can be presented
as Eq. 12:

Lall = minG maxD V(G,D)+ γLR, (12)

4 Experiments

4.1 Databases and experimental
protocols

4.1.1 Dataset description
We established a multi-modal medical image fusion quality

evaluation database to validate the effectiveness of our proposed
algorithm. The database comprises 120 pairs of color images and
9 pairs of grayscale images, with a total of 1,290 images generated
using 10 mainstream fusion algorithms. The resolution of the
images is 128 × 128 pixels. The MOS of each image was obtained
from radiologists on a scale ranging from 1 to 5.

To select reference images for each group of fused images (i.e.,
10 images generated by fusing a pair of images), we used MOS to
evaluate image quality. The fused image with the highest MOS score
was chosen as the reference image. If multiple fused images had
the highest MOS score, one of them was selected at random. The
reference image for each image was randomly selected from the
fused images with the highest MOS score. This ensured a robust
reference image selection process that accounted for the subjective
quality ratings of the radiologists.

4.1.2 Evaluation criteria

In this study, we utilized four evaluation metrics to assess the
performance of the proposed model: Pearson’s Linear Correlation
Coefficient (PLCC), Spearman’s Rank Correlation Coefficient
(SRCC), Kendall’s Rank Correlation Coefficient (KRCC), and Root
Mean Square Error (RMSE). PLCC measures the linear relationship
between the predicted and the corresponding MOS, while SRCC
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FIGURE 5

The architecture of the proposed attention-based quality assessment network.

and KRCC are non-parametric correlation measures that evaluate
rank-based data. RMSE measures the difference between the
predicted and the corresponding MOS.

4.1.3 Experimental protocols
In the training process of the network, three hyperparameters,

θ, ϕ, and γ, were set to 0.5, 1, and 0.01, respectively. The
Adam optimizer was used with an initial learning rate of
0.0002. Furthermore, we implemented a dynamic learning rate
adjustment strategy to enhance model convergence during training.
Specifically, we reduced the learning rate using a decay factor of
0.95 after every 20 batches.

To evaluate the effectiveness of our proposed model,
we employed a five-fold cross-validation approach during
implementation. We use 80% images of the database to train our
model, while using 20% to test. The model’s performance was
evaluated at the end of each training epoch, and we selected the
checkpoint model with the best performance within the 1500
epochs of training as the final model. During the validation
phase, we assessed the model’s performance on the test set. In
each evaluation, we try 1000 times and take an average of the
performance values obtained.

4.2 Comparison with the state-of-the-art

In this section, exhaustive comparative experiments are
conducted to validate our proposed method. We compared the
performance of G2NPAN with the performance of six state-of-
the-art BIQA methods. For approaches that are not specifically
named, we refer to them by the name of the first author. All
these methods include the blind multiple pseudo reference images-
based method (BMPRI) (Min et al., 2018), In-depth analysis of
Tsallis entropy-based method (TEIA) (Sholehkerdar et al., 2019),
mutual information-based optimization method (Hossny) (Hossny
et al., 2008), the objective evaluation of fusion performance
(OEFP) (Xydeas and Petrovic, 2000), ratio of spatial frequency
error-based method (rSFe)(Zheng et al., 2007) and the perceptual
quality assessment method (Tang) (Tang et al., 2020). BMPRI
introduces multiple pseudo-reference images to achieve BIQA,
which coincides with our approach of using GAN to generate
reference information to perform IQA. Thus, although BMPRI is
not specifically developed for quality assessment of fused images, it
is still used as one of the comparison methods. And the remaining

TABLE 1 Performance comparison with Other BIQA methods.

Model Domain PLCC SRCC KRCC RMSE

BMPRI Distorted
image

0.3031 0.3167 0.2375 0.2611

TEIA Fused image 0.1797 0.1946 0.1407 0.3909

Hossny Fused image 0.2270 0.1738 0.1071 0.3712

OEFP Fused image 0.3064 0.3367 0.2342 0.2810

rSFe Fused image 0.4054 0.2275 0.1700 0.2663

Tang Fused image 0.6252 0.6420 0.4166 0.2480

Proposed Fused image 0.9044 0.9007 0.8502 0.1029

Bold values represent the best results.

TABLE 2 Ablation experiments of quality assessment with different
backbone networks.

