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Neuroimaging-based prediction of neurocognitive measures is valuable for

studying how the brain’s structure relates to cognitive function. However, the

accuracy of prediction using popular linear regression models is relatively low.

We propose a novel deep regression method, namely TractoSCR, that allows

full supervision for contrastive learning in regression tasks using di�usion MRI

tractography. TractoSCR performs supervised contrastive learning by using the

absolute di�erence between continuous regression labels (i.e., neurocognitive

scores) to determine positive and negative pairs. We apply TractoSCR to

analyze a large-scale dataset including multi-site harmonized di�usion MRI

and neurocognitive data from 8,735 participants in the Adolescent Brain

Cognitive Development (ABCD) Study. We extract white matter microstructural

measures using a fine parcellation of white matter tractography into fiber

clusters. Using these measures, we predict three scores related to domains

of higher-order cognition (general cognitive ability, executive function, and

learning/memory). To identify important fiber clusters for prediction of these

neurocognitive scores, we propose a permutation feature importance method

for high-dimensional data. We find that TractoSCR obtains significantly higher

accuracy of neurocognitive score prediction compared to other state-of-the-

art methods. We find that the most predictive fiber clusters are predominantly

located within the superficial white matter and projection tracts, particularly

the superficial frontal white matter and striato-frontal connections. Overall,

our results demonstrate the utility of contrastive representation learning

methods for regression, and in particular for improving neuroimaging-based

prediction of higher-order cognitive abilities. Our code will be available at:

https://github.com/SlicerDMRI/TractoSCR.
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1 Introduction

The brain’s white matter (WM) connections, which can be

quantitatively mapped using diffusion MRI (dMRI) tractography

(Zhang et al., 2022a), play an important role in brain networks

that enable human cognition (Wang et al., 2018; Zekelman

et al., 2022). Investigating the predictive relationship between

WM microstructure and cognition can therefore improve our

understanding of the brain in health and disease. Regression

analysis, which can predict values of a dependent variable

(label) given a set of input independent variables (features),

enables the prediction of neurocognitive measures given input

features from neuroimaging. This strategy is recently of high

interest (Reddy Raamana and Strother, 2017; Sripada et al., 2020;

Chamberland et al., 2021; Kim et al., 2021; Richie-Halford et al.,

2021; Feng et al., 2022; Radhakrishnan et al., 2022; Wu et al., 2022).

While many studies perform prediction using high-dimensional

neuroimaging features from T1-weighted MRI (Aracil-Bolaños

et al., 2019; Merz et al., 2022;Weerasekera et al., 2023) or functional

MRI (fMRI; Cui and Gong, 2018; Dubois et al., 2018; Sripada et al.,

2020; Wu et al., 2022) or multimodal data (Gong et al., 2021,

2022; Kim et al., 2021; Mansour et al., 2021; Radhakrishnan et al.,

2022; Sun et al., 2022), a unimodal focus on dMRI tractography

(e.g., Jeong et al., 2021; Chen et al., 2022b; Feng et al., 2022;

Mansour et al., 2022) can improve our understanding of the role

of the WM connections in cognition. While a number of studies

have pursued prediction of neurocognitive measures based on

information from dMRI tractography, current approaches (Chen

et al., 2020a; Jeong et al., 2021; Berger et al., 2022; Zekelman

et al., 2022) are limited in terms of study cohorts and regression

methodology.

Linear regression models such as ElasticNet (Zou and Hastie,

2005) have been widely used for prediction of neurocognitive

performance (Cui and Gong, 2018; Jollans et al., 2019; Li et al.,

2020b; Seguin et al., 2020; Sripada et al., 2020; Gong et al., 2021;

Madole et al., 2021; Brown et al., 2022; Feng et al., 2022; Jandric

et al., 2022; Zekelman et al., 2022), while some studies (Jeong et al.,

2021; Chen et al., 2022b; Feng et al., 2022) have explored deep-

learning-based regression using multilayer perceptrons (MLP) and

convolutional neural networks (CNN). However, the prediction

accuracy of linear regression models is relatively low (Sripada

et al., 2020), and non-linear regression models may suffer from

overfitting, especially on high-dimensional datasets (Cui and Gong,

2018). Developing more advanced methods has the potential

to improve prediction accuracy of neurocognitive performance

metrics and to provide novel information about specific brain

structures that may be important for their prediction.

One avenue for improving the prediction of neurocognitive

performance metrics is to investigate recent machine learning

algorithms for the analysis of tabular (row and column) data

(Borisov et al., 2021). Many quantitative features derived from

neuroimaging can be represented as tabular data. The most

popular machine learning algorithm for tabular data is the gradient

boosting decision tree (GBDT) method (Chen and Guestrin, 2016;

Prokhorenkova et al., 2018). In recent years, deep-learning-based

methods (Yoon et al., 2020; Arik and Pfister, 2021; Gorishniy et al.,

2021; Bahri et al., 2022) have been developed for tabular data,

which is the last “unconquered castle” for deep learning (Borisov

et al., 2021; Kadra et al., 2021). One important research direction

for deep learning on tabular data is representation learning, which

can discover beneficial data representations for downstream tasks.

For example, the value imputation and mask estimation (VIME;

Yoon et al., 2020) and self-supervised contrastive learning using

random feature corruption (SCARF; Bahri et al., 2022) methods

enable representation learning on tabular data. However, these

representation learning methods were developed for classification

tasks, and cannot utilize regression label information during

representation learning.

Another avenue for improving prediction of neurocognitive

measures is to investigate recently proposed algorithms for

contrastive learning (Chen et al., 2020b; Khosla et al., 2020; Chen

and He, 2021; Sheng et al., 2022). In medical image computing,

supervised contrastive learning improves classification accuracy

by using labels during representation learning (Dufumier et al.,

2021; Schiffer et al., 2021; Zhang et al., 2021; Seyfioğlu et al.,

2022; Xue et al., 2023). It is usually designed for classification

tasks, where samples with the same categorical label are positive

pairs, and samples with different categorical labels are negative

pairs. During representation learning, embeddings of positive

pairs are pulled together, and embeddings of negative pairs are

pushed apart. However, regression tasks require continuous labels

(e.g., neurocognitive scores) that cannot directly be used for pair

determination. Two recent works have shown that contrastive

learning can be useful in the context of regression based on

medical images as input (Lei et al., 2021; Dai et al., 2022). For

example, RPR-Loc proposed a learning strategy to predict the

distance between a pair of image patches (Lei et al., 2021). Recently,

the AdaCon method used a contrastive learning strategy that

leveraged distances between labels (e.g., bone mineral densities)

to benefit downstream computer-aided disease assessment. These

recent regression methods did not use labels for pair determination

for contrastive learning. How to best use label information to

enhance regression is still an open question.

