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Background: Major depressive disorder (MDD) is the leading cause of disability

among all mental illnesses with increasing prevalence. The diagnosis of MDD

is susceptible to interference by several factors, which has led to a trend of

exploring objective biomarkers. Electroencephalography (EEG) is a non-invasive

procedure that is being gradually applied to detect and diagnose MDD through

some features such as functional connectivity (FC).

Methods: In this research, we analyzed the resting-state EEG of patients with

MDD and healthy controls (HCs) in both eyes-open (EO) and eyes-closed (EC)

conditions. The phase locking value (PLV) method was utilized to explore the

connection and synchronization of neuronal activities spatiotemporally between

di�erent brain regions. We compared the PLV between participants with MDD

andHCs in five frequency bands (theta, 4–8Hz; alpha, 8–12Hz; beta1, 12–16Hz;

beta2, 16–24Hz; and beta3, 24–40Hz) and further analyzed the correlation

between the PLV of connections with significant di�erences and the severity of

depression (via the scores of 17-item Hamilton Depression Rating Scale, HDRS-

17).

Results: During the EO period, lower PLVs were found in the right temporal-

left midline occipital cortex (RT-LMOC; theta, alpha, beta1, and beta2) and

posterior parietal-right temporal cortex (PP-RT; beta1 and beta2) in the MDD

group compared with the HC group, while PLVs were higher in the MDD group

in LT-LMOC (beta2). During the EC period, for the MDD group, lower theta and

beta (beta1, beta2, and beta3) PLVs were found in PP-RT, as well as lower theta,

alpha, and beta (beta1, beta2, and beta3) PLVs in RT-LMOC. Additionally, in the

left midline frontal cortex-right temporal cortex (LMFC-RT) and posterior parietal

cortex-right temporal cortex (PP-RMOC), higher PLVs were observed in beta2.

There were no significant correlations between PLVs and HDRS-17 scores when

connections with significantly di�erent PLVs (all p > 0.05) were checked.

Conclusion: Our study confirmed the presence of di�erences in FC between

patients with MDD and healthy individuals. Lower PLVs in the connection of the

right temporal-left occipital cortex were mostly observed, whereas an increase

in PLVs was observed in patients with MDD in the connections of the left
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temporal with occipital lobe (EO), the circuits of the frontal-temporal lobe, and

the parietal-occipital lobe. The trends in FC involved in this study were not

correlated with the level of depression.

Limitations: The study was limited due to the lack of further analysis of

confounding factors and follow-up data. Future studies with large-sampled and

long-term designs are needed to further explore the distinguishable features of

EEG FC in individuals with MDD.

KEYWORDS

major depressive disorder, electroencephalography, functional connectivity, phase

locking value, neural oscillation

1 Introduction

Major depressive disorder (MDD) is characterized by persistent

feelings of sadness, hopelessness, and a loss of interest or pleasure

in daily activities; some patients might have recurrent thoughts

of death (Marx et al., 2023). According to recent epidemiological

data, cases of MDD are estimated to increase to 53.2 million

due to the COVID-19 pandemic. The prevalence of people with

MDD has increased to 3,152.9 cases per 100,000 population,

with disability-adjusted life years (DALYs) reaching 49.4 million,

suggesting that MDD, among all mental illnesses, is the leading

cause of disability (COVID—Mental Disorders Collaborators,

2021; GBD Mental Disorders Collaborators, 2022). The diagnosis

of MDD is mainly based on clinical assessments (including mental

state scales or tools), history taking from patients, face-to-face

evaluation by psychiatrists, and references to diagnostic criteria

or guidelines (American Psychiatric Association, 2022; World

Health Organization, 2024). However, the constant presence of

subjectivity may influence the accuracy of the diagnosis (Del-Ben

et al., 2005). This situation has prompted researchers to explore

objective indicators of MDD diagnosis. By doing so, it is possible to

avoid the interference of subjectivity in the diagnostic process. Over

the years, massive depression-related biomarkers with potential

applications in the diagnosis have been discovered (Etkin et al.,

2015; Takahashi et al., 2017; Chang et al., 2018; Humphreys et al.,

2019; Jones and Nemeroff, 2021), although the range of their

applications is relatively narrow and there are still many challenges

in their usability, maneuverability, and stability.

