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Composing recurrent spiking
neural networks using
locally-recurrent motifs and
risk-mitigating architectural
optimization

Wenrui Zhang, Hejia Geng and Peng Li*

Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa

Barbara, CA, United States

In neural circuits, recurrent connectivity plays a crucial role in network function

and stability. However, existing recurrent spiking neural networks (RSNNs) are

often constructed by random connections without optimization. While RSNNs

can produce rich dynamics that are critical for memory formation and learning,

systemic architectural optimization of RSNNs is still an open challenge. We aim

to enable systematic design of large RSNNs via a new scalable RSNN architecture

and automated architectural optimization. We compose RSNNs based on a

layer architecture called Sparsely-Connected Recurrent Motif Layer (SC-ML)

that consists of multiple small recurrent motifs wired together by sparse lateral

connections. The small size of the motifs and sparse inter-motif connectivity

leads to an RSNN architecture scalable to large network sizes. We further

propose a method called Hybrid Risk-Mitigating Architectural Search (HRMAS) to

systematically optimize the topology of the proposed recurrent motifs and SC-

ML layer architecture. HRMAS is an alternating two-step optimization process by

which we mitigate the risk of network instability and performance degradation

caused by architectural change by introducing a novel biologically-inspired

“self-repairing” mechanism through intrinsic plasticity. The intrinsic plasticity is

introduced to the second step of each HRMAS iteration and acts as unsupervised

fast self-adaptation to structural and synaptic weight modifications introduced

by the first step during the RSNN architectural “evolution.” We demonstrate

that the proposed automatic architecture optimization leads to significant

performance gains over existing manually designed RSNNs: we achieve 96.44%

on TI46-Alpha, 94.66% on N-TIDIGITS, 90.28% on DVS-Gesture, and 98.72% on

N-MNIST. To the best of the authors’ knowledge, this is the first work to perform

systematic architecture optimization on RSNNs.

KEYWORDS

brain inspired computing, recurrent spikingneural networks, neural architecture search,

Sparsely-Connected Recurrent Motif Layer, intrinsic plasticity

1 Introduction

In the brain, recurrent connectivity is indispensable for maintaining dynamics,

functions, and oscillations of the network (Buzsaki, 2006). As a brain-inspired

computational model, spiking neural networks (SNNs) are well suited for processing

spatiotemporal information (Maass, 1997). In particular, recurrent spiking neural networks

(RSNNs) canmimic microcircuits in the biological brain and induce rich behaviors that are

critical for memory formation and learning. Recurrence has been explored in conventional
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non-spiking artificial neural networks (ANNs) in terms of Long

Short TermMemory (LSTM) (Hochreiter and Schmidhuber, 1997),

Echo State Networks (ESN) (Jaeger, 2001), Deep RNNs (Graves

et al., 2013), Gated Recurrent Units (GRU) (Cho et al., 2014),

and Legendre Memory Units (LMU) (Voelker et al., 2019). While

recurrence presents unique challenges and opportunities in the

context of spiking neural networks, RSNNs are yet to be well

explored.

Most existing works on RSNNs adopt recurrent layers or

reservoirs with randomly generated connections. The Liquid State

Machine (LSM) (Maass et al., 2002) is one of the most widely

adopted RSNN architectures with one or multiple recurrent

reservoirs and an output readout layer wired up using feedforward

synapses (Zhang et al., 2015; Wang and Li, 2016; Srinivasan

et al., 2018). However, there is a lack of principled approaches

for setting up the recurrent connections in reservoirs. Instead,

ad-hoc randomly generated wiring patterns are often adopted.

Bellec et al. (2018) proposed an architecture called long short-

term memory SNNs (LSNNs). The recurrent layer contains

a regular spiking portion with both inhibitory and excitatory

spiking neurons and an adaptive neural population. Zhang and

Li (2019b) proposed to train deep RSNNs by a spike-train level

backpropagation (BP) method. Maes et al. (2020) demonstrated

a new reservoir with multiple groups of excitatory neurons

and a central group of inhibitory neurons. Furthermore, Zhang

and Li (2021b) presented a recurrent structure named ScSr-

SNNs in which recurrence is simply formed by a self-recurrent

connection to each neuron. However, the recurrent connections

in all of these works are either randomly generated with certain

probabilities or simply constructed by self-recurrent connections.

Randomly generated or simple recurrent connections may not

effectively optimize RSNNs’ performance. Recently, Pan et al.

(2024) introduced a multi-objective Evolutionary Liquid State

Machine (ELSM) inspired by neuroevolution process. Chakraborty

and Mukhopadhyay (2023) proposed Heterogeneous recurrent

spiking neural network (HRSNN), in which recurrent layers are

composed of heterogeneous neurons with different dynamics.

Chen et al. (2023) introduced an intralayer-connected SNN and

a hybrid training method combining probabilistic spike-timing

dependent plasticity (STDP) with BP. But their performance

still has significant gaps. Systemic RSNN architecture design and

optimization remain as an open problem.

Neural architectural search (NAS), the process of automating

the construction of non-spiking ANNs, has become prevalent

recently after achieving state-of-the-art performance on various

tasks (Elsken et al., 2019; Wistuba et al., 2019). Different

types of strategies such as reinforcement learning (Zoph and

Le, 2017), gradient-based optimization (Liu et al., 2018), and

evolutionary algorithms (Real et al., 2019) have been proposed

to find optimal architectures of traditional CNNs and RNNs.

In contrast, the architectural optimization of SNNs has received

little attention. Only recently, Tian et al. (2021) adopted a

simulated annealing algorithm to learn the optimal architecture

hyperparameters of liquid state machine (LSM) models through

a three-step search. Similarly, a surrogate-assisted evolutionary

search method was applied in Zhou et al. (2020) to optimize

the hyperparameters of LSM such as density, probability and

distribution of connections. However, both studies focused only

on LSM for which hyperparameters indirectly affecting recurrent

connections as opposed to specific connectivity patterns were

optimized. Even after selecting the hyperparameters, the recurrence

in the network remained randomly determined without any

optimization. Recently, Kim et al. (2022) explored a cell-based

neural architecture search method on SNNs, but did not involve

large-scale recurrent connections. Na et al. (2022) introduced a

spike-aware NAS framework called AutoSNN to investigate the

impact of architectural components on SNNs’ performance and

energy efficiency. Overall, NAS for RSNNs is still rarely explored.

This paper aims to enable systematic design of large recurrent

spiking neural networks (RSNNs) via a new scalable RSNN

architecture and automated architectural optimization. RSNNs can

create complex network dynamics both in time and space, which

manifests itself as an opportunity for achieving great learning

capabilities and a challenge in practical realization. It is important

to strike a balance between theoretical computational power and

architectural complexity. Firstly, we argue that composing RSNNs

based on well-optimized building blocks small in size, or recurrent

motifs, can lead to an architectural solution scalable to large

networks while achieving high performance. We assemble multiple

recurrentmotifs into a layer architecture called Sparsely-Connected

Recurrent Motif Layer (SC-ML). The motifs in each SC-ML share

the same topology, defined by the size of the motif, i.e., the

number of neurons, and the recurrent connectivity pattern between

the neurons. The motif topology is determined by the proposed

architectural optimization while the weights within each motif

may be tuned by standard backpropagation training algorithms.