In this study, we propose a novel deep regression method

for tractography analysis with supervised contrastive regression,

referred to as TractoSCR. TractoSCR is a novel contrastive

representation learning framework to predict measures of

neurocognition using white matter microstructure derived from

dMRI tractography, as illustrated in Figure 1. Our proposed

TractoSCR method extends the supervised contrastive learning

method (Khosla et al., 2020), which is designed for categorical data

in classification tasks, to perform regression analysis where the

predicted labels are continuous values. We propose a novel pair-

determination strategy that uses the absolute difference between

continuous regression labels to determine positive and negative

sample pairs for contrastive learning. To our knowledge, this is the

first method that leverages deep representation learning techniques

for the prediction of neurocognitive performance. Our method

uses a tractography fiber clustering method that enables consistent

white matter parcellation across populations. The parcellation

allows representation of microstructure features from whole brain

tractography as tabular data, which enables the use of a recently

proposed random feature corruption technique (Bahri et al., 2022)

for data augmentation to further improve prediction performance.
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In addition, for interpreting prediction results, we propose a novel

permutation feature importance algorithm to identify tractography

fiber clusters and their corresponding anatomical tracts that

are important for prediction of neurocognitive measures. We

demonstrate our method in a large-scale dMRI dataset including

data from 8735 children, where we explore the relationship between

white matter microstructure and prediction of neurocognitive

performance (including general ability, executive function, and

learning/memory).

The remaining structure of this paper is as follows. Section 2

describes the dataset and data processing, the proposed regression

and interpretation methods, and the model training and testing

details. Section 3 describes the evaluation metric, experimental

results, and interpretation of results. Finally, the discussion and

conclusion are given in Sections 4 and 5, respectively.

2 Materials and methods

2.1 ABCD dataset, tractography
parcellation, and microstructural measures

This study includes dMRI data and neurocognitive component

scores from the Adolescent Brain Cognitive Development (ABCD)

dataset for 8,735 American children (4,560 males and 4,175

females) between the ages of 9–11 (9.9 ± 0.6) across 21

data collection sites (Casey et al., 2018; Volkow et al., 2018;

Download at: https://nda.nih.gov/abcd). Three neurocognitive

principal component scores fromABCDwere studied, representing

three major domains of higher-order cognition, namely General

Ability (PC1), Executive Function (PC2), and Learning/Memory

(PC3; Thompson et al., 2019). These component scores are

lower dimensional representations of nine assessment measures

from the ABCD neurocognitive battery (Luciana et al., 2018)

[including seven measures from the NIH toolbox (Casaletto

et al., 2015)]. These component scores statistically summarize nine

neurocognitive assessment measures and reveal latent variables

which have been theorized to be a more pure reflection of the

cognitive domains of interest (Snyder et al., 2015; Thompson et al.,

2019). Furthermore, these component scores have been associated

with measures of psychopathological behavior (i.e., stress reactivity

and/or externalizing behaviors), perhaps suggesting their clinical

utility (Thompson et al., 2019).

The ABCD dMRI data was harmonized (Cetin Karayumak

et al., 2019; Cetin-Karayumak et al., 2021, 2022; Zhang et al.,

2022b) to remove scanner-specific biases, allowing for a large-

scale data-driven way to study relationships between brain

microstructure and neurocognition. The dMRI harmonization

method (Cetin Karayumak et al., 2019) retrospectively removes

scanner-specific differences from raw dMRI signals across disparate

sites and acquisition parameters, while preserving inter-subject

biological variability (e.g., fractional anisotropy (FA) values; Zhang

et al., 2022b).

A two-tensor Unscented Kalman Filter (UKF) tractography

method (Malcolm et al., 2010; Reddy and Rathi, 2016) was

conducted on harmonized dMRI data of all subjects to

obtain whole-brain tractography (https://github.com/pnlbwh/

ukftractography). The UKF method fitted a mixture model of

two tensors to the diffusion data while tracking streamlines. This

enabled the estimation of fiber-specific microstructural measures

from the first tensor, which models the tract being traced (Reddy

and Rathi, 2016). Next, automated parcellation of tractography was

performed based on an anatomically curated cluster atlas (Zhang

et al., 2018; https://github.com/SlicerDMRI/ORG-Atlases), which

was provided by the O’Donnell Research Group (ORG). Compared

to traditional tractography parcellation based on cortical atlases,

this clustering method was shown to be more reproducible and

consistent across the lifespan (Zhang et al., 2018, 2019). For each

subject, the ORG atlas (Zhang et al., 2018) enabled extraction of

953 expert-curated fiber clusters. These finely parcellated fiber

clusters are grouped and categorized into 58 deep white matter

tracts including major long range association and projection

tracts, commissural tracts, and tracts related to the brainstem

and cerebellar connections, as well as 198 short and medium

range superficial fiber clusters. We performed tractography

quality control and white matter parcellation using open-source

WhiteMatterAnalysis software (https://github.com/SlicerDMRI/

whitematteranalysis). Tractography visualization was performed

using SlicerDMRI software (dmri.slicer.org; Norton et al., 2017;

Zhang et al., 2020).

For all subjects, cluster-specific microstructural measures of

fractional anisotropy (FA), mean diffusivity (MD), and number

of streamlines (NoS) were computed. These measures have been

previously shown to be associated with neurocognitive scores

(Madole et al., 2021; Chen et al., 2022c; Zekelman et al., 2022). Here,

FA and MD are measures of fiber-specific tissue microstructure,

while NoS is widely used to quantify the connectivity strength

(Zhang et al., 2022a). These cluster-specific measures can be

considered as tabular data, allowing algorithms from the field

of tabular data to be employed. For any empty cluster (due

to variability of tractography or the underlying anatomy), each

measure was set to zero, as in He et al. (2022).

2.2 Supervised contrastive regression

Wepropose a novel contrastive representation learningmethod

for regression, TractoSCR. Our overall strategy is to use the absolute

difference between two continuous regression labels to determine

positive and negative pairs for contrastive learning. An overview

of the TractoSCR framework is shown in Figure 2. The regression

framework (Figure 2A) has two phases: contrastive representation

learning and fine-tuning. In representation learning, random

feature corruption (Figure 2B) and proposed pair determination

(Figure 2C) are utilized with a supervised contrastive loss. The

network trained in representation learning is then fine-tuned to

output neurocognitive scores. These steps are described in the

following sections.

2.2.1 Random feature corruption for data
augmentation

To avoid potential model overfitting and increase the

discriminative ability of the learned global features in contrastive

learning, we performed a data augmentation process to create
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FIGURE 1

Overview of our proposed TractoSCR framework for neurocognitive score prediction using dMRI tractography. Parcellation of tractography into fiber

clusters enables the extraction of cluster-specific white matter measures. These measures are represented as tabular data and input to the TractoSCR

framework, which outputs a neurocognitive score. FA, fractional anisotropy; MD, mean di�usivity; NoS, number of streamlines.

FIGURE 2

TractoSCR framework: (A) overview of contrastive representation learning and fine-tuning, (B) random feature corruption for data augmentation with

a measure of interest (e.g., FA; rows are randomly selected samples, and columns are cluster-specific microstructural measures), (C) positive and

negative pairs determination with regression labels (e.g., PC1).

more training samples. We applied the recently proposed random

feature corruption technique that was designed specifically for

tabular data (Yoon et al., 2020; Bahri et al., 2022). In brief, in

each mini-batch of training with input samples X, we created

a corrupted batch copy X̃. To do so, we chose a proportion

of the input cluster-specific measures (features) uniformly at

random and replaced each of those measures by a random draw

from the corresponding measure dimension of other samples

(as shown in Figure 2B). The ratio of replaced measures to

all measures is defined as the corruption rate c. Corrupted

samples X̃ retain the same regression labels Y as original

samples X.