Although the pathogenesis remains to be clarified, MDD is

considered to be significantly associated with human brains, and

more attention has been paid to this area. It has been verified that

the emotions of humans can be formed on a scale of hundreds of

milliseconds (Hari and Parkkonen, 2015). Electroencephalography

(EEG), as a non-invasive, low-cost, and convenient procedure,

is quite accessible for detecting valuable brainwave features with

high temporal resolution at the millisecond level; thus, EEG has

been gradually applied to explore the possibilities of detecting

and diagnosing mental illnesses such as MDD (Feldmann et al.,

2018). Researchers have developed and applied a variety of

analysis methods to identify MDD patients. Mumtaz et al. (2017)

differentiated MDD and normal controls using clinical features

extracted from EEG. Liao et al. (2017) proposed a method based on

EEG signals and a spectral-spatial feature extractor named kernel

eigen-filter-bank common spatial pattern, and they achieved an

average classification accuracy of 81.23%. Acharya et al. (2015)

created a depression diagnosis index by using non-linear features

and reported an average accuracy of 98%. Previous findings suggest

that some indicators of EEG might be promising biomarkers, while

for our current research, functional connectivity (FC) could be the

one that shows significant differences.

FC is defined as the temporal correlation among the activities

of different neural assemblies; such a correlation originates from

statistically significant dependence between distant brain regions.

FC mainly reflects the synchronization of two different electrode

pairs (Fingelkurts et al., 2005; Sakkalis, 2011). It has been found

that FC could be influenced by white matter myelinated cortico-

cortical axons as it originates from post-synaptic potentials (Hall

et al., 2014; Nunez et al., 2015). Myelin, however, is in charge of

the axon, controlling its speed and the synchrony of impulse traffic

between different cortical regions, which is fairly important for

optimal mental performance (Nunez et al., 2015). Considering that

the distances of brain signals are various, it is quite essential to

ensure that the signals would reach their target simultaneously, and

such a model of connections might explain the wide range of EEG

frequency bands (Nunez et al., 2015). There are various measures of

FC, including coherence (Han et al., 2021), correlation coefficient,

amplitude envelope correlation, phase lag index, weighted phase lag

index, synchronization likelihood, and phase locking value (PLV).

EEG has been broadly utilized for the analysis of FC in individuals

with MDD.

Previous studies have extensively investigated FC in different

frequency bands of EEG between individuals with MDD and

healthy controls (HCs). For the delta band, a majority of studies

did not find any difference (Olbrich et al., 2014; Knyazev et al.,

2018; Whitton et al., 2018). Knyazev et al. (2018) reported no

difference in FC between individuals with MDD and HCs. Only

Leuchter et al.’s study revealed that the FC of individuals with

MDD was relatively higher in limited connections (Leuchter et al.,

2012). Low connectivity was still observed in individuals with

MDD (McVoy et al., 2019; Hasanzadeh et al., 2020). For the

gamma band, none of the available findings showed any significant

difference between individuals with MDD and HCs (Park et al.,

2007; Knyazev et al., 2018; Whitton et al., 2018). For alpha, high-

quality studies conducted by Fingelkurts et al. revealed higher FC

in individuals with MDD (Fingelkurts et al., 2007; Fingelkurts and

Fingelkurts, 2017), whereas FC was observed to be lower in the
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findings of Iseger et al. (2017), Knyazev et al. (2018), and Whitton

et al. (2018). For the theta band, the results from Fingelkurts’s

study still showed higher FC in patients with MDD than in HCs

(Fingelkurts et al., 2007), but the results of some other studies,

such as the findings from Sun et al., presented a completely

opposite dynamic (Sun et al., 2019). For beta, most previous studies

indicated significant differences between individuals with MDD

and HCs, such as the findings from Hasanzadeh et al. (2020),

Knyazev et al. (2018), and Leuchter et al. (2012), which revealed

relatively higher FC for individuals with MDD. However, some

studies reported that patients with depression show lower FC than

HCs (Knott et al., 2001; McVoy et al., 2019). Considering the

existence of heterogeneity in themethod of processing and analysis,

as well as the sample sizes that are small or have large differences

between groups, more convincing research from the perspective

of neurophysiologic is needed, through which we could further

discover the essence of pathogenic mechanism in MDD.

Our study focused on the connectivity analysis of resting-state

EEG and aimed to observe whether and how the connectivity

features of patients with MDD differ from HCs during depressive

episodes. We chose to measure PLV, which has been widely used

to quantify the correlation between electrodes, to bring deeper

insights into the FC and synchronization between different brain

regions. As PLV is an indicator containing phase information, it

is believed that the measure can reflect FC and synchronization

in neuronal activities from the perspective of both time and

space. Such spatiotemporal changes can be observed independent

of amplitude characteristics. The shift is highly correlated with

emotional activity (Cui et al., 2023). In this study, we compared the

PLV of EEG in patients with MDD and HCs at different frequency

bands and further explored its relationship with the severity of

depressive symptoms.