Motifs in a recurrent SC-ML layer are wired together using sparse

lateral connections determined by imposing spatial connectivity

constraints. As such, there exist two levels of structured recurrence:

recurrence within each motif and recurrence between the motifs

at the SC-ML level. The fact that the motifs are small in size

and that inter-motif connectivity is sparse alleviates the difficulty

in architectural optimization and training of these motifs and

SC-ML. Furthermore, multiple SC-ML layers can be stacked and

wired using additional feedforward weights to construct even larger

recurrent networks.

Secondly, we demonstrate a method called Hybrid Risk-

Mitigating Architectural Search (HRMAS) to optimize the

proposed recurrent motifs and SC-ML layer architecture. HRMAS

is an alternating two-step optimization process hybridizing bio-

inspired intrinsic plasticity for mitigating the risk in architectural

optimization. Facilitated by gradient-based methods (Liu et al.,

2018; Zhang and Li, 2020), the first step of optimization is

formulated to optimize network architecture defined by the size

of the motif, intra and inter-motif connectivity patterns, types of

these connections, and the corresponding synaptic weight values,

respectively.

While structural changes induced by the architectural-level

optimization are essential for finding high-performance RSNNs,

they may be misguided due to discontinuity in architectural search,

and limited training data, hence leading to over-fitting.Wemitigate

the risk of network instability and performance degradation caused

by architectural change by introducing a novel biologically-inspired

“self-repairing” mechanism through intrinsic plasticity, which has
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the same spirit of homeostasis during neural development (Tien

and Kerschensteiner, 2018). The intrinsic plasticity is introduced in

the second step of each HRMAS iteration and acts as unsupervised

self-adaptation to mitigate the risks imposed by structural and

synaptic weight modifications introduced by the first step during

the RSNN architectural “evolution.”

We evaluate the proposed techniques on speech dataset TI46-

Alpha (Liberman et al., 1991), neuromorphic speech dataset N-

TIDIGITS (Anumula et al., 2018), neuromorphic video dataset

DVS-Gesture (Amir et al., 2017), and neuromorphic image dataset

N-MNIST (Orchard et al., 2015). The SC-ML-based RSNNs

optimized by HRMAS achieve state-of-the-art performance on all

four datasets. With the same network size, automated network

design via HRMAS outperforms existing RSNNs by up to 3.38%

performance improvement.

2 Materials and methods

2.1 Spiking neuron model

In this work, we adopt the leaky integrate-and-fire (LIF) neuron

model Gerstner and Kistler (2002) which is one of the most popular

neuron models for simulating SNNs. During the simulation, we use

the fixed-step first-order Euler method to discretize the LIF model.

In the rest of this paper, we only analyze an SNN in the discretized

form. Consider the input spike train from pre-synaptic neuron j:

sj[t] =
∑

t
(f )
j

δ[t − t
(f )
j ], where t

(f )
j denotes a particular firing time

of presynaptic neuron j. The incoming spikes are converted into an

(unweighted) postsynaptic current (PSC) aj[t] through a synaptic

model. We adopt the first-order synaptic model in Equation (1):

(Gerstner and Kistler, 2002):

aj[t] = (1−
1

τsyn
)aj[t − 1]+ sj[t], (1)

where τsyn is the synaptic time constant. Then, the neuronal

membrane voltage ui[t] of neuron i at time t is given in Equation

(2) and Equation (3):

u−i [t] = (1−
1

τ
)ui[t − 1]+

R

τ

∑

j

wijaj[t], (2)

ui[t] =

{

0, if u−i [t] > Vth

u−i [t], otherwise
(3)

where R and τ are the resistance and time constant of the

membrane, wij the synaptic weight from pre-synaptic neuron j to

neuron i. Moreover, the firing output of the neuron is expressed in

Equation (4)

si[t] = H
(

u−i [t]− Vth

)

(4)

where Vth is the firing threshold and H(·) is the Heaviside step

function.

2.2 Sparsely-Connected Recurrent Motif
Layer

Unlike the traditional non-spiking RNNs that are typically

constructed with units like LSTM or GRU, the structure of existing

RSNNs is random without specific optimization, which hinders

RSNNs’ performance and prevents scaling to large networks.

However, due to the complexity of recurrent connections and

dynamics of spiking neurons, the optimization of RSNNs weights is

still an open problem. As shown in Table 3, recurrent connections

that are not carefully set up may hinder network performance. To

solve this problem, we first designed the SC-ML layer, which is

composed of multiple sparsely-connected recurrent motifs, where

each motif consists of a group of recurrently connected spiking

neurons, as shown in Figure 1. The motifs in each SC-ML share

the same topology, which is defined as the size of the motif, i.e., the

number of neurons, and the recurrent connectivity pattern between

the neurons (excitatory, inhibitory or non-existent). Within the

motif, synaptic connections can be constructed between any two

neurons including self-recurrent connections. Thus the problem of

the recurrent layer optimization can be simplified to that of learning

the optimal motif and sparse inter-motif connectivity, alleviating

the difficulty in architectural optimization and allowing scalability

to large networks.

This motif-based structure is motivated by both a biological

and a computational perspective. First, from a biological point of

view, there is evidence that the neocortex is not only organized in

layered minicolumn structures but also into synaptically connected

clusters of neurons within such structures (Ko et al., 2011; Perin

et al., 2011). For example, the networks of pyramidal cells cluster

into multiple groups of a few dozen neurons each. Second, we add

onto the memory effects resulting from temporal integration of

individual spiking neurons by introducing sparse intra or inter-

motif connections. This corresponds to a scalable and biologically

plausible RSNN architectural design space that closely mimics

the microcircuits in the nervous system. From a computational

perspective, optimizing the connectivity of the basic building block,

i.e., the motif, simplifies the problem of optimizing the connectivity

of the whole recurrent layer. Furthermore, by constraining most

recurrent connections inside the motifs and allowing a few lateral

connections between neighboring motifs to exchange information

across the SC-ML, the total number of recurrent connections

is limited. This leads to a great deal of sparsity as observed in

biological networks (Seeman et al., 2018).

Figure 1 presents an example of SC-ML with 12-neuron motifs.

The lateral inter-motif connections can be introduced as themutual

connections between two corresponding neurons in neighboring

motifs to ensure sparsity and reduce complexity.With the proposed

SC-ML, one can easily stack multiple SC-MLs to form a multi-

layer large RSNN using feedforward weights. Within a multi-

layered network, information processing is facilitated through

local processing of different motifs, communication of motif-

level responses via inter-motif connections, and extraction and

processing of higher-level features layer by layer.

2.3 Hybrid risk-mitigating architectural
search

Neural architecture search (NAS) has been applied for

architectural optimization of traditional non-spiking RNNs, where

a substructure called cell is optimized by a search algorithm (Zoph

and Le, 2017). Nevertheless, this NAS approach may not be the best
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FIGURE 1

Sparsely-connected recurrent motif layer.

fit for RSNNs. First, recurrence in the cell is only created by feeding

previous hidden state back to the cell while connectivity inside the

cell is feedforward. Second, the overall operations and connectivity

found by the above NAS procedure do not go beyond an LSTM-like

architecture. Finally, the considered combination operations and

activation functions like addition and elementwise multiplication

are not biologically plausible.