2.2.2 Positive and negative pairs determination
From the generated augmented data in each training mini-

batch, we construct positive and negative sample pairs to enable

supervised contrastive learning (SCL). Unlike existing studies

(Khosla et al., 2020) using SCL to perform a classification task,

where positive and negative pairs are defined based on the class

labels, determination of positive and negative sample pairs is not

straightforward in regression because the regression labels are

continuous values. To handle this, we propose a new strategy that

uses the absolute difference between two continuous regression

labels to determine pairs (Figure 2C). Given xi, xj ∈ X with labels

yi and yj, if |yi − yj| < θ , xi and xj are defined as positive pairs.
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Otherwise, xi and xj are considered to be negative pairs. The label

difference threshold θ , a threshold on the absolute difference of two

regression labels, is the key parameter for positive and negative pair

determination. For our dataset with regression labels ranging from

∼–3 to 3, the optimal θ is 0.35 based on experimental results. Note

that our TractoSCR method is robust to changes in this threshold

(from 0.1 to 0.5) as described in Section 3.2.4.

2.2.3 Supervised contrastive loss
After positive and negative pairs are determined using

regression labels, the supervised contrastive loss as shown below

becomes applicable:

L =
∑

r∈R

Lr =
∑

r∈R

−1

|P(r)|

∑

p∈P(r)

log
exp(zr · zp/τ )∑

a∈A(r) exp(zr · za/τ )
,

where r is the anchor (current) sample, andR is the set of all samples

(X and X̃) in a training batch (r ∈ R); P(r) is the set of samples that

are positive pairs with anchor sample r (p ∈ P(r)); A(r) is the set of

all samples in R except for anchor sample r (a ∈ A(r) ≡ R\{r}); zr ,

zp and za are contrastive features obtained from Proj (·) for samples

r, p and a; and τ (temperature) is a tuneable hyperparameter for the

contrastive loss.

2.2.4 Contrastive learning and fine-tuning
The overall process of contrastive learning and fine-tuning

(Figure 2A) is as follows. In contrastive representation learning,

training samples (from X and X̃) are input into the encoder Enc (·)

and projector Proj (·) to get embeddings (Z and Z̃). The supervised

contrastive loss is computed using normalized embeddings (Z and

Z̃), where positive and negative pairs are determined by absolute

differences between regression labels Y . After the contrastive

representation learning, the parameters of Enc (·) are frozen and

the Proj (·) is untouched, as in Chen et al. (2020b), Khosla et al.

(2020), Bahri et al. (2022), and Xue et al. (2022). The usage of

Proj (·) may retain useful information for downstream regression

tasks in Enc (·) (Chen et al., 2020b). A predictor head for regression

Reg (·) is added on top of the trained Enc (·).Reg (·) takes the output

of Enc (·) as the input and is fine-tuned with MSE loss to obtain the

final prediction.

2.3 Ensemble learning

We use ensemble learning (Hastie et al., 2009) to combine

prediction results from three predictors that are trained on three

microstructural measures (FA, MD, and NoS) independently, as

in He et al. (2022). The ensemble prediction is obtained as

the average prediction across the three predictors. Therefore,

ensemble learning is beneficial in our application to study

the relationship between three microstructural measures and

neurocognitive performance metrics. Ensemble learning can also

potentially improve the performance of the regression, because

different microstructural measures may provide complementary

information for prediction of neurocognitive performance (Note

that ensemble learning is used not only for our method but also

for all compared methods in experiments).

2.4 Permutation feature importance

We propose a permutation feature importance algorithm to

assess the contribution of each cluster to the prediction of a

neurocognitive score. Our proposed interpretation method is

based on the permutation feature importance (Breiman, 2001),

which is a popular model-agnostic technique for estimating how

important a feature is for a particular model. The traditional

permutation feature importance is defined as the decrease in a

model score (e.g., prediction accuracy) when a single feature value

is randomly shuffled (permuted) across samples. This enables

identification of highly important features that have a large effect

on the model’s prediction accuracy. This traditional permutation

feature importance method is not directly applicable to our high-

dimensional data because the decrease of prediction accuracy is

negligible when only permuting a single feature value (our input

includes 953 cluster-specific white matter features per subject).

Therefore, we propose a new strategy to permute multiple feature

values simultaneously (e.g., a random sample of 10% of features).

By repeating this strategy a very large number of times (e.g., 50,000),

we can estimate the importance of all high-dimensional input

features.

2.5 Implementation details

For model training and performance evaluation, datasets are

split into train/validation/test with the rate 70/10/20%, and we

repeat each experiment 10 times with different train/validation/test

splits to report the average performance. Regarding the network

structure, as suggested in Bahri et al. (2022), Enc (·), Proj (·), and

Reg (·) all have hidden dimension 256 with the ReLU activation

in each layer. Enc (·) has four layers, whereas Proj (·) and Reg (·)

both consist of two layers. For training hyperparameters, all deep

learning methods are trained with the Adam optimizer with the

learning rate 0.001 and use early stopping with patience 3 on the

validation loss as in Bahri et al. (2022). We conduct a grid search

for parameter selection with b ∈ {256, 512, 1, 024, 2, 048, 4, 096},

c ∈ {0.3, 0.4, 0.5, 0.6, 0.7}, and τ ∈ {0.5, 1, 5, 10} for our method

and all compared representation learning methods. For AdaCon,

we also tune the temperature scaling factor (s ∈ {10, 50, 100, 150})

based on their paper and code. Weight ratios of two losses in

AdaCon are tuned with the rule that two losses should have similar

values (Dai et al., 2022). Then we choose batch size b of 2,048,

corruption rate c of 0.5, and temperature τ of 1 for our contrastive

representation learning. Note that our method is not sensitive to

hyperparameter changes and has good performance overall. Results

with other parameter settings are presented in Section 3.2.4 to

demonstrate the robustness. A typical batch size of 128 is chosen

in fine-tuning for all deep learning methods. Experiments are

performed with Pytorch [16] (v1.8) on a NVIDIA GeForce RTX

2080 Ti GPUmachine. For TractoSCR, each experiment (including
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training, validating, and testing) takes about 30 s with 1.67 GB GPU

memory usage.

For the interpretation of prediction results, we implement our

proposed feature permutation algorithm for prediction of three

neurocognitive measures (PC1, General Ability; PC2, Executive

Function; PC3, Learning/ Memory) independently. For each

permutation, we shuffle 95 out of 953 feature values across

samples in the training dataset. Then we train using TractoSCR.

The prediction accuracy is evaluated on the testing dataset, and

the decrease of prediction accuracy (compared to the original

prediction accuracy) is recorded along with the indices of the

95 shuffled features. For each of the 10 train/validation/test data

distributions, we repeat this experiment 50,000 times (50,000

permutations). We obtain final overall importance scores for each

feature (cluster) by averaging all recorded decreases of prediction

accuracy from all permutations of that feature. Finally, three

importance scores are obtained for each cluster, corresponding to

the three prediction tasks.

