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Background: Deep-learning-based brain age estimation using magnetic 
resonance imaging data has been proposed to identify abnormalities in brain 
development and the risk of adverse developmental outcomes in the fetal brain. 
Although saliency and attention activation maps have been used to understand 
the contribution of different brain regions in determining brain age, there has 
been no attempt to explain the influence of shape-related cortical structural 
features on the variance of predicted fetal brain age.

Methods: We examined the association between the predicted brain age 
difference (PAD: predicted brain age–chronological age) from our convolution 
neural networks-based model and global and regional cortical structural 
measures, such as cortical volume, surface area, curvature, gyrification index, 
and folding depth, using regression analysis.

Results: Our results showed that global brain volume and surface area were 
positively correlated with PAD. Additionally, higher cortical surface curvature and 
folding depth led to a significant increase in PAD in specific regions, including 
the perisylvian areas, where dramatic agerelated changes in folding structures 
were observed in the late second trimester. Furthermore, PAD decreased with 
disorganized sulcal area patterns, suggesting that the interrelated arrangement 
and areal patterning of the sulcal folds also significantly affected the prediction 
of fetal brain age.

Conclusion: These results allow us to better understand the variance in deep 
learning-based fetal brain age and provide insight into the mechanism of the 
fetal brain age prediction model.
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1 Introduction

Existing neuroimaging studies have shown that brain age estimated 
using magnetic resonance imaging (MRI) can serve as an imaging 
biomarker for assessing brain health at the individual level (Cole et al., 
2017). The estimated brain age is considered the biological or 
neuroanatomical age, which may differ from the chronological age (He 
et al., 2021b). Deviations in the predicted age from the chronological 
age can reveal potential underlying pathological processes in the brain 
(Hong et al., 2021; He et al., 2021a). Numerous previous studies have 
shown that the predicted age difference (PAD; predicted brain age–
chronological age) is associated with the risk of cognitive decline and 
neurodegeneration in various disorders of the neonatal brain (Liu et al., 
2020, 2021) and the adult brain (Schnack et al., 2016; Ning et al., 2020). 
The fetal brain undergoes dramatic anatomical changes during 
development under genetic influences (Andescavage et al., 2017). As a 
result of brain development, quantitative structural brain measures 
including fetal brain volume, surface area, folding pattern, and 
gyrification were strongly correlated with gestational age (GA; 
Andescavage et al., 2017). The estimation of fetal brain age and its 
deviation from GA based on MRI morphological patterns is a 
potentially useful tool for identifying early brain abnormalities and 
improving prenatal care (Liao et al., 2020).

Recent advances in deep learning algorithms have enabled accurate 
mapping between fetal MRI and GA. Shi et  al. (2020) used a 
convolutional neural network (CNN)-based model to predict the fetal 
brain age using MRI. Gangopadhyay et al. (2022) utilized a multitasking 
U-Net with a single encoder to predict the fetal brain age and pathological 
conditions simultaneously. Previous studies have improved fetal brain 
age prediction by applying attention-guided CNN (Shen et al., 2022), 2D 
multislice augmented CNN (Hong et al., 2021), and label distribution 
learning (Liao et al., 2020) to fetal MRI. However, unlike previous studies 
that have directly associated brain features with age, deep CNN-based 
brain age models remain challenging to interpret because they utilize 
highly non-linear functions for prediction. It remains difficult to explain 
how structural brain changes affect brain-age predictions. Recent 
approaches for interpreting deep learning-based brain age can be divided 
into two categories. First, a gradient-based mechanism was employed to 
identify regions that significantly influenced brain age prediction by 
mapping salient features to the raw input image. In fetal brain age studies, 
the most contributing regions have been identified using Grad-CAM 
(Liao et al., 2020), back-propagation (Hong et al., 2021), and guided 
back-propagation (Shi et al., 2020). Methods in the second category 
utilize attention mechanisms that emphasize global and local features to 
predict brain age and generate interpretations simultaneously. Shen et al. 
(2022) used an attention-guided mask to provide heat maps that 
highlighted the most contributing regions. Shi et al. (2020) generated 
attention activation maps using multiscale features from networks in 
addition to saliency maps. Although the saliency map and attention heat 
map help us understand localized explanations for brain age prediction 
without prior knowledge, they only show the local region where and 
what the network learns, meaning that they provide an indirect 
interpretation (He et al., 2021a). Our understanding of which specific 
brain structural features and regions significantly contribute to the 
variance in predicted brain age and how they contribute remains limited. 
To the best of our knowledge, correlations between regional brain 
volumes and predicted brain age have been investigated in healthy brains 
with ages ranging from 0 to 97 years, but the results were not statistically 
significant (He et al., 2021a). In fetal brains, our CNN-based prediction 

model demonstrated that whole brain size significantly affects brain age, 
and saliency maps showed that cortical regions play an important role in 
predicting fetal brain age (Hong et  al., 2021). However, despite the 
potential significance of cortical structures in brain age prediction, 
investigation of the relationship between predicted brain age and human-
understandable morphological characteristics of the brain surface model 
is still limited. The morphological changes in fetal brains during gestation 
are complex and various. As the fetal brain grows, cortical areas get 
larger, increasing the depth and complexity of developing cortical 
foldings. Even though the saliency map helps the interpretation of the 
predicted brain age by indicating related brain regions, no study has 
investigated which aspect of those complex changes in brain development 
affects brain age estimation.