Network PLCC SRCC KRCC RMSE

VGG19 0.7530 0.7358 0.6696 0.1601

VGG16 0.7776 0.7742 0.6977 0.1553

VGG11 0.7894 0.7905 0.7132 0.1494

VGG11 +
CAM

0.8000 0.7806 0.7173 0.1385

VGG 11 +
pre

0.8167 0.8112 0.7519 0.1355

VGG11 +
pre + CAM

0.8235 0.8113 0.7496 0.1330

Bold values represent the best results.

methods are proposed exclusively for the quality assessment of
fused images. Note that the proposer of rSFe considers the
application scenario of medical fusion images, while the Tang
method is proposed especially for medical fusion images. For fair
comparison, all methods were retrained and tested in our Dataset,
and the best results were used as the final reported.

We have tabulated the performance of the state-of-the-art
BIQA method and G2NPAN in Table 1. The best performance
results are highlighted in bold. Based on Table 1, we have the
following observations:

First, our proposed method, G2NPAN, achieved the best quality
assessment performance from an overall perspective, with optimal
results of 0.9044, 0.9007, 0.8502, and 0.1029 for PLCC, SRCC,
KRCC and RMSE, respectively. This means that the objective
evaluation results derived from the G2NPAN are closest to the
subjective MOS results given by the physicians. Second, although
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FIGURE 6

Ablation experimental results for each of the key components in G2NPAN.

TABLE 3 Performance on the dataset with various train-test splits.

Train:
Test

PLCC SRCC KRCC RMSE

2:8 0.7780 0.7849 0.7042 0.1649

3:7 0.8055 0.8148 0.7372 0.1441

4:6 0.8497 0.8451 0.7817 0.1275

5:5 0.8621 0.8617 0.8044 0.1206

6:4 0.8821 0.8795 0.8259 0.1139

7:3 0.8848 0.8886 0.8393 0.1093

8:2 0.9044 0.9007 0.8502 0.1029

Bold values represent the best results.

the BMPRI method introduces pseudo-reference images to provide
referenceable information for BIQA, it is mainly targeted at
distorted images of natural scenes. Therefore, it is not powerful for
medical fusion images. Our proposed method generates reference
information based on high-quality fused images and designs
quality evaluation methods from the specificity of medical images,
resulting in the best BIQA performance. As can be seen from
Table 1, BMPRI also outperforms some of the quality evaluation
metrics designed specifically for fused images, which once again
demonstrates the importance of reference information for BIQA.
Third, rSFe, Tang and the proposed method have considered
the difference between medical fusion images and natural fusion
images, and thus their performance is better than the other three
metrics (TEIA, Hossny and OEFP). In addition, the performance
of proposed method is still 27.92, 25.87, 43.36, and 14.51% better
than the second-best method in PLCC, SRCC, KRCC and RMSE,
respectively. From the above analysis, it is clear that our proposed
G2NPAN method is very good at objective quality assessment of
medical fusion images.

4.3 Ablation study

Ablation experiments are performed from different
perspectives to demonstrate the superiority of our proposed
method. (1) To verify the generalizability of the proposed AQA,
we compose the model through different backbone networks,

including VGG11, VGG16, VGG19, and tested the model
performance. Each ablation result is demonstrated in Table 2, with
the best result for the corresponding metric highlighted in bold.
(2) To evaluate the contribution of each key component in the
proposed G2NPAN model, a series of ablation experiments were
conducted.

4.3.1 Performance of quality assessment network
Ablation studies were performed to examine whether the

backbone network used in the quality prediction network was more
appropriate. All models implemented in this section are purely
quality prediction networks, meaning that there is no GAN-based
quality guidance. Their testing performance is listed in Table 2.

On the one hand, from these results, we can notice that the
performance of the VGG11 is even better than that of VGG16
or VGG19. This seems to go against the common belief that the
deeper the network, the better the model performance should
be. But there should be more detailed analysis for different task
types. The truth is that VGG19 or 16 has more convolutional
layers than VGG11, which allows the network to learn more
semantic information (high-level features). However, for evaluation
of multimodal medical fusion images, the model does not need to
recognize what the image represents, like what disease or which
organ, etc., but rather than what the image has. Thus, the IQA task
might require more structural (low-level features) than semantic
information about the image. VGG11 improved by 3.64, 5.47,
4.36, and 1.07% in PLCC, SRCC, KRCC and RMSE, respectively,
compared to VGG19.