3 Results

3.1 Evaluation metric

We computed Pearson correlation coefficients (Pearson’s r)

between the ground truth scores and predicted scores to quantify

the prediction accuracy. The Pearson correlation coefficient

is widely used for evaluation of cognitive prediction from

neuroimaging data (Cui and Gong, 2018; Jollans et al., 2019;

Sripada et al., 2020; Gong et al., 2021; Mansour et al., 2021; Chen

et al., 2022c; Feng et al., 2022; Jandric et al., 2022). It measures

the linear correlation (normalized cosine similarity) between two

sets of data. A higher value of r indicates a better prediction

accuracy. We repeated each experiment 10 times with different

train/validation/test splits (all methods use the same split). The

mean and standard deviation of Pearson correlation coefficients

across 10 splits are reported. To evaluate if differences of Pearson’s

r values (10 splits) between our method and compared methods are

significant, we implemented a repeatedmeasure ANOVA test for all

methods, and then we performed multiple paired Student’s t-tests

between our method and each compared method.

3.2 Evaluation results

3.2.1 Comparison of representation learning
methods

We compared our proposed TractoSCR with one classical

method (AutoEncoder; Rumelhart et al., 1986), two recently

proposed methods (VIME; Yoon et al., 2020, and SCARF; Bahri

et al., 2022) for representation learning using tabular data, and

one recent contrastive learning method (AdaCon; Dai et al., 2022)

for medical image-based regression. The autoencoder method

is widely used for learning efficient representations. Here, the

autoencoder has the same input as TractoSCR and the output has

the same dimensionality as the input, and the MSE loss is applied.

VIME uses a novel pretext task and data augmentation method

for representation learning, and SCARF uses contrastive learning

with random feature corruption. AdaCon utilizes its proposed

contrastive loss together with an MSE loss for training, and for fair

comparison to our method, we apply random corruption for data

augmentation for AdaCon. In our study, we train these methods

using the suggested settings in their papers and released codes.

Table 1 shows that our proposed method outperforms all

compared representation learning methods on the three prediction

tasks. The improvements between our method and compared

methods (except AdaCon on PC2) are shown to be significant

by paired Student’s t-tests. In addition, our method and AdaCon

perform better than other representation learning methods.

This result demonstrates the effectiveness of utilizing the

relationship between regression labels during contrastive learning.

Furthermore, compared to AdaCon, the prediction accuracy of our

method achieves relative improvements of 2.4, 2.6, and 6.7% on

the prediction of three neurocognitive measures. This illustrates

that using regression labels to enable positive and negative pair

determination in contrastive learning can improve results on

prediction of neurocognitive measures.

3.2.2 Comparison of state-of-the-art methods
for regression

We also compared our proposed method with two SOTA

machine learning methods for regression (ElasticNet; Zou

and Hastie, 2005 and GBDT; Chen and Guestrin, 2016;

Prokhorenkova et al., 2018). ElasticNet is popularly used in

cognitive prediction (Cui and Gong, 2018; Gong et al., 2021).

It performs linear regression with L1 and L2 regularization. We

used the implementation in the sklearn package (Pedregosa et al.,

2011). GBDT is a strong non-deep competitor for deep learning

methods in tabular data (Gorishniy et al., 2021). It iteratively

constructs an ensemble of weak decision tree learners through

boosting. We selected XGBoost (Chen and Guestrin, 2016), one

of the most popular implementations of GBDT, for comparison.

Parameters were tuned based on suggestions in Gorishniy et al.

(2021). In addition to the above SOTA methods, we also included a

multilayer perceptron (MLP) that has the same network structure

as ours for a baseline comparison. As shown in Table 1, MLP (our

baseline) outperforms ElasticNet and is competitive with GBDT.

These results illustrate the power of deep learning methods for

neurocognitive score prediction. In addition, compared to theMLP

baseline, our proposed method obtains relative improvements in

prediction accuracy of 3.7, 15.3, and 14.4% on all three prediction

tasks. The improvement between our method and the MLP

baseline is very significant (p < 0.001) by paired Student’s t-tests.

This demonstrates the effectiveness of our proposed TractoSCR

method.

3.2.3 Comparison of ablated versions
An ablation study was conducted with two ablated versions

(TractoSCRno-pd-fc and TractoSCRno-fc) of our proposed approach.

TractoSCRno-pd-fc performs contrastive learning without using

regression labels for pair determination and without using random

feature corruption. TractoSCRno-fc uses regression labels for pair

determination but does not perform random feature corruption.

As shown in Table 1, the comparison between TractoSCRno-pd-fc
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TABLE 1 Comparison results (mean and standard deviation of Pearson’s r across splits) for prediction of three neurocognitive component scores, PC1

(general ability), PC2 (executive function), and PC3 (learning/memory).

Methods PC1 PC2 PC3

Representation
learning
comparison

Autoencoder 0.406± 0.016 ∗∗∗ 0.217± 0.022 ∗∗∗ 0.234± 0.021 ∗∗∗

VIME 0.407± 0.013 ∗∗∗ 0.218± 0.014 ∗∗ 0.235± 0.017 ∗∗∗

SCARF 0.411± 0.013 ∗∗∗ 0.217± 0.019 ∗∗ 0.239± 0.020 ∗∗∗

AdaCon 0.414± 0.013 ∗ 0.235± 0.021 n.s. 0.253± 0.020 ∗∗

SOTA
regression
models

ElasticNet 0.400± 0.018 ∗∗∗ 0.206± 0.021 ∗∗∗ 0.237± 0.016 ∗∗∗

GBDT 0.390± 0.012 ∗∗∗ 0.219± 0.019 ∗ 0.238± 0.021 ∗∗∗

MLP (baseline) 0.409± 0.018 ∗∗∗ 0.209± 0.020 ∗∗∗ 0.236± 0.020 ∗∗∗

Ablation
study

TractoSCRno-pd-fc 0.407± 0.016 0.210± 0.019 0.231± 0.013

TractoSCRno-fc 0.419± 0.011 0.232± 0.020 0.256± 0.013

TractoSCR (ours) 0.424 ± 0.014 0.241 ± 0.014 0.270 ± 0.015

The ANOVA test obtains very low p-values (1 × 10−6 — 1 × 10−11). Asterisks show that the difference between our proposed method and the compared method is significant using a paired

Student’s t-test (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and n.s. is not significant).

and TractoSCRno-fc illustrates a large improvement when using

regression labels for pair determination in contrastive learning.

In addition, by applying random feature corruption for data

augmentation, the performance improves on all tasks.

3.2.4 Experiments under di�erent
hyperparameter settings

Figure 3 shows the accuracy of prediction of three

neurocognitive component scores across four important

hyperparameters in TractoSCR. Overall, TractoSCR achieves

consistently high prediction accuracy (Pearson’s r) on all three

tasks, which demonstrates TractoSCR is robust to hyperparameter

change. Batch sizes and temperatures are important to contrastive

learning frameworks in general (Chen et al., 2020b; Khosla et al.,

2020). Figures 3A, C show that TractoSCR obtains similar results

when the batch size changes from 256 to 4,096 and the temperature

changes from 0.5 to 10. Corruption rates control how heavy the

data augmentation is in contrastive learning (Yoon et al., 2020;

Bahri et al., 2022). As shown in Figure 3B, a negligible change of the

result occurs when corruption rates are varied from 0.3 to 0.7. The

label difference threshold θ is the key parameter for positive and

negative pair determination in TractoSCR. As shown in Figure 3D,

TractoSCR performs well under different θ thresholds ranging

from 0.1 to 0.5.