2 Method

2.1 Subjects and participants

The research was conducted among patients admitted at Beijing

Anding Hospital, and healthy subjects were openly recruited

through advertisement and social media. The study protocol was

examined and approved by the Clinical Research Ethics Committee

of Beijing Anding Hospital (Registration Number: 2020-106) and

complies with the Code of Ethics of the World Medical Association

(Declaration of Helsinki). Informed written consent was obtained

from all participants or their legal guardians after a complete and

extensive description. Inclusion criteria and exclusion criteria were

as follows:

Inclusion criteria for participants with MDD: (1) 18–65

years old (including 18- and 65-years-old), regardless of gender.

(2) Meeting the Diagnostic and Statistical Manual of Mental

Disorders, 5th edition (DSM-5) diagnostic criteria for MDD,

and confirmed by the Mini International Neuropsychiatric

Interview (M.I.N.I.) 7.0.2, without psychotic symptoms. (3)

A Hamilton Depression Rating Scale-17 (HDRS-17) score

of ≥17. (4) No modified electroconvulsive therapy (MECT)

within 30 days prior to enrollment. (5) Elementary school

education or above, and the ability to understand the scale. (6)

Understanding of the research content and provision of written

informed consent.

Inclusion criteria for healthy controls (HCs): (1) 18–65

years old (including 18- and 65-years-old), regardless of gender.

(2) No previous or current confirmed diagnosis of mental

disorder based on M.I.N.I. 7.0.2 screening. (3) Elementary school

education or above, and the ability to understand the scale. (4)

Understanding of the research content and provision of written

informed consent.

Exclusion criteria for participants: (1) A prior diagnosis of

bipolar disorder, schizophrenia, schizoaffective disorder, or mental

disorder associated with other illnesses. (2) Previous or current

patients of organic brain damage such as epilepsy or other disorders

in which random brain discharges are present, or serious physical

illnesses that make enrollment in this study inappropriate. (3)

Having a history of alcohol or psychoactive substance abuse or

dependence within 1 year.

2.2 EEG recording

A Neuracle NeuSen EEG/event-related potential (ERP)

Monitor (Neuracle Technologies, Inc., Changzhou, China)

connected to a 19-channel EEG cap (Tenocom Medical

Technologies, Co., LTD, Qingdao, China) was used to record

raw EEG signals. Data were obtained from 19 Ag/AgCl electrode

channels using the advanced Neuracle system, which operated

at a sampling rate of 1,000Hz. The 19-channel EEG raw signals

included Fp1, Fp2, F3, F4, F7, F8, Fz, T3, T4, T5, T6, C3,

C4, Cz, P3, P4, Pz, O1, and O2. While referencing the Cz

electrode, we ensured that impedance was maintained below

50 kΩ . The EEG recording was taken in a quiet and confined

room, and participants were asked to sit in a comfortable

chair, remaining relaxed and awake. During the process,

participants were first asked to face a monitor placed 100 cm

away with a black background and stare at a white fixation

cross located at the central line of sight for 10min. Then, in

the next 10min, they were required to close their eyes. EEG

was recorded during these two periods (eyes-open, EO; eyes-

closed, EC). Participants were asked to remain quiet and relaxed,

minimizing head and limb movements. Any movement, dozing, or

talking/whispering during the process was immediately corrected

and accurately recorded.

2.3 Data preprocessing

2.3.1 Preprocessing
The EEGLAB toolbox in MATLAB R2013a was used to

preprocess the original EEG data. The steps included the following:

Downsampled to 256Hz and bandpass filtered into 1–40Hz using

a finite impulse response (FIR) filter with a hamming window.

The period when the amplitudes were larger than 150 µV was

removed. Independent component analysis (ICA) was conducted

on the remaining data to extract artificial components, including

electrooculogram, electromyography, and electrocardiogram. After

calculating the ICA components, the MNE-ICA label (Pion-

Tonachini et al., 2019) was used to identify and remove artificial
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FIGURE 1

Data preprocessing and PLV calculation.

components. The data were then averaged and re-referenced to

obtain the preprocessed data (Figure 1).

2.3.2 Feature processing
Based on the findings of previous studies, the following five

bands were selected: theta (4–8Hz), alpha (8–12Hz), beta1 (12–

16Hz), beta2 (16–24Hz), and beta3 (24–40Hz). We utilized

existing electrodes to divide brain regions, including prefrontal

cortex, PFC (Fp1, Fp2, and Fz); right midline frontal cortex, RMFC

(Fz, F4, and F8); left midline frontal cortex, LMFC (Fz, F3, and F7);

central cortex, CC (C3, C4, and Cz); parietal cortex, PP (P3, P4, and

Pz); left temporal cortex, LT (F7, T3, and T5); right temporal cortex,

RT (F8, T4, and T6); midline occipital cortex, MOC (O1, Pz, and

O2); right midline occipital cortex, RMOC (P4, O2, and Pz); and

left midline occipital cortex, LMOC (P3, O1, and Pz).