In order to extend NAS to a wider range of spiking RNNs,

we introduce the Hybrid Risk-Mitigating Architectural Search

(HRMAS). This framework systematically optimizes the motif

topology and lateral connections of SC-ML. Each optimization

iteration consists of two alternating steps, hybridizing gradient-

based optimization and biologically-inspired intrinsic plasticity

for robust NAS of RSNNs. We will introduce the overall idea of

HRMAS in 2.3.1, the optimization problem of HRMAS in 2.3.2,

the gradient-based optimization part in 2.3.3, and the bio-inspired

optimization part in 2.3.4.

2.3.1 Hybrid risk-mitigating architectural search
framework

In HRMAS, all recurrent connections are categorized into

three types: inhibitory, excitatory, and non-existence. An inhibitory

connection has a negative weight and is fixed without training in

our current implementation. In the recurrent network, negative

weights mainly provide the function of inhibitory stimulation. Here

we follow the settings in previous research (Zhang and Li, 2021b,a)

and adopt fixed negative weights. In experiments, fixed negative

weights can reduce the optimization complexity without significant

performance loss, while providing stable inhibitory connections.

The weight of an excitatory connection is positive and trained by a

backpropagation (BP) method. HRMAS is an alternating two-step

optimization process, hybridizing architectural optimization with

intrinsic plasticity (IP). The first step of each HRMAS optimization

iteration optimizes the topology of the motif and inter-motif

connectivity in SC-ML and the corresponding synaptic weights

hierarchically. Specifically, the optimal number of neurons in the

motif is optimized over a finite set of motif sizes. All possible

intra-motif connections are considered and the type of each

connection is optimized, which may lead to a sparser connectivity

if the connection types of certain synapses are determined to

be “non-existence.” At the inter-motif level, a sparse motif-to-

motif connectivity constraint is imposed: neurons in one motif

are only allowed to be wired up with the corresponding neurons

in the neighboring motifs as the Figure 1 shows. This locally

connected topology will serve as a hard constraint in the subsequent

optimization process. Inter-motif connections also fall under one of

the three types (“inhibitory,” “excitatory,” “non-existence”). Hence,

a greater level of sparsity is produced with the emergence of

connections of type “non-existence.” The second step in each

HRMAS iteration executes an unsupervised IP rule to stabilize

the network function and mitigate potential risks caused by

architectural changes.

Figure 2 illustrates the incremental optimization strategy

we adopt for the architectural parameters. Using the two-

step optimization, initially all architectural parameters including

motif size and connectivity are optimized. After several training

iterations, we choose the optimal motif size from a set of

discrete options. As the most critical architectural parameter is set,

we continue to optimize the remaining architectural parameters

defining connectivity, allowing fine-tuning of performance based

on the chosen motif size.

2.3.2 Alternating two-step optimization in
HRMAS

The alternating two-step optimization inHRMAS is inspired by

the evolution in neural development. As shown in Figure 3, neural

circuits may experience weight changes through synaptic plasticity.

Over a longer time scale, circuit architecture, i.e., connectivity,

may evolve through learning and environmental changes. In

addition, spontaneous firing behaviors of individual neurons may

be adapted by intrinsic plasticity (IP). We are motivated by the

important role of local IP mechanisms in stabilizing neuronal

activity and coordinating structural changes to maintain proper

circuit functions (Tien and Kerschensteiner, 2018). We view IP

as a “fast-paced” self-adapting mechanism of individual neurons

to react to and minimize the risks of weight and architectural

modifications. As shown in Figure 4, we define the architectural

parameters (motif size and intra/inter-motif connection types
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FIGURE 2

Architectural optimization in HRMAS.

FIGURE 3

Evolution in neural development.

weights), synaptic weights, and intrinsic neuronal parameters as

α, w, and β , respectively. Each HRMAS optimization iteration

consists of two alternating steps. In the first step, we optimize

α and w hierarchically based on gradient-based optimization

using backpropagation (BP). In Figure 4, δ is the backpropagated

error obtained via the employed BP method. In the second step,

we use an unsupervised IP rule to adapt the intrinsic neuronal

parameters of each neuron over a time window (“IP window”)

during which training examples are presented to the network. IP

allows the neurons to respond to the weight and architectural

changes introduced in the first step and mitigate possible risks

caused by such changes. In Step 1 of the subsequent iteration,

the error gradients w.r.t the synaptic weights and architectural

parameters are computed based on the most recent values of β

updated in the preceding iteration. In summary, the k-th HRMAS

iteration solves a bi-level optimization problem:

α∗ = argmin
α

Lvalid(α,w
∗(α),β∗) (5)

s.t. β∗ = argmin
β

Lip(α,w
∗(α),β∗−), (6)

s.t. w∗(α) = argmin
w

Ltrain(α,w,β
∗
−), (7)

where Lvalid and Ltrain are the loss functions defined based on

the validation and training sets used to train α and w respectively;
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FIGURE 4

Proposed HRMAS.

Lip is the local loss to be minimized by the IP rule as further

discussed in Section 2.3.4; β∗− are the intrinsic parameter values

updated in the preceding (k − 1)-th iteration; w∗(α) denotes the

optimal synaptic weights under the architecture specified by α.

In the implementation of HRMAS, architectural parameters

and synaptic weights are optimized by the first step. The

architectural parameters are defined as motif size and types

of intra/inter-motif connections. The general architectural

optimization is performed by generating architecture and

evaluating the architecture by a standard training and validation

process on data. The validation performance is used to train the

architectural parameters and generate a better structure. These

steps are repeated until the optimal architecture is found. The first

step of the k-th HRMAS iteration solves a bi-level optimization

problem in Equations (8, 9) using BP:

minαLvalid(α,w
∗(α),β∗−) (8)

s.t. w∗(α) = argwminLtrain(α,w,β
∗
−), (9)

where Lvalid and Ltrain are the loss functions defined based on

the validation and training sets used to train α and w respectively;

β∗− is the intrinsic parameter values updated in the preceding

(k− 1)-th iteration; w∗(α,β) denotes the optimal synaptic weights

under the architecture specified by α. The second step of the k-th

iteration solves the optimization problem Equation (10):

β∗ = argβminLip(α
∗,w∗,β) (10)

Lip is the local loss to be minimized by the IP rule.

2.3.3 Gradient-based optimization in HRMAS
2.3.3.1 Relaxing SC-ML layer’s architectural parameters

from discrete to continuous

Optimizing the weight and architectural parameters by solving

the bi-level optimization problem of Equations (5, 6, 7) can be

computationally expensive. We adapt the recent method proposed

in Liu et al. (2018) to reduce computational complexity by relaxing

the discrete architectural parameters to continuous ones for

efficient gradient-based optimization. Without loss of generality,

we consider a multi-layered RSNN consisting of one or more SC-

ML layers, where connections between layers are assumed to be

feedforward. We focus on one SC-ML layer, as shown in Figure 5,

to discuss the proposed gradient-based optimization.