3.3 Interpretation results

Figure 4 provides a visualization of the most predictive fiber

clusters (defined as the fiber clusters with the top 50 highest

importance scores for each prediction task). Together, these fiber

clusters may form part of the putative structural networks relating

to general cognitive ability (PC1), executive function (PC2),

and learning/memory (PC3). The predictive fiber clusters span

across all five anatomical tract categories (association, cerebellar,

commissural, projection, and superficial tracts; Zhang et al., 2018)

and are found in both the left and right hemispheres. This

finding is in line with neurocognitive research demonstrating that

higher order cognitive functions, such as the ones presently under

investigation, are broadly distributed across the brain (Goddings

et al., 2021). When this result is examined in detail, we find

that the predictive fiber clusters are predominantly located within

the superficial and projection white matter (Table 2). This finding

contrasts with the relative plethora of white matter and cognition

studies that have focused on the role of the association connections

(e.g., language in arcuate fasciculus, memory in the uncinate

fasciculus, etc.; Forkel et al., 2022). Details about the location

of all predictive fiber clusters (Figure 4) within specific tracts

(as defined in the anatomically curated ORG atlas, Zhang et al.,

2018) are provided in Supplementary Table 1. In addition, we also

ran our proposed feature permutation algorithm across the five

representation methods (Autoencoder, VIME, SCARF, AdaCon,

and TractoSCR) shown in Table 1. These methods’ most predictive

fiber clusters have a 28–34% overlap for PC1, PC2, and PC3

neurocognition prediction tasks (28% for PC1, 30% for PC2,

and 34% for PC3). This result demonstrates the robustness of

interpretation in terms of which fiber clusters are most predictive.

Overall, the most predictive tracts are the superficial frontal

white matter and striato-frontal connections, which have the

highest number of clusters found to be important across the three

prediction tasks.

4 Discussion

In this study, we proposed a novel deep-learning-based

regression method that enables improved prediction accuracy of

neurocognitive measures. To our knowledge, we are the first
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FIGURE 3

Hyperparameter sensitivity experiments for TractoSCR. Results (Pearson’s r) on predicting three neurocognitive component scores (PC1, PC2, and

PC3) across di�erent hyperparameters: (A) batch size b, (B) corruption rate c, (C) temperature τ , and (D) label di�erence threshold θ . Results

demonstrate that TractoSCR is hyperparameter-insensitive.

FIGURE 4

Visual presentation of most predictive fiber clusters (with the 50 highest importance scores) for each individual prediction task. Di�erent fiber clusters

are depicted in di�erent colors and organized according to five anatomical tract categories. (A) PC1 (general ability). (B) PC2 (executive function). (C)

PC3 (learning/memory).

to focus on deep representation learning for neuroimage-based

prediction of neurocognitive measures. Unlike commonly used

regression methods (Li et al., 2020b; Madole et al., 2021; Brown

et al., 2022; Feng et al., 2022), the proposed TractoSCR method

allows us to effectively leverage information from regression labels

during contrastive learning. A new strategy was proposed to use

the absolute difference between two continuous regression labels to

determine positive and negative pairs. We also employed random
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TABLE 2 Number of predictive fiber clusters within each anatomical

category.

PC1 PC2 PC3

Association 8 (16.0%) 7 (14.0%) 13 (26.0%)

Projection 15 (30.0%) 9 (18.0%) 14 (28.0%)

Commissural 10 (20.0%) 2 (4.0%) 3 (6.0%)

Cerebellar 5 (10.0%) 5 (10.0%) 6 (12.0%)

Superficial 12 (24.0%) 27 (54.0%) 14 (28.0%)

Total 50 (100.0%) 50 (100.0%) 50 (100.0%)

Categories with the highest number of predictive clusters are in bold.

feature corruption, a data augmentation method for tabular data,

in contrastive learning. By applying random feature corruption,

the performance improved on all prediction tasks (e.g., a relative

improvement of 5.5% on PC3).

Our proposed method achieved significantly better prediction

performance on a large-scale ABCD dataset in comparison

with existing methods, including SOTA regression methods and

representation learning methods. For example, on PC3, our

method outperformed the SOTA contrastive learning method

(AdaCon) with a relative improvement of 6.7% in Pearson’s

r, and our method outperformed the baseline method (MLP)

with a relative improvement of 14.4% in Pearson’s r. We also

illustrated that TractoSCR is robust to changes of hyperparameters

(batch size b, corruption rate c, temperature τ , and label

difference threshold θ). These results demonstrate the utility of

contrastive representation learning methods for the neuroimaging-

based prediction of higher-order cognitive abilities. In this study,

we obtained Pearson’s r values ranging from 0.24 to 0.43,

indicating a moderate correlation between investigated white

matter microstructural measures and neurocognitive scores. Our

moderate correlation finding is in general in line with a body

of recent work that uses neuroimaging measures to predict

cognition (Sripada et al., 2020; Gong et al., 2021; Kim et al., 2021;

Feng et al., 2022).

Predicting neurocognitive measures from the ABCD dataset

is an interesting but challenging task that has been undertaken

using various MRI modalities (Pohl et al., 2019; Sripada et al.,

2020; Ooi et al., 2022). For example, T1-weighted MRI was used

to predict fluid intelligence scores (Pohl et al., 2019), while a

comparison across modalities suggested that information from

fMRI could best predict a summary cognition score derived from

36 behavioral scores (Ooi et al., 2022). One recent study by

Sripada et al. (2020) used resting-state fMRI to predict the same

neurocognitive component scores (PC1, PC2, and PC3) that we

have investigated in the current study. Their method obtained

Pearson’s r values of 0.33, 0.09, and 0.15 for the prediction of

PC1, PC2, and PC3, respectively (Sripada et al., 2020). These

results were based on a smaller dataset (2,013 subjects from

the first ABCD data release) and are not directly comparable

to our results. However, we note that using tractography fiber

cluster microstructure features as input and our novel TractoSCR

regression framework for prediction, we obtained higher Pearson’s

r coefficients of 0.42, 0.24, and 0.27 for the prediction of PC1,

PC2, and PC3, respectively. As an additional experiment, we also

included an additional two measures (tensor 2 FA and MD),

which improved the performance by 2.1, 9.1, and 3.7% to give

Pearson’s r coefficients of 0.43, 0.26, and 0.28 for PC1, PC2,

and PC3 prediction tasks, respectively. Tensor 2 FA and MD

are diffusion measures derived from the second diffusion tensor

(representing crossing fibers) using the UKF tractography method.

This additional experiment shows that adding more diffusion

measures can further improve the performance of neurocognition

prediction. Overall, this suggests that fiber cluster measures can

potentially provide highly informative features, in combination

with TractoSCR that achieves higher prediction accuracy than

commonly used linear regression methods.

In our data-driven analysis of imaging and neurocognitive

data from 8,735 participants of the ABCD study, we found

that fiber clusters within the projection and superficial white

matter were the most important for predicting neurocognitive

scores related to general cognitive ability, executive function,

and learning/memory. This result was enabled by the

proposed permutation feature importance algorithm for

identifying predictive features from high-dimensional input.