Furthermore, feature processing was performed on the data

after initial preprocessing (Figure 1): ① The merged signals of each

region were filtered into 5 frequency bands by an FIR filter, and then

the signal in each band was transformed to a complex signal using

the Hilbert transform. ② The mean value of the complex signals

of the assigned channels was calculated on each brain region as

the signal of that region. ③ They were sliced into pieces (stride:

8s, overlap: 7s). ④ The average mode length (amplitude) of each

8s segment was evaluated: the mode lengths of the signals in

three frequency bands were taken and added together. Then, the

amplitudes of the signals in all the brain regions were added, and

the average over the length of time was calculated. ⑤ Anomalous 8s

slices of amplitude were removed.

2.4 FC calculation (PLV)

PLV, as one of the coupling methods for constructing an FC

matrix, mainly assesses the significance of the phase covariance

between two signals. It depends on the instantaneous phase

of signals (Lachaux et al., 1999). First, it requires filtering of

the data in the frequency of interest, followed by extraction of

the instantaneous phase using the Hilbert transformation. The

calculation method was stated as follows:

PLV =

∣

∣

∣

∣

∣

1

N

N
∑

n=1

exp
(

i
[

φ1(n)− φ2(n)
])

∣

∣

∣

∣

∣

(1)

In this formula, N represents the length of the time series, and

φ1 (n) and φ2 (n) separately refer to the instantaneous phase of two

signals at time point n (Tan et al., 2022). The process of measure

is set up on the assumption of permanent differences between

regions, and the PLVs range from 0 to 1 represents the connection

strength in a weighted network analysis (Fell and Axmacher,

2011). Figure 2 shows EEG signals with different values of PLV,

representing different levels of connection and synchronization in

neuronal activities spatiotemporally.

2.5 Symptoms evaluation

The severity of symptoms was assessed with HDRS-17 and

the Hamilton Rating Scale for Anxiety (HAMA). The Young

Mania Rating Scale was completed by participants at the time
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FIGURE 2

EEG with di�erent levels of PLV. Neural oscillations may perform phase synchronization (above; stable phase relationships) or show rare/no phase

synchronization (below; variable phase relationships).

of screening, which aimed to exclude subjects with manic or

hypomanic episodes.

2.6 Statistical analysis

All data were analyzed using SPSS 26.0 software (IBM, Armonk,

NY, USA). Continuous data were tested for normality. Normally

distributed continuous data are expressed as mean ± standard

deviation (SD), non-normally-distributed continuous data are

expressed as median (interquartile range), and categorical data

are expressed as n (%). Group differences in continuous data

were calculated by conducting a t-test or Mann–Whitney U-

test depending on their normality, while for categorical variables,

the differences were examined by conducting χ2 analyses. The

relationship between the PLV and HDRS scores was assessed

using Spearman’s correlation coefficient because of the non-normal

distribution of the HDRS data. The significance level in this study

was set to 0.05; however, there were multiple comparisons between

brain regions, so the Bonferroni method was used to correct

the significance of the p-value. The final significance was set to

p < 0.001 when comparing the connectivity index between the

two groups.

3 Results

3.1 Demographic information

The present study was conducted in parallel with Liu

et al.’s research, and the socio-demographic information is

consistent with that presented in their study (Liu et al.,

2024). A total of 169 participants were enrolled in this study,

of which 86 were recruited in the MDD group and 83 in

the HC group. There was no significant difference in age,

gender, current marital status, and education years (all p

> 0.05). This indicated that the demographic characteristics

of the enrolled subjects in the two groups were matched

and comparable.
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3.2 PLV

We calculated the connections between the 10 brain regions

sequentially and compared the MDD group with the HC group.

3.2.1 EO
During the EO phase, there were lower PLVs in the connections

of right temporal-left midline occipital cortex (RT-LMOC; theta,

alpha, beta1, and beta2) and posterior parietal-right temporal

cortex (PP-RT; beta1 and beta2) in the MDD group than those in

the HC group. Moreover, PLVs were higher in the beta2 band in the

MDD group than those in the HC group when the connections of

LT-LMOC were observed (Table 1, Figure 3).