The number of neurons in the SC-ML layer is fixed. The motif

size is optimized such that each neuron is partitioned into a specific

motif based on the chosen motif size. The largest white square

in Figure 5 shows the layer-connectivity matrix of all intra-layer

connections of the whole layer, where the dimension of the matrix

corresponds to the neuron count of the layer. We superimpose

three sets of smaller gray squares onto the layer-connectivity

matrix, one for each of the three possible motif sizes of v1, v2, and

v3 considered. Choosing a particular motif size packs neurons in

the layer into multiple motifs, and the corresponding gray squares

illustrate the intra-motif connectivity introduced within the SC-ML

layer.

The entry of the layer-connectivity matrix at row r and column

i specifies the existence and nature of the connection from neuron

r to neuron i. We consider multiple motif size and connection

type choices during architectural search using continuous-valued

parameterizations αv and αc
ir , respectively for each motif size v and

connection type c. We relax the categorical choice of each motif
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FIGURE 5

SC-ML with relaxed architectural parameters.

size using a softmax over all possible options as α̂v, and similarly

relax the categorical choice of each connection type based on the

corresponding motif size as α̂c
ir :

α̂v =
exp(αv)

∑

v′∈V exp(αv′ )
, α̂c

ir =
exp(αc

ir)
∑

c′∈C exp(αc′
ir )

(11)

Here in Equation (11), V and C are the set of all motif

sizes and possible connection types, respectively; α̂v and α̂c
ir are

the continuous-valued categorical choice of motif size v and

connection type c, respectively, which can also be interpreted as the

probability of selecting the corresponding motif size or connection

type. As in Figure 5, the synaptic weight of the connection from

neuron r to neuron i is expressed as the summation of weights

under all possible motif sizes and connection types weighted

by the respective continuous-valued categorical choices (selection

probabilities). In this paper, we use hat over the variable to denote

the architectural parameter processed by softmax. Then, the task of

architecture optimization is reduced to learn a set of continuous

variables α̂ = {α̂c
ir , α̂

v}. With the continuous architectural

parameters, a gradient-based method like BP is applicable to learn

the recurrent connectivity.

Since IP rules are independent of the network architecture

search problem, in following derivation, we do not express

the IP method parameters β explicitly and express the term

Lvalid(α,w
∗(α),β∗−) as Lvalid(α,w

∗(α)) for simplicity. In Liu et al.

(2018), the bi-level optimization problem is simply approximated

to a one-shot model to reduce the expensive computational cost of

the inner optimization which can be expressed in Equation (12) as:

∇α̂Lvalid(α̂,w
∗(α̂)) = ∇α̂Lvalid(α̂,w− η∇wLtrain(w, α̂)), (12)

where η is the learning rate for a step of inner loop. Both the

weights of the search network and the architectural parameters

are trained by the BP method. The architectural gradient can be

approximated in Equation (13):

dLvalid

dα̂
(α̂) = ∇α̂Lvalid(α̂,w

∗)−η∇wLvalid(α̂,w
∗)∇2

α̂,wLtrain(w
∗, α̂)).

(13)

The complexity is further reduced by using the finite difference

approximation around w± = w ± ǫ∇wLvalid(α̂,w
∗) for small

perturbation ǫ to compute the gradient of ∇α̂Lvalid(α̂,w
∗). Finally

the architectural updates in (13) can be calculated as

dLvalid
dα̂

(α̂) = ∇α̂Lvalid(α̂,w
∗)− η

2ǫ (∇α̂Ltrain(w
+, α̂)−

∇α̂Ltrain(w
−, α̂)). (14)

2.3.3.2 Backpropagation via HRMAS framework

2.3.3.2.1 Integrating architectural parameterizations into the

LIF model

Based on the leaky integrate-and-fire (LIF) neuron model in

Equation (3), the neuronal membrane voltage ui[t] of neuron i in

the SC-ML layer at time t is given by integrating currents from all

inter-layer inputs and intra-layer recurrent connections under all

possible architectural parameterizations:

u−i [t] = (1− 1
τ
)ui[t − 1]+ R

τ
(
∑

j wijaj[t]+

∑

v∈V (α̂
v
∑Ivi

r
∑

c∈C(α̂
c
irw

c
irar[t − 1]))), (15)

where R and τ are the resistance and time constant of the

membrane, wij the synaptic weight from neuron j in the previous

layer to neuron i, wc
ir the recurrent weight from neuron r to neuron

i of connection type c, and aj[t] the (unweighted) postsynaptic
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current (PSC) converted from spikes of neuron j through a synaptic

model. To reduce clutter in the notation, we use Ivi to denote the

number of presynaptic connections afferent onto neuron i’s input

in the recurrent layer when choosing motif size v, which includes

both inter and intra-motif connections and will be introduced

in detail in the next paragraph. We further drop the explicit

dependence of α̂c
ir on α̂v. We assume feedforward connections have

no time delay and recurrent connections have one time step delay.

The response of neuron i obtained from recurrent connections

is the summation of all the weighted recurrent inputs over the

probabilities of connection types and motif sizes.

2.3.3.2.2 SC-ML’s topology and scalability

In this section we formally describe the topology of SC-ML

and discuss its scalability. Ivi denote the number of presynaptic

connections afferent onto neuron i’s input in the recurrent layer

when choosing motif size v, and could be formally expressed

as a union of inter-motif Ivi,inter and intra-motif Ivi,intra neuron

connections (We have omitted the superscript of connection type

c for convenience) in Equation (16):

Ivi = Ivi,inter ∪ I
v
i,intra (16)

Hence the recurrent input weight of neuron i be expressed in

Equation (17)

wir = winter
ir ∪ wintra

ir (17)

Let us consider a SC-ML layer with N neurons, divided into

motif size = v, with N/v motifs within this layer. Let us denote the

index of the motif by k ∈ (0, 1, 2, ...,N/v−1). Assuming the neuron

i is located in the kth motif (i.e.: kv ≤ i ≤ kv + v − 1), then the

intra-layer recurrent connection into neuron i be expressed as

wintra
ir , where r ∈ (kv, kv+ 1, kv+ 2, ..., kv+ v− 1)

The inter-layer recurrent connection into neuron i be expressed

as

winter
ir , where r ∈ (i− v, i+ v)

The figure expression is shown in Figure 1. The essence of

SC-ML architecture design is to reduce the huge search space

of the recurrent matrix and improve optimization efficiency

through biologically inspired and carefully designed local recurrent

connections as inductive bias. Hence, the SC-ML architecture

can naturally adopt different inter and intra-motif topological

connection patten across different layers, while providing

scalability.