This finding may highlight the need for more investigations

of the superficial and projection pathways in the context of

cognition.

Potential limitations and future work of the present study are

as follows. First, in the present study, we explored the relationships

between neurocognitive scores and fiber cluster microstructural

measures from a single imaging modality, dMRI. Future work

may investigate TractoSCR for predicting neurocognitive scores

based on features from multiple MRI modalities. Second, we

focused on prediction of neurocognitive scores in healthy children.

Future work may investigate the proposed TractoSCR framework

to predict cognition in the context of aging or disease (e.g.,

Alzheimer’s Disease; Fisher et al., 2019). Third, we employed a

relatively simple MLP network. Future developments can include

the incorporation of more advanced deep learning networks (e.g.,

transformer; Vaswani et al., 2017) and recently proposed regression

losses (Engilberge et al., 2019; Li et al., 2020a; Chen et al.,

2022a). Finally, our results demonstrate the utility of contrastive

representation learning for neuroimaging-based prediction of

cognition. However, our proposed TractoSCR and permutation

feature importance methods can be applied to other regression

tasks.

5 Conclusion

In this work, we have proposed TractoSCR, a simple

yet effective contrastive representation learning method for

regression. We applied our TractoSCR method on multi-site

harmonized dMRI tractography measures from the large-scale

ABCD dataset (8,735 participants) to predict neurocognitive

scores relating to general cognitive ability, executive function and

learning/memory. We compared TractoSCR with several SOTA

methods, and TractoSCR obtained significantly better prediction

performance. Overall, we found that fiber clusters within the

projection and superficial white matter were the most important

for predicting neurocognitive scores.

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2024.1411797
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xue et al. 10.3389/fnins.2024.1411797

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding authors.

Ethics statement

The studies involving humans were approved by Brigham and

Women’s Hospital Institutional Review Board. The studies were

conducted in accordance with the local legislation and institutional

requirements. Written informed consent for participation in this

study was provided by the participants’ legal guardians/next of kin.

Author contributions

TX: Conceptualization, Formal analysis, Methodology,

Software, Validation, Visualization, Writing – original draft,

Writing – review & editing. FZ: Conceptualization, Data curation,

Methodology, Supervision, Validation, Writing – original draft,

Writing – review & editing. LZ: Formal analysis, Investigation,

Visualization, Writing – review & editing. CZ: Methodology,

Supervision, Writing – review & editing. YC: Formal analysis,

Investigation, Methodology, Writing – review & editing. SC-K:

Data curation, Writing – review & editing. SP: Data curation,

Software, Writing – review & editing. WW: Funding acquisition,

Resources, Writing – review & editing. YR: Data curation,

Funding acquisition, Resources, Writing – review & editing.

NM: Data curation, Resources, Writing – review & editing. WC:

Methodology, Resources, Supervision, Writing – review & editing,

Project administration. LO’D: Conceptualization, Data curation,

Funding acquisition, Investigation, Methodology, Resources,

Supervision, Visualization, Writing – original draft, Writing –

review & editing.

Funding

The author(s) declare that financial support was received

for the research, authorship, and/or publication of this article.

We acknowledge the following NIH grants: P41EB015902,

R01MH074794, R01MH125860, R01NS125781, R01NS125307, and

R01MH119222. FZ also acknowledges a BWH Radiology Research

Pilot Grant Award.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnins.2024.

1411797/full#supplementary-material

References

Aracil-Bolaños, I., Sampedro, F., Marín-Lahoz, J., Horta-Barba, A., Martínez-Horta,
S., Botí, M., et al. (2019). A divergent breakdown of neurocognitive networks in
Parkinson’s disease mild cognitive impairment. Hum. Brain Mapp. 40, 3233–3242.
doi: 10.1002/hbm.24593

Arik, S. Ö., and Pfister, T. (2021). TabNet: attentive interpretable tabular learning.
AAAI 35, 6679–6687. doi: 10.1609/aaai.v35i8.16826

Bahri, D., Jiang, H., Tay, Y., and Metzler, D. (2022). SCARF: self-supervised
contrastive learning using random feature corruption. arXiv:2106.15147.
doi: 10.48550/arXiv.2106.15147

Berger, M., Pirpamer, L., Hofer, E., Ropele, S., Duering, M., Gesierich, B., et al.
(2022). Free water diffusion MRI and executive function with a speed component in
healthy aging. Neuroimage 257:119303. doi: 10.1016/j.neuroimage.2022.119303

Borisov, V., Leemann, T., Sessler, K., Haug, J., Pawelczyk, M., and
Kasneci, G. (2021). Deep neural networks and tabular data: a survey. ArXiv.
doi: 10.48550/arXiv.2110.01889

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.
doi: 10.1023/A:1010933404324

Brown, S. S. G., Mak, E., Clare, I., Grigorova, M., Beresford-Webb, J., Walpert, M., et
al. (2022). Support vector machine learning and diffusion-derived structural networks

predict amyloid quantity and cognition in adults with Down’s syndrome. Neurobiol.
Aging 115, 112–121. doi: 10.1016/j.neurobiolaging.2022.02.013

Casaletto, K. B., Umlauf, A., Beaumont, J., Gershon, R., Slotkin, J., Akshoomoff,
N., et al. (2015). Demographically corrected normative standards for the English
version of the NIH toolbox cognition battery. J. Int. Neuropsychol. Soc. 21, 378–391.
doi: 10.1017/S1355617715000351

Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M.,
Heitzeg, M. M., et al. (2018). The adolescent brain cognitive development (ABCD)
study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54.
doi: 10.1016/j.dcn.2018.03.001

Cetin Karayumak, S., Bouix, S., Ning, L., James, A., Crow, T., Shenton,
M., et al. (2019). Retrospective harmonization of multi-site diffusion MRI
data acquired with different acquisition parameters. Neuroimage 184, 180–200.
doi: 10.1016/j.neuroimage.2018.08.073

Cetin-Karayumak, S., Zhang, F., Billah, T., Bouix, S., Pieper, S., O’Donnell, L. J.,
et al. (2021). Harmonization of multi-site diffusion MRI data of the adolescent brain
cognitive development (ABCD) study. In ISMRM, ed. J. H. Krystal (Amsterdam:
Elsevier), 84.

Cetin-Karayumak, S., Zhang, F., O’Donnell, L. J., and Rathi, Y. (2022).
Harmonization of Multi-Site diffusion magnetic resonance imaging data

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2024.1411797
https://www.frontiersin.org/articles/10.3389/fnins.2024.1411797/full#supplementary-material
https://doi.org/10.1002/hbm.24593
https://doi.org/10.1609/aaai.v35i8.16826
https://doi.org/10.48550/arXiv.2106.15147
https://doi.org/10.1016/j.neuroimage.2022.119303
https://doi.org/10.48550/arXiv.2110.01889
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.neurobiolaging.2022.02.013
https://doi.org/10.1017/S1355617715000351
https://doi.org/10.1016/j.dcn.2018.03.001
https://doi.org/10.1016/j.neuroimage.2018.08.073
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xue et al. 10.3389/fnins.2024.1411797

from the adolescent brain cognitive development study. Biol. Psychiat. 91:S84.
doi: 10.1016/j.biopsych.2022.02.227

Chamberland, M., Genc, S., Tax, C. M. W., Shastin, D., Koller, K., Raven, E. P., et
al. (2021). Detecting microstructural deviations in individuals with deep diffusionMRI
tractometry. Nat. Comput. Sci. 1, 598–606. doi: 10.1038/s43588-021-00126-8

Chen, C., Yang, X., Huang, R., Hu, X., Huang, Y., Lu, X., et al. (2022a). “Fine-
Grained correlation loss for regression,” in MICCAI, eds. L. Wang, Q. Dou, P. T.
Fletcher, S. Speidel, S. Li (Cham: Springer), 663–672.