3.2.2 EC
During the EC period, there were lower theta and beta (beta1,

beta2, and beta3) PLVs in the connections of PP-RT in the MDD

group than those in the HC group. There were also lower theta,

alpha, and beta (beta1, beta2, and beta3) PLVs in the connections

of RT-LMOC in the MDD group than those in the HC group.

Additionally, in the left midline frontal cortex-right temporal

cortex (LMFC-RT) and posterior parietal cortex-right temporal

cortex (PP-RMOC), higher PLVs were found in the frequency of

beta2 (Table 2, Figure 3).

3.3 Correlation analysis

We calculated and statistically correlated the above differential

connections’ PLVs with the HDRS scores of participants with

MDD. The purpose was to verify the relationship between FC

and participants’ depression levels. After calculation, there were no

significant correlations between PLVs and HDRS scores when the

connections were examined with significantly different PLVs (all p

> 0.05).

4 Discussion

In our study, the brain of each participant was categorized into

10 regions of interest according to the orientation of the electrodes.

These brain regions cover all parts of the cerebral cortex. We

followed this partitioning method to further analyze and compare

functional connections between patients with MDD and HCs. The

results showed that during the EO period, PLVs of the MDD group

were lower than those of the HC group in PP-RT (beta2) and RT-

LMOC (theta, alpha, beta1, and beta2), while in LT-LMOC (beta2),

the PLVs were higher in the MDD group than in the HC group.

During the EC period, PLVs of PP-RT (theta, beta1, beta2, and

beta3) and RT-LMOC (theta, alpha, beta1, beta2, and beta3) were

found to be lower in the MDD group than in the HC group.

However, in the connections of LMFC-RT and PP-RMOC, the

PLVs of patients with MDD were demonstrated to be higher than

that of HCs in the beta2 band.

We measured and analyzed FC by calculating PLVs in different

frequency bands. As mentioned in the introduction, synaptic

signals of different frequencies are often linked with top-down

inhibitory processes. In EEG studies, these frequencies usually have

their own significance in individuals withMDD. Specifically for this

research, we analyzed theta, alpha, and beta bands, among which

the change in theta and alpha were thought to be the results of white

matter dysfunction (Nunez et al., 2015). More specifically, for the

alpha band, such violation might disrupt the ability of patients with

MDD in terms of attention and executive functions (Miljevic et al.,

2023), while for the theta band, the ability of cognitive control could

be weakened (Cavanagh and Frank, 2014). Moreover, intrinsically

motivated decision-making was associated with the theta and beta

bands (Nakao et al., 2012). The following is a discussion and further

analysis of our results for the different frequency bands.

4.1 Theta and alpha FC

In past studies, more attention has been given to theta and

alpha frequency bands. Most of the studies indicate that resting-

state alpha FC is higher in people with depression;more specifically,

there are more instances of higher alpha FC in frontal regions

and lower FC in the parietal-occipital area. However, for theta

bands, there is no consistent conclusion because of the different

methods of FC analysis (Leuchter et al., 2012; Ahn et al., 2017;

Fingelkurts and Fingelkurts, 2017; Iseger et al., 2017; McVoy et al.,

2019; Hasanzadeh et al., 2020; Dell’Acqua et al., 2021; Miljevic

et al., 2023). In our study, during EC, FC associated with RT

(PP-RT and RT-LMOC) was lower in participants with MDD in

the theta band, and alpha FC was also lower in RT-LMOC. For

EO, PLVs of RT-LMOC were lower in the MDD group in the

theta and alpha bands, which was the same as EC. For alpha,

different from previous studies, our findings focused more on

the connections of the temporal cortex and occipital area (RT-

LMOC). The PLVs of participants with MDD were lower in both

EC and EO. It has been pointed out that the temporal lobe plays a

crucial role in MDD. Fan et al.’s resting-state functional magnetic

resonance imaging (fMRI) study found that aberrant right superior

temporal gyrus (STG) activity might be a potential marker of

suicide attempts among patients with MDD (Fan et al., 2013).

Blackhart et al.’s study indicated that less right parieto-temporal

activity is correlated with more severe symptoms of depression

(Blackhart et al., 2006). These findings confirm the rationality

and validity of our results to a certain extent; abnormal activity

in the right temporal lobe may weaken its FC with other brain

regions. For the theta band, our results showed lower PLVs in the

right temporal-parietal/left occipital region, which has been linked

with the decrease of cognitive control efficacy of related top-down

processes (Hwang et al., 2015), and lower theta FC was found

to be associated with depressive symptoms (McVoy et al., 2019).