2.3.3.2.3 Backpropagation in output layer

Through Equation (15), the continuous architecture

parameterizations influence the integration of input currents,

and hence firing activities of neurons in all layers and affect the

loss function defined at the output layer. As such, the task of

architecture optimization reduces to the one that learns the set of

optimal continuous variables α̂c and α̂v. The final architecture is

constructed by choosing the parameterizations with the highest

selection probabilities obtained from the optimization. During the

learning, We define the loss function as in Equation (18)

L =

T
∑

k=0

E[tk], (18)

where T is the total time steps and E[tk] the loss at tk. From

Equations (15) and (14), the membrane potential ui[t] of the

neuron i at time t demonstrates contribution to all future fires and

losses of the neuron through its PSC ai[t]. Therefore, the error

gradient with respect to the presynaptic weight wij from neuron j

to neuron i can be defined in Equation (19)

∂L

∂wij
=

T
∑

k=0

∂E[tk]

∂wij
=

T
∑

k=0

k
∑

m=0

∂E[tk]

∂ui[tm]

∂ui[tm]

∂wij

=

T
∑

m=0

R

τ
aj[tm]

T
∑

k=m

∂E[tk]

∂ui[tm]
=

T
∑

m=0

R

τ
aj[tm]δi[tm],

(19)

where δi[tm] denotes the error for neuron i at time tm and is

defined in Equation (20):

δi[tm] =

T
∑

k=m

∂E[tk]

∂ui[tm]
=

T
∑

k=m

∂E[tk]

∂ai[tk]

∂ai[tk]

∂ui[tm]
. (20)

In this work, the output layer is regular feedforward layer

without recurrent connection. Therefore, the weight woj of output

neuron o is updated by Equation (21)

∂L

∂woj
=

T
∑

m=0

R

τ
aj[tm]

T
∑

k=m

∂E[tk]

∂ao[tk]

∂ao[tk]

∂uo[tm]
, (21)

where
∂E[tk]
∂ao[tk]

depends on the choice of the loss function.

2.3.3.2.4 Backpropagation in hidden layers

Now, we focus on the backpropagation in the recurrent hidden

layer while the feedforward hidden layer case can be derived

similarly. For a neuron i in SC-ML, in addition to the error

signals from the next layer, the error backpropagated from the

recurrent connections should also be taken into consideration. The

backpropagated error can be calculated by:

δi[tm] =

T
∑

k=m

T
∑

j=k

∂ai[tk]

∂ui[tm]

Np
∑

p=1

(

∂up[tk]

∂ai[tk]

∂E[tj]

∂up[tk]

)

+

T
∑

k=m

T
∑

j=k+1

∂ai[tk]

∂ui[tm]

Nr
∑

r

(

∂ur[tk + 1]

∂ai[tk]

∂E[tj]

∂ur[tk + 1]

)

=

T
∑

k=m

∂ai[tk]

∂ui[tm]

N
∑

p=1

(
R

τ
wpiδp[tk])+

T−1
∑

k=m

∂a
(l)
i [tk]

∂u
(l)
i [tm]

∑

v∈V

(α̂v

Ov
i

∑

r

∑

c∈C

R

τ
α̂c
riw

c
riδr[tk + 1]),

(22)

where Np and Nr are the number of neurons in the next layer

and the number of neurons in this recurrent layer, respectively. δp
and δr are the errors of the neuron p in the next layer and the error
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from the neuron r through the recurrent connection.Ov
i represents

all the postsynaptic neurons of neuron i’s outputs in the recurrent

layer when choosing motif size v, which includes both inter and

intra-motif connections.

The key term in Equation (22) is
∂a[tk]
∂u[tm]

which reflects the

effect of neuron’s membrane potential on its output PSC. Due

to the non-differentiable spiking events, it becomes the main

difficulty for the BP of SNNs. Various approaches are proposed

to handle this problem such as probability density function

of spike state change (Shrestha and Orchard, 2018), surrogate

gradient (Neftci et al., 2019), and Temporal Spike Sequence

Learning via Backpropagation (TSSL-BP) (Zhang and Li, 2020).

In our experiments, we adopt the TSSL-BP method to calculated
∂a[tk]
∂u[tm]

. With the error backpropagated according to Equation

(22), the weights and architectural parameters can be updated by

gradient descent as:

1wij ∝ δi[t]
R

τ
aj[t], 1α̂v ∝

Nr
∑

i

δi[t]
R

τ

Ivi
∑

r

(
∑

c∈C

α̂c
irw

c
irar[t − 1]),

1wc
ir ∝ δi[t]

R

τ

∑

v∈V

(α̂vα̂c
irar[t − 1]),

1α̂c
ir ∝ δi[t]

R

τ

∑

v∈V

(α̂vwc
irar[t − 1]).

(23)

where δi[t] is the backpropagated error for neuron i at time

t given in Equation (22), Nr is the number of neurons in this

recurrent layer, R and τ are the leaky resistance and membrane

time constant, two intrinsic parameters adapted by the IP rule,

aj[t] and ar[t] are the (unweighted) postsynaptic currents (PSCs)

generated based on synpatic model by the presynaptic neuron j

in the preceding layer and the r-th neuron in this recurrent layer,

respectively.

2.3.4 Risk minimizing optimization with intrinsic
plasticity

For architectural optimization of non-spiking RNNs, gradient-

based methods are shown to be unstable in some cases

due to misguided architectural changes and conversion from

the optimized continuous-valued parameterization to a discrete

architectural solution, hindering the final performance and

demolishing the effectiveness of learning (Zela et al., 2019).

Adaptive regularization which modifies the regularization strength

(weight decay) guided by the largest eigenvalue of ∇2
αLvalid

was proposed to address this problem (Zela et al., 2019).

While this method shows promise for non-spiking RNNs, it is

computationally intensive due to frequent expensive eigenvalue

computation, severely limiting its scalability.

To address risks observed in architectural changes for RSNNs,

we introduce a biologically-inspired risk-mitigation method.

Biological circuits demonstrate that Intrinsic Plasticity (IP) is

crucial in reducing such risks. IP is a self-regulating mechanism

in biological neurons ensuring homeostasis and influencing

neural circuit dynamics (Marder et al., 1996; Baddeley et al.,

1997; Desai et al., 1999). IP is based on local neural firing

activities and performs online adaptation with minimal additional

computational overhead. It not only stabilizes neuronal activity

but also coordinates connectivity and excitability changes across

neurons to stabilize circuits (Maffei and Fontanini, 2009; Tien

and Kerschensteiner, 2018). IP has been applied in spiking neural

networks for locally regulating neuron activity (Lazar et al., 2007;

Bellec et al., 2018). In Zhang et al. (2019), the application of

IP mechanism significantly improves computational performance

in terms of learning speed, accuracy, and robustness to input

variations and noise. Fourati et al. (2020) proposes a deep echo

state network that utilizes intrinsic plasticity to drive reservoir

neuron activities to follow a desired Gaussian distribution,

enabling the learning of discriminative EEG representations

and demonstrating its effectiveness on emotion recognition

benchmarks. Zhang et al. (2020) proposes a novel IP learning rule

based on a soft-reset spiking neuron model, which ensures the

neuron’s membrane potential is mathematically continuous and

differentiable. Experimental results demonstrate that the proposed

IP rule can effectively improve the classification accuracy, inference

speed, and noise robustness. Zhang et al. (2021) proposes input-

driven and self-driven intrinsic IP learning rules for spiking

convolutional neural networks (SCNNs), where IP updates occur

only when a neuron receives input spikes or generates an output

spike, respectively. Experiments show that the event-driven IP

rules significantly reduce IP update operations and accelerate

convergence while maintaining accuracy.