Chen, M., Li, H., Fan, H., Dillman, J. R., Wang, H., Altaye, M., et al. (2022b).
ConCeptCNN: a novel multi-filter convolutional neural network for the prediction
of neurodevelopmental disorders using brain connectome. Med. Phys. 49, 3171–3184.
doi: 10.1002/mp.15545

Chen, M., Li, H., Wang, J., Yuan, W., Altaye, M., Parikh, N. A., et
al. (2020a). Early prediction of cognitive deficit in very preterm infants
using brain structural connectome with transfer learning enhanced deep
convolutional neural networks. Front. Neurosci. 14:858. doi: 10.3389/fnins.2020.
00858

Chen, T., and Guestrin, C. (2016). “XGBoost: a scalable tree boosting system,” in
ACM SIGKDD (New York, NY: Association for Computing Machinery), 785–794.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020b). “A simple framework
for contrastive learning of visual representations,” in ICML, Vol. 119 (PMLR), 1597–
1607.

Chen, X., and He, K. (2021). “Exploring simple siamese representation learning,” in
CVPR (New York City, NY: IEEE), 15750–15758

Chen, Y., Zhang, F., Zhang, C., Xue, T., Zekelman, L. R., He, J., et al. (2022c). “White
matter tracts are point clouds: neuropsychological score prediction and critical region
localization via geometric deep learning,” in MICCAI, eds. L. Wang, Q. Dou, P. T.
Fletcher, S. Speidel, S. Li (Cham: Springer), 174–184.

Cui, Z., and Gong, G. (2018). The effect of machine learning regression algorithms
and sample size on individualized behavioral prediction with functional connectivity
features. Neuroimage 178, 622–637. doi: 10.1016/j.neuroimage.2018.06.001

Dai, W., Li, X., Chiu, W. H. K., Kuo, M. D., and Cheng, K.-T. (2022). Adaptive
contrast for image regression in Computer-Aided disease assessment. IEEE Trans.Med.
Imag. 41, 1255–1268. doi: 10.1109/TMI.2021.3137854

Dubois, J., Galdi, P., Paul, L. K., and Adolphs, R. (2018). A distributed brain
network predicts general intelligence from resting-state human neuroimaging data.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 373:284. doi: 10.1098/rstb.2017.0284

Dufumier, B., Gori, P., Victor, J., Grigis, A., Wessa, M., Brambilla, P., et al. (2021).
“Contrastive learning with continuous proxy meta-data for 3D MRI classification,” in
MICCAI, eds. M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, C.
Essert (Cham: Springer), 58–68.

Engilberge, M., Chevallier, L., Pérez, P., and Cord, M. (2019). “SoDeep: a sorting
deep net to learn ranking loss surrogates,” in CVPR (New York City, NY: IEEE),
10784–10793.

Feng, G., Wang, Y., Huang, W., Chen, H., Dai, Z., Ma, G., et al. (2022).
Methodological evaluation of individual cognitive prediction based on the
brain white matter structural connectome. Hum. Brain Mapp. 43, 3775–3791.
doi: 10.1002/hbm.25883

Fisher, C. K., Smith, A. M., and Walsh, J. R. (2019). Machine learning for
comprehensive forecasting of Alzheimer’s disease progression. Sci. Rep. 9:13622.
Available online at: https://www.nature.com/articles/s41598-019-49656-2

Forkel, S. J., Friedrich, P., Thiebaut de Schotten, M., and Howells, H. (2022). White
matter variability, cognition, and disorders: a systematic review. Brain Struct. Funct.
227, 529–544. doi: 10.1007/s00429-021-02382-w

Goddings, A.-L., Roalf, D., Lebel, C., and Tamnes, C. K. (2021). Development
of white matter microstructure and executive functions during childhood and
adolescence: a review of diffusion MRI studies. Dev. Cogn. Neurosci. 51:101008.
doi: 10.1016/j.dcn.2021.101008

Gong, W., Bai, S., Zheng, Y. Q., Smith, S. M., and Beckmann, C. F. (2022).
Supervised phenotype discovery from multimodal brain imaging. IEEE Trans. Med.
Imaging. 2022:458926. doi: 10.1101/2021.09.03.458926

Gong, W., Beckmann, C. F., and Smith, S. M. (2021). Phenotype
discovery from population brain imaging. Med. Image Anal. 71:102050.
doi: 10.1016/j.media.2021.102050

Gorishniy, Y., Rubachev, I., Khrulkov, V., and Babenko, A. (2021). “Revisiting deep
learning models for tabular data,” in NeurIPS, eds. Ranzato, M. et al. (New Orleans:
Neural Information Processing Systems Foundation, Inc.), 18932–18943.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). “Ensemble learning,” in The
Elements of Statistical Learning: Data Mining, Inference, and Prediction (Cham:
Springer), 605–624.

He, H., Zhang, F., Pieper, S., Makris, N., Rathi, Y., Wells, W., et al. (2022). “Model
and predict age and sex in healthy subjects using brain white matter features: a deep
learning approach,” in ISBI (New York City, NY: IEEE), 1–5.

Jandric, D., Parker, G. J. M., Haroon, H., Tomassini, V., Muhlert, N., and Lipp,
I. (2022). A tractometry principal component analysis of white matter tract network

structure and relationships with cognitive function in relapsing-remitting multiple
sclerosis. Neuroimage Clin. 34:102995. doi: 10.1016/j.nicl.2022.102995

Jeong, J. W., Lee, M. H., O’Hara, N., Juhász, C., and Asano, E. (2021). Prediction
of baseline expressive and receptive language function in children with focal epilepsy
using diffusion tractography-based deep learning network. Epilepsy Behav. 117:107909.
doi: 10.1016/j.yebeh.2021.107909

Jollans, L., Boyle, R., Artiges, E., Banaschewski, T., Desrivières, S., Grigis, A., et al.
(2019). Quantifying performance of machine learning methods for neuroimaging data.
Neuroimage 199, 351–365. doi: 10.1016/j.neuroimage.2019.05.082

Kadra, A., Lindauer, M., Hutter, F., and Grabocka, J. (2021). “Well-tuned simple
nets excel on tabular datasets,” inNeurISP, eds. Ranzato, M. et al. (NewOrleans: Neural
Information Processing Systems Foundation, Inc.), 23928–23941.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., et al. (2020).
“Supervised contrastive learning,” in NeurIPS (New Orleans: Neural Information
Processing Systems Foundation, Inc.), Vol. 33, 18661–18673.