However, as mentioned before, there are various findings related to

theta FC. In the study conducted by Leuchter et al., the resting-state

EEG of 121 unmedicated participants with MDD and 37 HCs was

included in the analysis. The results showed that the coherences of

the participants with MDD were higher than those of HCs between

the frontopolar and temporal/parietooccipital regions (Leuchter

et al., 2012). Another research that applied phase transfer entropy

as the measure of phase-based effective connectivity also indicated
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TABLE 1 The di�erences in EEG PLV between the MDD and HC groups (EO).

MDD HC Z/t p

(n=86) (n=83)

LT-LMOC beta2 0.188 (0.122, 0.259) 0.133 (0.106, 0.185) −3.497∗∗∗ 0.000

PP-RT beta1 0.248 (0.156, 0.364) 0.342 (0.241, 0.459) −3.509∗∗∗ 0.000

beta2 0.166 (0.122, 0.274) 0.258 (0.172, 0.397) −3.739∗∗∗ 0.000

RT-LMOC theta 0.245 (0.171, 0.343) 0.323 (0.246, 0.448) −3.755∗∗∗ 0.000

alpha 0.338± 0.136 0.414± 0.138 −3.604∗∗∗ 0.000

beta1 0.333± 0.135 0.418± 0.132 −4.114∗∗∗ 0.000

beta2 0.235 (0.152, 0.338) 0.335 (0.247, 0.425) −4.050∗∗∗ 0.000

Due to data and space limitations, this table presents only the brain region connections where differences were observed.

MDD, major depressive disorder; HC, healthy control; LT, left temporal cortex; RT, right temporal cortex; PP, posterior parietal cortex; LMOC, left midline occipital cortex.
∗∗∗p < 0.001.

FIGURE 3

The di�erences in EEG PLV between the MDD and HC groups (EO/EC). MDD, major depressive disorder; HC, healthy control; PFC, prefrontal cortex;

CC, central cortex; RMFC, right midline frontal cortex; RT, right temporal cortex; RMOC, right midline occipital cortex; PP, posterior parietal cortex;

MOC, midline occipital cortex; LMOC, left midline occipital cortex; LT, left temporal cortex; LMFC, left midline frontal cortex.

a higher node degree and strength in the directed differential

connectivity graph (dDCG) of participants with MDD than HCs

(Hasanzadeh et al., 2020). Nevertheless, the results of an EEG

study among adolescents revealed that the average coherence of

the MDD cohort in the theta band was lower than that of HCs;

researchers attributed this to the delayed maturation of the default

mode network in youth with MDD (McVoy et al., 2019). However,

other studies have also found lower theta FC in individuals with

MDD. According to the results of Knott et al., patients with

MDD exhibited smaller theta coherence values than HCs (Knott

et al., 2001). In another pilot study aimed at comparing resting-

state EEG coherence in somatic symptom disorder and MDD,

researchers found that theta coherence between T5-P3 electrodes

(the left temporoparietal junction, which has been linked with

cognitive-attentional processing and social interaction) was lower

in the MDD group than in the HC group (Ahn et al., 2017). In

other words, it is difficult to form a consistent conclusion about

the theta frequency band. Future studies with the usage of higher-

quality methodological steps are needed to further investigate the

differences between individuals with MDD and HCs in theta FC.

4.2 Beta FC

For the beta frequency, there also never seemed to be a

consensus. According to a graph theory analysis conducted by

Hasanzadeh et al., after calculating the density, degree, and

strength of directed dDCG networks in all frequency bands
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TABLE 2 The di�erences in EEG PLVs between the MDD and HC groups (EC).

MDD HC Z/t p

(n=86) (n=83)

LMFC-RT beta2 0.251 (0.150, 0.330) 0.162 (0.107, 0.267) −3.774∗∗∗ 0.000

PP-RMOC beta2 0.742 (0.677, 0.782) 0.695 (0.650, 0.734) −3.862∗∗∗ 0.000

PP-RT theta 0.179 (0.145, 0.230) 0.237 (0.183, 0.345) −4.057∗∗∗ 0.000

beta1 0.222 (0.163, 0.283) 0.275 (0.213, 0.407) −3.921∗∗∗ 0.000

beta2 0.154 (0.117, 0.212) 0.236 (0.170, 0.298) −5.371∗∗∗ 0.000

beta3 0.141 (0.096, 0.208) 0.216 (0.151, 0.289) −4.494∗∗∗ 0.000

RT-LMOC theta 0.240± 0.073 0.302± 0.102 −4.482∗∗∗ 0.000

alpha 0.316 (0.271, 0.382) 0.403 (0.316, 0.477) −4.006∗∗∗ 0.000

beta1 0.342± 0.102 0.426± 0.121 −4.888∗∗∗ 0.000

beta2 0.289± 0.100 0.379± 0.119 −5.303∗∗∗ 0.000

beta3 0.281± 0.125 0.376± 0.156 −4.401∗∗∗ 0.000

Due to data and space limitations, this table presents only the brain region connections where differences were observed.