Drawing from these findings, we make use of IP for mitigating

the risk of RSNN architectural modifications in this work. Our

HRMAS framework integrates the IP rule into the architectural

optimization, applied in the second step of each iteration. We

adopt the SpiKL-IP rule (Zhang and Li, 2019a) for all recurrent

neurons during architecture optimization. SpiKL-IP adapts the

intrinsic parameters of a spiking neuron while minimizing the KL-

divergence from the output firing rate distribution to a targeted

exponential distribution. It both maintains a level of network

activity and maximizes the information transfer for each neuron.

We adapt leaky resistance and membrane time constant of each

neuron using SpiKL-IP which effectively solves the optimization

problem in Equation (6) in an online manner as Equation (24):

1R =
2yτVth−W−Vth−

1
µ

τVthy
2

RW ,

1τ =
−1+

y
µ

τ
, W =

Vth

e
1
τy −1

, (24)

where µ is the desired mean firing rate, y the average firing rate

of the neuron. Similar to biological neurons, we use the intracellular

calcium concentration φ[t] as a good indicator of the averaged

firing activity and y can be expressed with the time constant of

calcium concentration τcal as Equation (25)

φi[t] = (1−
1

τcal
)φi[t − 1]+ si[t], yi[t] =

φi[t]

τcal
. (25)

We explicitly express the neuronal parameters R and τ of

neuron i tuned through time as Ri[t] and τi[t], since they are

adjusted by the IP rule at each time step. They are updated by

Equation (26)

Ri[t] = Ri[t − 1]− γ1Ri, τi[t] = τi[t − 1]− γ1τi, (26)

where γ is the learning rate of the SpiKL-IP rule. By including

time-variant neuronal parameters R and τ into Equations (22) and
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(23), the one time step architectural parameter and weight updated

by Equations (27, 28)

δi[tm] =

T
∑

k=m

∂ai[tk]

∂ui[tm]

N
∑

p=1

(
Rp[tk]

τp[tk]
wpiδp[tk])

+

T−1
∑

k=m

∂a
(l)
i [tk]

∂u
(l)
i [tm]

∑

v∈V

(α̂v

Ov
i

∑

r

∑

c∈C

Rr[tk + 1]

τr[tk + 1]
α̂c
riw

c
riδr[tk + 1])

(27)

1wij ∝ δi[t]
Ri[t]

τi[t]
aj[t],

1α̂v ∝

Nr
∑

i

δi[t]
Ri[t]

τi[t]

Ivi
∑

r

(
∑

c∈C

α̂c
irw

c
irar[t − 1]),

1wc
ir ∝ δi[t]

Ri[t]

τi[t]

∑

v∈V

(α̂vα̂c
irar[t − 1]),

1α̂ir ∝ δi[t]
Ri[t]

τi[t]

∑

v∈V

(α̂vwc
irar[t − 1]),

(28)

The proposed alternating two-step optimization of HRMAS is

summarized in Algorithm 1. Architectural parameters α includes

size of motif, and type of motif connections. They are optimized

separately in two consecutive stages. We express here only a

formal unification, for the sake of clarity in the architecture search

problem.

Initialize weights w, intrinsic parameters β,

architectural parameters α, and correspondingly

α̂.

repeat

Update α̂ by

η1∇α̂Lvalid(α̂,w− η2∇wLtrain(α̂,w,β));

Update w by η2∇wLtrain(α̂,w,β);

β ←− SpiKL-IP(α̂,w);

until converged

Algorithm 1. Hybrid risk-mitigating architectural search.

3 Results

The proposed HRMAS optimized RSNNs with the SC-ML

layer architecture and five motif size options are evaluated on

speech dataset TI46-Alpha (Liberman et al., 1991), neuromorphic

speech dataset N-TIDIGITS (Anumula et al., 2018), neuromorphic

video dataset DVS-Gesture (Amir et al., 2017), and neuromorphic

image dataset N-MNIST (Orchard et al., 2015). The performances

are compared with recently reported state-of-the-art manually

designed architectures of SNNs and ANNs such as feedforward

SNNs, RSNNs, LSM, and LSTM. For the proposed work, the

architectural parameters are optimized byHRMASwith the weights

trained on a training set and architectural parameters learned on

a validation set as shown in Algorithm 1. The accuracy of each

HRMAS optimized network is evaluated on a separate testing set

with all weights reinitialized. Table 2 shows all results.

3.1 Experimental settings

3.1.1 Dataset
The proposed HRMAS framework with SC-ML is evaluated on

speech dataset TI46-Alpha (Liberman et al., 1991), neuromorphic

speech dataset N-TIDIGITS (Anumula et al., 2018), neuromorphic

video dataset DVS-Gesture (Amir et al., 2017), and neuromorphic

image dataset N-MNIST (Orchard et al., 2015). The performances

are compared with several existing results on different structures of

SNNs and ANNs such as feedforward SNNs, RSNNs, Liquid State

Machine(LSM), LSTM, and so on.

3.1.2 Loss function
For the BP method used in this work, the loss function can

be defined by any errors that measure the distance between the

actual outputs and the desired outputs. In our experiments, since

hundreds of time steps are required for simulating speech and

neuromorphic inputs, we choose the accumulated output PSCs

to define the error which is similar to the firing count used

in many existing works (Jin et al., 2018; Shrestha and Orchard,

2018). We suppose the simulation time steps for a sample is T. In

addition, for neuron o of the output layer, we define the desired

output as do = (do[t0], do[t1]...., do[tN]) and real output as ao =

(ao[t0], ao[t1]...., ao[tN]) and do is manually determined. Therefore,

the loss is determined by the square error of the outputs

L =

T
∑

k=1

E[tk] =

T
∑

k=1

N(out)
∑

o

1

2
(do[tk]− ao[tk])

2 (29)

where N(out) is the number of neurons in the output layer and

E[tk] is the error at time step tk, which is simply defined by the

averaged loss through all the time steps in Equation (30)

E[tk] ,

N(out)
∑

o

1

2
(do[tk]− ao[tk])

2. (30)

With the loss function defined above, the error δ can be

calculated for each layer according to Equation (22). We use a

manually specified target output sequence to calculate the loss.

Typically, we want neurons in a target class to fire at every timestep

with spike train output: (1,1, ....,1), while neurons in other classes

are silenced with spike train output: (0,0, ....,0). Loss is then

calculated by comparing the target spike train’s PSC do with the

actual spike train’s PSC ao in Equation (29).

3.1.3 Network architecture and hyperparameters
In the SNNs of the experiments, the fully connected weights

between layers are initialized by the He Normal initialization

proposed in He et al. (2015). The recurrent weights of excitatory

connections are initialized to 0.2 and tuned by the BP method.