Kim, M., Bao, J., Liu, K., Park, B. Y., Park, H., Baik, J. Y., et al. (2021). A structural
enriched functional network: an application to predict brain cognitive performance.
Med. Image Anal. 71:102026. doi: 10.1016/j.media.2021.102026

Lei, W., Xu, W., Gu, R., Fu, H., Zhang, S., Zhang, S., et al. (2021). “Contrastive
learning of relative position regression for One-Shot object localization in 3D medical
images,” inMICCAI, eds. M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y.
Zheng, C. Essert (Cham: Springer), 155–165.

Li, D., Jiang, T., and Jiang,M. (2020a). “Norm-in-Norm loss with faster convergence
and better performance for image quality assessment,” in ACM MM (New York, NY:
Association for Computing Machinery), 789–797.

Li, X., Wang, Y., Wang,W., Huang,W., Chen, K., Xu, K., et al. (2020b). Age-Related
decline in the topological efficiency of the brain structural connectome and cognitive
aging. Cereb. Cortex 30, 4651–4661. doi: 10.1093/cercor/bhaa066

Luciana, M., Bjork, J. M., Nagel, B. J., Barch, D. M., Gonzalez, R., Nixon, S. J.,
et al. (2018). Adolescent neurocognitive development and impacts of substance
use: overview of the adolescent brain cognitive development (ABCD) baseline
neurocognition battery.Dev. Cogn. Neurosci. 32, 67–79. doi: 10.1016/j.dcn.2018.02.006

Madole, J. W., Ritchie, S. J., Cox, S. R., Buchanan, C. R., Hernández, M. V.,
Maniega, S. M., et al. (2021). Aging-Sensitive networks within the human structural
connectome are implicated in Late-Life cognitive declines. Biol. Psychiat. 89, 795–806.
doi: 10.1016/j.biopsych.2020.06.010

Malcolm, J. G., Shenton, M. E., and Rathi, Y. (2010). Filtered
multitensor tractography. IEEE Trans. Med. Imaging 29, 1664–1675.
doi: 10.1109/TMI.2010.2048121

Mansour L. S., Seguin, C., Smith, R. E., and Zalesky, A. (2022). Connectome
spatial smoothing (CSS): concepts, methods, and evaluation. Neuroimage 250:118930.
doi: 10.1016/j.neuroimage.2022.118930

Mansour, L. S., Tian, Y., Yeo, B. T. T., Cropley, V., and Zalesky, A. (2021).
High-resolution connectomic fingerprints: mapping neural identity and behavior.
Neuroimage 229:117695. doi: 10.1016/j.neuroimage.2020.117695

Merz, E. C., Strack, J., Hurtado, H., Vainik, U., Thomas, M., Evans, A., et al. (2022).
Educational attainment polygenic scores, socioeconomic factors, and cortical structure
in children and adolescents.Hum. BrainMapp. 43, 4886–4900. doi: 10.1002/hbm.26034

Norton, I., Essayed, W. I., Zhang, F., Pujol, S., Yarmarkovich, A., Golby, A. J., et
al. (2017). SlicerDMRI: open source diffusion MRI software for brain cancer research.
Cancer Res. 77, e101–e103. doi: 10.1158/0008-5472.CAN-17-0332

Ooi, L. Q. R., Chen, J., Zhang, S., Kong, R., Tam, A., Li, J., et al. (2022). Comparison
of individualized behavioral predictions across anatomical, diffusion and functional
connectivity MRI. Neuroimage 263:119636. doi: 10.1016/j.neuroimage.2022.119636

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Pohl, K. M., Thompson, W. K., Adeli, E., and Linguraru, M. G. (2019). “Adolescent
brain cognitive development neurocognitive prediction,” in First Challenge, ABCD-NP
2019, Held in Conjunction with MICCAI (Cham: Springer).

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A. (2018).
“CatBoost: unbiased boosting with categorical features,” in NeurISP (New Orleans:
Neural Information Processing Systems Foundation, Inc.), 6639–6649.

Radhakrishnan, H., Bennett, I. J., and Stark, C. E. (2022). Higher-order
multi-shell diffusion measures complement tensor metrics and volume in
gray matter when predicting age and cognition. Neuroimage 253:119063.
doi: 10.1016/j.neuroimage.2022.119063

Reddy Raamana, P., and Strother, C. S. (2017). Python class defining a machine
learning dataset ensuring key-based correspondence andmaintaining integrity. J. Open
Source Softw. 2:382. doi: 10.21105/joss.00382

Reddy, C. P., and Rathi, Y. (2016). Joint Multi-Fiber NODDI parameter estimation
and tractography using the unscented information filter. Front. Neurosci. 10:166.
doi: 10.3389/fnins.2016.00166

Richie-Halford, A., Yeatman, J. D., Simon, N., and Rokem, A. (2021).
Multidimensional analysis and detection of informative features in human brain white
matter. PLoS Comput. Biol. 17:e1009136. doi: 10.1371/journal.pcbi.1009136

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2024.1411797
https://doi.org/10.1016/j.biopsych.2022.02.227
https://doi.org/10.1038/s43588-021-00126-8
https://doi.org/10.1002/mp.15545
https://doi.org/10.3389/fnins.2020.00858
https://doi.org/10.1016/j.neuroimage.2018.06.001
https://doi.org/10.1109/TMI.2021.3137854
https://doi.org/10.1098/rstb.2017.0284
https://doi.org/10.1002/hbm.25883
https://www.nature.com/articles/s41598-019-49656-2
https://doi.org/10.1007/s00429-021-02382-w
https://doi.org/10.1016/j.dcn.2021.101008
https://doi.org/10.1101/2021.09.03.458926
https://doi.org/10.1016/j.media.2021.102050
https://doi.org/10.1016/j.nicl.2022.102995
https://doi.org/10.1016/j.yebeh.2021.107909
https://doi.org/10.1016/j.neuroimage.2019.05.082
https://doi.org/10.1016/j.media.2021.102026
https://doi.org/10.1093/cercor/bhaa066
https://doi.org/10.1016/j.dcn.2018.02.006
https://doi.org/10.1016/j.biopsych.2020.06.010
https://doi.org/10.1109/TMI.2010.2048121
https://doi.org/10.1016/j.neuroimage.2022.118930
https://doi.org/10.1016/j.neuroimage.2020.117695
https://doi.org/10.1002/hbm.26034
https://doi.org/10.1158/0008-5472.CAN-17-0332
https://doi.org/10.1016/j.neuroimage.2022.119636
https://doi.org/10.1016/j.neuroimage.2022.119063
https://doi.org/10.21105/joss.00382
https://doi.org/10.3389/fnins.2016.00166
https://doi.org/10.1371/journal.pcbi.1009136
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xue et al. 10.3389/fnins.2024.1411797

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). “Learning internal
representations by error propagation,” in Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Vol. 1: Foundations, eds. J. A. Anderson and E.
Rosenfeld (Boston, MA: The MIT Press), 318–362.

Schiffer, C., Amunts, K., Harmeling, S., and Dickscheid, T. (2021). “Contrastive
representation learning for whole brain cytoarchitectonic mapping in histological
human brain sections,” in ISBI (New York City, NY: IEEE), 603–606.

Seguin, C., Tian, Y., and Zalesky, A. (2020). Network communication models
improve the behavioral and functional predictive utility of the human structural
connectome. Netw. Neurosci. 4, 980–1006. doi: 10.1162/netn_a_00161
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