MDD, major depressive disorder; HC, healthy control; LMFC, left midline frontal cortex; RT, right temporal cortex; PP, posterior parietal cortex; RMOC, right midline occipital cortex; LMOC,

left midline occipital cortex.
∗∗∗p < 0.001.

for normal and MDD groups, the researchers found higher

density and strength in beta1 (13–16Hz). This indicated that

there were more links in MDD networks and that their weights

were significantly higher than those of the corresponding links

in the normal group (Hasanzadeh et al., 2020). Leuchter et al.

found higher beta coherence in participants with MDD, primarily

in connections within and between electrodes overlying the

dorsolateral prefrontal cortical or temporal regions (Leuchter

et al., 2012). For the measurement of coherence, another study

investigated changes in interhemispheric coherence in different

neuropsychiatric disorders. The researchers found that patients

with depression showed significantly greater interhemispheric beta

coherence in C3-C4 than the control group in both EC and EO

conditions (Markovska-Simoska et al., 2018). Different from the

results aforementioned, some previous studies stated that the beta

FC of participants with depression was lower than that of HCs, such

as the study by Knott et al. They compared the coherence measures

derived from spectrally analyzed EEGs, and they found that beta

coherence was lower in patients with MDD than in HC, regardless

of inter-hemispheric or intra-hemispheric differences (Knott et al.,

2001). McVoy claimed that beta coherence in adolescents with

MDD is significantly lower in the connections of P3-O1 and

Fp2-F4; nonetheless, the researcher ascribed the findings to the

developmental retardation of the brain (McVoy et al., 2019). In

our research, PLVs of beta2 (16–24Hz) were found to be higher

in the region pairs of LT-LMOC (EO), LMFC-RT (EC), and PP-

RMOC (EC) in participants withMDD than in HCs, whereas in the

connections of PP-RT and RT-LMOC, the FCs were all relatively

lower to varying degrees in the beta band. It can be inferred that

results presented in the beta band would be diverse depending

on their brain area connections. Among beta connections, the

frequency of beta2 existed in each connection with significant

differences between participants with MDD and HCs. In the study

conducted by Huang et al., higher beta2 coherence was observed

in participants with MDD than in HCs, including the coherence

between the left PFC and right amygdala (F7–T4) and the index

between the right PFC and left amygdala (F8–T3; Huang et al.,

2023). Looking back at our findings, the PLV of LMFC-RT (EC)

was higher in the MDD group than in HCs, which was spatially

consistent with the earlier result. However, the previous coherence

study was limited to the frontal-limbic circuit, and only a few

studies on the beta FC of MDD have focused on specific brain

regions; the quality of assessment in these studies also varied.

Therefore, considering this and the fuzzy sub-band divisions in

the existing studies, further consensus should be reached on

methodological steps for obtaining more precise and normatively

consistent conclusions.

4.3 The connection of RT-LMOC

We found that in the connection of RT-LMOC, the region

pair had lower PLV in almost all the frequency bands, regardless

of the EO or EC condition. Previous studies have accustomed us

to focus on the FC of a particular electrode pair in a specific

frequency band, although witnessing such consistent FC changes

was fairly rare. The low functional connection of the right temporal

with the left middle occipital region might be one of the critical

features of brain dysfunction in patients with MDD. It is known

that the temporal lobe contributes to the abilities of language,

memory, senses, and emotion, determining how we experience

and process certain emotions; the occipital lobe, located at the

rearmost position, is mainly responsible for visual processing.

More specifically, this part processes visual signals and works

collaboratively with other brain regions. It plays a vital role in

language and reading, memory storage, and the recognition of

familiar objects, such as places or faces. In a meta-analysis study,

researchers applied activation likelihood estimation, a method with
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ideal spatial sensitivity that can implement voxel-wise statistical

comparison of numerous studies, and found that the right STG

was the largest among nine significant clusters when analyzing the

activation foci associated with happiness. For the same analysis

related to greater happiness than sadness, the largest cluster was

also located in the right STG, while in the analysis related to greater

sadness than happiness, the largest cluster was found in the right

middle temporal gyrus.