The weights of inhibitory connections are initialized to −2 and

fixed. The simulation step size is set to 1 ms. The parameters

like thresholds and learning rate are empirically tuned. No

synaptic delay is applied for feedforward connections while

recurrent connections have 1 time step delay. No refractory period,
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TABLE 1 Parameters settings.

Parameter TI46-Alpha N-TIDIGITS DvsGesture N-MNIST

τm 16 ms 64 ms 64 ms 16 ms

τs 8 ms 8 ms 8 ms 8 ms

τcal 16 ms 16 ms 16 ms 16 ms

Learning rate 0.0005 0.0005 0.0001 0.0005

Batch size 50 50 20 50

Time steps 100 300 400 100

Epochs for searching 300 200 60 30

Epochs for testing 400 400 150 100

SC-ML size 800 800 512 512

Motif size options [5, 10, 16, 25, 40] [2, 4, 8, 16, 32]

Bold indicates the highest accuracy.

TABLE 2 Accuracy on TI46-Alpha, N-TIDIGITS, DVS-Gesture and N-MNIST.

Dataset Network structure Learning rule Hidden layers Best

TI46-Alpha LSM (Wijesinghe et al., 2019) Non-spiking BP 2,000 78%

RSNN (Zhang and Li, 2019b) ST-RSBP 400− 400− 400 93.35%

Sr-SNN (Zhang and Li, 2021b) TSSL-BP 400− 400− 400 94.62%

This work TSSL-BP 800 96.44%

N-TIDIGITS GRU (Anumula et al., 2018) Non-spiking BP 200− 200− 100 90.90%

Phase LSTM (Anumula et al., 2018) Non-spiking BP 250− 250 91.25%

RSNN (Zhang and Li, 2019b) ST-RSBP 400− 400− 400 93.90%

Feedforward SNN TSSL-BP 400 84.84%

This work TSSL-BP 400 94.66%

DVS-Gesture Feedforward SNN (He et al., 2020) STBP P4− 512 87.50%

LSTM (He et al., 2020) Non-spiking BP P4− 512 88.19%

HeNHeS STDP 500 90.15%

Feedforward SNN TSSL-BP P4− 512 88.19%

This work TSSL-BP P4− 512 90.28%

N-MNIST Feedforward SNN (He et al., 2020) STBP 512 98.19%

RNN (He et al., 2020) Non-spiking BP 512 98.15%

LSTM (He et al., 2020) Non-spiking BP 512 98.69%

ELSM(Pan et al., 2024) Non-spiking BP 8000 97.23%

This work TSSL-BP 512 98.72%

HeNHeS result is from Chakraborty and Mukhopadhyay (2023). Bold indicates the highest accuracy.

normalization, or dropout is used. Kingma and Ba (2014) is

adopted as the optimizer. The mean and standard deviation (std)

of the accuracy reported is obtained by repeating the experiments

five times.

Table 1 lists the typical constant values of parameters adopted

in our experiments for each dataset. The SC-ML size denotes

the number of neurons in the SC-ML. In our experiments, each

network contains one SC-ML as the hidden layer. In addition,

five motif sizes are predetermined before the experiment. The

HRMAS framework optimizes the motif size from one of the

five options.

3.1.4 Traing process
Our experiments contain two phases. In the first phase, the

weights are trained via the training set while the validation set is

used to optimize architectural parameters. In the second phase,

the motif topology and type of lateral connections are fixed after

obtaining the optimal architecture. All the weights of the network

are reinitialized. Then, the new network is trained on the training

set and tested on the testing set. The test performance is reported

in the paper. In addition, since all the datasets adopted in this

paper only contain training sets and testing sets, our strategy

is to divide the training set. In the first phase, the training

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2024.1412559
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2024.1412559

set is equally divided into a training subset and a validation

subset. Then, the architecture is optimized on these subsets.

In the second phase, since all the weights are reinitialized, we

can train the weights with the full training set and test on the

testing set. Note that the testing set is only used for the final

evaluation.

3.2 Performance of HRMAS

Table 2 shows the results on the TI46-Alpha dataset. In order to

verify the performance of theHRMAS algorithm, we conducted five

experiments on each dataset (using different initialization seeds)

and recorded the highest accuracy, average accuracy and standard

FIGURE 6

Optimized motif topologies.

FIGURE 7

Recurrent Weight Matrix after optimization by HRMAS.
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TABLE 3 Ablation studies of HRMAS on TI46-Alpha.

Setting Accuracy

Full HRMAS 96.44%

Without IP 95.20%

Without motif 88.35%

Without inter-motif connections 95.73%

Fully connected RSNN 94.10%

Bold indicates the highest accuracy.

deviation. The HRMAS-optimized RSNN has one hidden SC-ML

layer with 800 neurons, and outperforms all other models while

achieving 96.44% accuracy with mean of 96.08% and standard

deviation (std) of 0.27% on the testing set. The proposed RSNN

outperforms the LSM model in Wijesinghe et al. (2019) by 18.44%.

It also outperforms the larger multi-layered RSNN with more

tunable parameters in Zhang and Li (2019b) trained by the spike-

train level BP (ST-RSBP) by 3.1%. Recently, Zhang and Li (2021b)

demonstrated improved performances from manually designed

RNNs with self-recurrent connections trained using the same

TSSL-BPmethod. Our automatedHRMAS architectural search also

produces better performing networks.

We also show that a HRMAS-optimized RSNN with a 400-

neuron SC-ML layer outperforms several state-of-the-art results

on the N-TIDIGITS dataset (Zhang and Li, 2019b), achieving

94.66% testing accuracy (mean: 94.27%, std: 0.35%). Our RSNN

has more than a 3% performance gain over the widely adopted

recurrent structures of ANNs, the GRU and LSTM. It also

significantly outperforms a feedforward SNN with the same

hyperparameters, achieving an accuracy improvement of almost

9.82%, demonstrating the potential of automated architectural

optimization.

On DVS-Gesture and N-MNIST, our method achieves

accuracies of 90.28% (mean: 88.40%, std: 1.71%) and 98.72% (mean:

98.60%, std: 0.08%), respectively. Table 2 compares a HRMAS-

optimized RSNN with models including feedforward SNNs trained

by TSSL-BP (Zhang and Li, 2020) or STBP (Wu et al., 2018) with the

same size, and non-spiking ANNs vanilla LSTM (He et al., 2020).

Note that although our RSNN and the LSTM model have the same

number of units in the recurrent layer, the LSTMmodel has a much

greater number of tunable parameters and a improved rate-coding-

inspired loss function. Our HRMAS-optimized model surpasses all

othermodels. For amore intuitive understanding, Figure 6 presents

two examples of the motif topology optimized by HRMAS: motif

sizes 2 in options [2, 4, 8, 16, 32] for the N-MNIST dataset andmotif

size 16 in options [5, 10, 16, 25, 40] for the TI-Alpha dataset. We

also shows in the Figure 7 the weight matrix of the RSNN with SC-

ML optimized by theHRMASmethod. The original fully connected

recurrent matrix size is 800*800. We set the search space of motif

size to [2,4,8,16,32]. In five random experiments, the HRMAS

optimization method always gave the search results of motif-size

= 2, with similar inter/intra motif topology. This limits the huge

recurrent matrix to a highly sparse band matrix with non-zero

values only near the diagonal, greatly reducing the search space,

parameter amount, and optimization difficulty.