On the other hand, to demonstrate the usefulness of the CAM
and pre-trained models, we have adapted them based on the
VGG11 model. From the experimental results, it can be seen that
both CAM and the introduced pre-trained model enhance the
performance of quality prediction network. And, based on these
two techniques, the proposed quality prediction network achieves
0.8235, 0.8113, 0.7496, and 0.1330 in PLCC, SRCC, KRCC and
RMSE, respectively.

4.3.2 The contribution of each key component
As mentioned in the previous section, the proposed method

integrates the nuances between fused images with different
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qualities, and adjusts the update of the loss function according to
the scoring criteria of images in the clinical setting. Therefore, it is
sensible and meaningful to fully explore the contribution of each
key component to the final performance.

We take VGG11 network as the base quality prediction
model. Based on this, the GAN-guided quality assessment models
with and without UFW components are named G2N (GAN-
Guided Network) and G2NN (GAN-Guided Nuance Network),
respectively. Further, we redesigned the loss function of GAN in
a qualitatively perceptive way. Such a modified network named
G2NPN (GAN-Guided Nuance Perceptual Network). Eventually,
CAM is added to the G2NPN model to supervise the quality
prediction results of the fused images and call such a network
G2NPAN (GAN-Guided Nuance Perceptual Attention Network),
i.e. the model proposed in this paper. Note that we trained
G2N, G2NN, and G2NPN based on the same method applied
in G2NPAN and summarized their corresponding prediction
performance results in Figure 6. As all three models, G2N, G2NN
and G2NPN, are degradation models based on GAN tuning, the
blue family is used for unification in Figure 6.

As expected, all key components had a positive effect on the
final model performance. And as the model structure becomes
closer to G2NPAN, the quality assessment of the medical fusion
images becomes more accurate. Further analysis is as follows.
First of all, with the reference information provided by GAN,
the G2N model achieves the largest performance improvement
over VGG11 with 6.47, 5.86, 7.18, and 2.61% improvement in
PLCC, SRCC, KRCC and RMSE, respectively. The G2N model
generates the best-quality fused image similar to providing the
reference image for IQA, and thus, it has the most significant
performance improvement. However, the nuances in the reference
information might not be sufficient. UFW is an effective way to
extract spatial features by learning the features of fused images from
multiple scales several times. Therefore, the G2NN model further
enhances the performance results. Second, as the GAN has the
ability to recognize the quality of fused images, i.e., the perceptual
capability, the G2NPN model obtains considerable performance
gains, especially in SRCC (0.8610 vs 0.8955) and KRCC (0.8014 vs
0.8396). Finally, by introducing the CAM attention mechanism, our
proposed G2NPAN has got the best performance for medical fusion
image quality assessment, with PLCC, SRCC, KRCC and RMSE of
0.9044, 0.9007, 0.8502, and 0.1029, respectively.

Overall, whether it is the visual impression of the blue
rectangular bar in Figure 6 or the data analysis results, it can
be found our proposed GAN-guided approach could yield a
tremendous performance improvement. Except for RMSE, the
improvement results for the other three metrics were more than
10%. It is also interesting to observe that the models with reference
information provided by GAN outperform all the methods shown
in Table 2.

4.4 Impact of training set

To investigate the relationship between the sample size and the
performance of the proposed method, we gradually increased the
training sample size from 20 to 80%, while the rest of the image
samples were used as testing. All experimental results are filled in

Table 3. It is intuitive to notice that as the training sample size
increases, the proposed model performance tends to rise gradually.
And, the model performance does not drop precipitously when the
training sample size are smaller. This observation is consistent with
the conclusions drawn from the existing learning-based BIQA (Gu
et al., 2016; Jiang et al., 2019; Wang X. et al., 2021). The robustness
of the proposed G2NPAN model has been validated.

5 Conclusion

In this paper, we propose a BIQA method specifically for
multimodal medical fused images, called GAN-Guided Nuance
Perceptual Attention Network. Specifically, in addition to designing
the UFW module in the GAN to incorporate collecting useful
features from the pixel level, we also redesigned the loss function
of the discriminator to enable the network to learn the nuance
between fused images of variable quality. Following that, the
nuance information and the high-dimensional features in the
UFW are fed back to the quality assessment network. With the
supervision of CAM, the quality score of the fused image is
eventually determined. The experimental results demonstrated that
our proposed method outperforms the state-of-the-art methods.
Two aspects of ablation experiments validate the generality
of the proposed AQA and the contribution of each key
component of the G2NPAN model. The experiments examining
the correlation between sample size and G2NPAN performance
further verify the effectiveness of the proposed GAN-guided quality
assessment model.
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