These results highlighted the significance of the right temporal

gyrus in the generation of happy or sad emotions; the lower PLVs

of RT-LMOC, which might be a reflection of the process, further

established the strong association between depressive mood and

the right temporal region (Vytal and Hamann, 2010). An earlier

study demonstrated through tractography a direct connection from

the extrastriate occipital cortex to the anterior temporal region, as

well as indirect connections of the occipital-temporal projection

system (Catani et al., 2003). The deficit in these connections

might affect the ability to learn novel, non-verbalizable visual

stimuli, which is speculated to be the direct way to prime medial

temporal structures and facilitate the consolidation of visual

memories. This indicated that the lower FC of RT-LMOC might

be linked with cognitive dysfunctions in vision-related domains.

According to an fMRI study, the middle longitudinal fascicle

(MdLF), which is known as the fiber tract that links different parts

of temporal lobes, has been validated due to broader connections,

including the temporo-occipital region (Makris et al., 2017). Such

connections might be related to language, attention, and visual and

auditory processing functions; thus, the disruption of the MdLF

has been linked with several neuropsychiatric disorders, which

might further lead to aphasia, behavioral variants, and attention-

deficit disorders. This finding verified the existence of a temporo-

occipital connection and its relationship with psychiatric disorders.

In our study, the connection of RT-LMOC was found to be

weaker in participants with MDD, and the results are consistent

with previous findings to a certain extent. However, previous

findings were mostly based on the results of cognitive assessments

or paradigms in ERP studies, while our study was conducted

under resting-state conditions. Thus, future studies must design

and utilize some paradigms that can reveal different domains of

cognitive functions to further discover the connections of the

temporo-occipital region.

4.4 PLV and MDD severity: no correlation

We conducted a correlation analysis between the PLVs of

different connections in the two groups and their HDRS-17 scores.

The results did not show any significant correlation, which means

that the value of PLV could not be determined or that it was

immediately affected by the severity of depression. The possible

reason might be that FC measured by PLV is more likely to be

a persistent trait marker of MDD, indicating that spatiotemporal

synchronization between different brain regions could be long-

lasting or at least not easily affected and altered soon. As mentioned

before, FC is influenced by myelinated cortico-cortical axons of the

white matter, and myelin controls the speed of the axon and the

synchrony of impulse transportation. This suggests that although

FC symbolizes instantaneous phase connection, the changes in PLV

are based on physical structure alteration; such alteration might

not occur as quickly as MDD becomes more severe or attains

remission. Finally, during the period of inclusion, we set the HDRS

of participants withMDD as no<17, whichmeans that the patients

involved in this study hadmoderate to severe depression; therefore,

the range of scores was relatively narrow when compared to other

studies. In future studies, larger-sampled follow-up research is

essential to further verify such assumptions. The effect of medical

treatment should also be taken into consideration.

4.5 Highlights and limitations

This study is innovative and highlights FC in MDD. In our

research, we applied a new classification method of brain regions

to demarcate 10 regions of interest and offered a comprehensive

and balanced view of the changes in function across different

areas of the brain. In terms of FC, different from the connectivity

values between electrode pairs, this method of taking the mean

value of the assigned channels reflects, to some extent, FC

between corresponding brain compartments. In addition, resting-

state EEG was observed during the EO and EC phases, which

would allow for a broader range of observations because the

brainwave patterns of the two states themselves differ in certain

frequency bands. This might be due to the different visual

sensory information and subjective/objective state characteristics of

these two conditions, which might be related to an exteroceptive

network and an interoceptive network (Tan et al., 2013; Xu et al.,

2014).

Some limitations of this study should be noted. First, although

the basic information of the two groups of participants was

carefully matched and it was verified that there were no statistically

significant differences in the mentioned data, the results of the

study are still limited due to the lack of further analysis of

some other confounding factors, such as patients’ gender, age,

and education level. Thus, whether FC was related to these

factors could not be determined. Second, we did not further

consider the effect of comorbidities, such as anxiety disorders,

and their presence might also confound the EEG signals. Finally,

as mentioned before, this cross-sectional study lacks follow-up

data; whether altered FC is a state marker that can recover

after treatment or a persistent trait marker of MDD remains

unclear. Large-sampled and long-term controlled studies are still

required to further discover the characteristic changes in the EEG

of patients with MDD and their relation to the pathogenesis

of depression.

5 Conclusions

Compared with healthy individuals, patients with MDD tend

to have lower PLV in the connection of the right temporal and left

occipital lobes in most cases. However, an increase in PLV can be

found in the connection of the left temporal with the left occipital

lobe in patients withMDD (EO). During EC, an increase can also be

found in the circuits of the frontal-temporal and parietal-occipital

regions. The trends in FC observed in this study were not correlated

with the level of depression.
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