3.3 Ablation analysis

3.3.1 Ablation experiments of proposed
components

We conduct ablation studies on the RSNN optimized by

HRMAS for the TI46-Alpha dataset to reveal the contributions of

various proposed techniques. When all proposed techniques are

included, the HRMAS-optimized RSNN achieves 96.44% accuracy.

In Table 3, removing of the IP rule from the second step of the

HRMAS optimization iteration visibly degrades the performance,

showing the efficacy of intrinsic plasticity for mitigating risks

of architectural changes. A similar performance degradation is

observed when the sparse inter-motif connections are excluded

from the SC-ML layer architecture. Without imposing a structure

in the hidden layer by using motifs as a basic building block,

HRMAS can optimize all possible connectivity types of the large

set of 800 hidden neurons. However, this creates a large and

highly complex architectural search space, rendering a tremendous

performance drop. Finally, we compare the HRMAS model with

an RSNN of a fixed architecture with full recurrent connectivity

in the hidden layer. The application of the BP method is able to

train the latter model since no architectural (motifs or connection

types) optimization is involved. However, albeit its significantly

increased model complexity due to dense connections, this model

has a large performance drop in comparison with the RSNN

fully optimized by HRMAS. We provide additional data including

ablation experiments, the computational resources required by our

method, and the IP rule’s effect on performance during optimizing

process in Section 3.3.1.

3.3.2 Ablation experiments of network
parameters

We provided additional ablation experiments in Table 4,

including: random search in the search space as the baseline

for HRMAS, effect of IP rule, HRMAS perfermence on larger

network. Experimental results show that: the HRMAS method

shows consistent superiority (around 2%) over the random search

baseline; IP rule brings stable performance improvement (around

1.3%); our method can be efficiently extended to networks with

more neurons while providing good performance.

3.4 IP rule’s e�ect on performance during
optimizing process

We plotted the performance curve of the network optimization

process on the TI46-alpha dataset. Figures 8, 9 show the loss

and accuracy on the validation set respectively. The solid line

and shading show the mean and standard deviation of the five

experiments. We conducted experiments with IP rule turned on

and off. We use green text to mark each phase of architecture

optimization.

The experimental results show: (1) When the network

architecture changes drastically, such as iteration = 750 (the cell size

search ends and the connection type search starts), and iteration =

1,500 (the connection type search ends, the network is discretized
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TABLE 4 Test Accuracy on TI46-Alpha, obtained by repeating five times with di�erent random seeds, including: HRMAS perfermence on Larger network,

e�ect of IP rule, random search as the baseline architecture.

Arch optimization Learning rule SC-ML sizes Best Mean Std

HRMAS (with IP) TSSL-BP 800 96.44% 96.08% 0.27%

HRMAS (with IP) TSSL-BP 1, 600 96.26% – –

HRMAS (with IP) TSSL-BP 2, 400 96.58% – –

HRMAS (with IP) TSSL-BP 3, 200 96.45% – –

HRMAS (w/o IP) TSSL-BP 800 95.17% 94.74% 0.32%

Random TSSL-BP 800 94.47% 94.18% 0.30%

Bold indicates the highest accuracy.

FIGURE 8

Test Loss in architectural optimization in HRMAS. The solid line and shading show the mean and standard deviation of the 5 experiments. We

conducted experiments with ip rule turned on (red) and o� (blue). It can be found that IP method brings two benefits: improved network

performance and a more stable training process. The figures showed that the red solid line (mean) has lower loss than the blue solid line without the

IP method; at the same time, the red shadow (standard deviation) has always been narrower than the blue shadow, which means a more stable

network architecture search process.

and fine-tuned), the network There will be a slight performance

degradation. But it can be quickly improved to a higher level by the

next stage of training. (2) It can be found that IP method brings

two benefits: improved network performance and a more stable

training process. The figures showed that the red solid line (mean)

has always performed better than the blue solid line without the IP

method; at the same time, the red shadow (standard deviation) has

always been narrower than the blue shadow, which means a more

stable network architecture search process.

The effect of IP rules is mainly to stabilize the performance

loss caused by architecture changes when the network architecture

undergoes huge changes. Therefore, we found that at 750

epoch, that is, the network plays the most significant role from

searching for cell size to searching for connection type: the

loss distribution with ip rules (red shading) is much smaller

than the loss distribution without ip rules (blue shading).

At epoch 1,500, since the fine-tuning phase does not involve

drastic architectural changes, the role of IP rules is relatively

limited.

3.5 The computational resources required
for HRMAS

The proposed HRMAS bi-level optimization process is

similar to DARTS, so the overall computational complexity is

similar to DARTS; the IP method is an localized unsupervised

learning method and does not constitute significant computational

consumption. Furthermore, our proposed SC-ML topology greatly

reduces the search space. Specifically, as the Figure 7 shows, the
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FIGURE 9

Test Accuracy in architectural optimization in HRMAS. The solid line and shading show the mean and standard deviation of the 5 experiments. We

conducted experiments with ip rule turned on (red) and o� (blue). It can be found that IP method brings two benefits: improved network

performance and a more stable training process. The figures showed that the red solid line (mean) has higher accuracy than the blue solid line

without the IP method; at the same time, the red shadow (standard deviation) has always been narrower than the blue shadow, which means a more

stable network architecture search process.

HRMAS optimization of a SC-ML layer, with n neurons, a motif

size of s and n/s motifs, reduces the parameters that need to

be optimized for the recurrent connection matrix from O(n2) to

O(sn): O(n/s) inter-motif connections + O(n/s ∗ s2) intra-motif

connections + O(n) neuron hyperparameters. Generally, s ≪ n,

which reduces the parameter space of recurrent connections to

linear growth with the neuron numbers, allowing our algorithm

scale well. Specifically, a complete training process of a RSNN with

800 neurons hidden layer for TI46-alpha dataset, including 150

epoch for cell size search, 150 epoch for connection type search and

400 epoch for finetune, takes 4 h on single NVIDIA GeForce RTX

3090 GPU.

4 Conclusion

We present an RSNN architecture based on SC-ML layers

composed of multiple recurrent motifs with sparse inter-motif

connections as a solution to constructing large recurrent spiking

neural models. We further propose the automated architectural

optimization framework HRMAS hybridizing the “evolution” of

the architectural parameters and corresponding synaptic weights

based on backpropagation and biologically-inspired mitigation

of risks of architectural changes using intrinsic plasticity. We

show that HRMAS-optimized RSNNs impressively improve

performance on four datasets over the previously reported state-

of-the-art RSNNs and SNNs. Notably, our HRMAS framework

can be easily extended to more flexible network architectures,

optimizing sparse and scalable RSNN architectures. By sharing

the PyTorch implementation of our HRMAS framework, this

work aims to foster advancements in high-performance RSNNs

for both general-purpose and dedicated neuromorphic computing

platforms, potentially inspiring innovative designs in brain-

inspired recurrent spiking neural models and their energy-efficient

deployment.
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