Given the scenario, this study aimed to investigate the association 
between deep-learning-based brain age predictions and the global/
regional cortical measurements to understand which features and how 
they contribute to brain age predictions. We utilized a single-channel 
CNN with multiplanar slices as proposed in a previous study on PAD 
estimation (Hong et al., 2021). We then calculated various global and 
regional cortical structural features, such as cortical volume, surface 
area, curvature, gyrification index (GI), and sulcal depth, and analyzed 
their correlations with the estimated PAD using a regression model. 
Furthermore, we examined the effect of global sulcal folding patterns 
on PAD. The saliency map method was used to evaluate and compare 
correlation results. The study design is illustrated in Figure 1.

2 Materials and methods

2.1 Subjects

A total of 115 typically developing (TD) fetuses were included in 
this study (gestational weeks [GW]: 29.4 ± 4.4 [mean ± standard 
deviation (SD)], range: 19.9–38.7 GW; sex: 57/42/16 [male/female/
unknown]). We included fetuses with a maternal age of 19.0–43.3 years 
(32.5 ± 4.5 [mean ± SD]). Subjects demographics including n, sex ratio, 
and maternal age along with GA segments are summarized in Table 1. 
For the quantitative sulcal pattern analysis, fetuses younger than 23 
GW or older than 32 GW were excluded because we  employed 
template brains ranging from 23 to 32 GWs for sulcal pattern 
matching and similarity measurement. Subsequently, 76 fetuses from 
23 to 32 GW were included in the quantitative sulcal pattern analysis. 
To test the interaction between measure and sex, 16 of the 115 fetuses 
were excluded because their sex was unknown.

2.2 Data and image acquisition

This study was approved by the Institutional Review Board of 
Boston Children’s Hospital. TD subjects were identified from (1) 
prospective recruitment subjects for case–control studies who 
signed written informed consent, and (2) retrospective patient data 
that were screened for fetal brain abnormalities but were clinically 
interpreted as normal by two board-certified radiologists 
experienced in fetal MRI. We  excluded women with multiple 
gestational pregnancies, dysmorphic features on ultrasound (US) 
examination, brain malformations/lesions or other identified organ 
anomalies on US examination, known chromosomal abnormalities, 
known congenital infections, or any clinically significant 
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abnormalities on visual inspection. Fetal brain MRI stacks were 
acquired on a Siemens 3 T Skyra scanner using a T2-weighted 
HASTE (Half-Fourier Acquisition Single-Shot Turbo Spin-Echo) 
sequence with 1 mm in-plane resolution, FOV = 256 mm, time 
repetition = 1.5 s, time echo = 120 ms, and slice thickness = 2–4 mm. 
After localization to the fetal brain, a total of 3–20 HASTE stacks 
were acquired multiple times in three different orthogonal 
orientations for reliable image processing and analysis (the scan 
time for acquisition of MRI stacks was 10–20 min).

2.3 Fetal MRI pre-processing and surface 
reconstruction

We used a previously developed pipeline for fetal MRI 
pre-processing and inner cortical plate surface extraction (Yun 

et  al., 2021, 2024). The brain region was masked using our 
in-house tool based on a 2D U-Net model for each MRI stack 
(Hong et al., 2021). N4 bias field correction was used to correct 
the intensity non-uniformity of the masked brain (Tustison et al., 
2010). Multiple MRI stacks were combined using a slice-to-
volume registration technique and reconstructed a motion-
corrected volume with 0.75 mm isotropic super-resolution 
(Kuklisova-Murgasova et  al., 2012). We  then adopted a deep 
learning-based approach to segment the cortical plate and its 
inner part (Hong et  al., 2020). We automatically extracted the 
hemispheric triangular surface meshes of the inner cortical plate 
using a marching cube algorithm with topology preservation 
(Lepage et al., 2017). The automatic cortical segmentation results 
were visually inspected, and any mislabeled regions were manually 
edited by trained raters to validate the quality of cortical surface 
extraction and measurement.

FIGURE 1

The pipeline of method and analysis. (A) The brain age prediction model based on ResNet101-V2 is trained with separate TD fetal data. The saliency 
maps for each individual 2D MRI sample are calculated. (B) The relationships between the PAD from the model in panel (A) and global and regional 
cortical measurements were examined using the regression analysis.

TABLE 1 Participant characteristics across gestational age segments.

<24 GW 24–28 GW 28–32 GW 32–36 GW ≥ 36 GW Total

n (male/female/

unknown)

7/4/0 17/18/4 18/8/6 6/8/5 9/4/1 57/42/16

Maternal age 28.9 ± 5.2 (20.0–35.0) 31.7 ± 4.9 (19.0–40.0) 34.2 ± 3.9 (28.0–43.3) 33.0 ± 3.6 (26.6–39.0) 32.7 ± 3.2 (27.7–38.0) 32.5 ± 4.5 (19.0–43.3)

GW, gestational weeks.
Mean ± standard deviation (min-max range) for Maternal age (years) are represented.
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2.4 Brain age prediction and PAD 
estimation

The brain age prediction model (Hong et al., 2021) was built based 
on ResNet101V2 (He et al., 2016) with slight modifications to reduce 
model complexity and prevent overfitting by replacing the last pooling 
layer with global average pooling and adding a dropout layer (dropout 
rate = 0.4). A 2D slice of brain MRI with a size of 138 × 176 was used as 
the input for the network, creating the last feature maps with a reduced 
size of 5 × 6 via stacked residual blocks, which were connected to a dense 
layer to regress the predicted brain age. The detailed implementation and 
hyperparameter settings were the same as those of the original 
ResNet101V2, The batch size was set to 128, and the Adam optimizer 
(Kingma and Ba, 2014)with a learning rate of 0.05 was used. We used the 
Huber loss as a loss function, which is less sensitive to outliers (Huber, 
1992). For the training of the brain age prediction model, we used 7,156 
slices from 1,789 MRI volumes from separate 136 TD fetuses (GW: 
30.0 ± 5.5 [mean ± SD], range: 15.9–38.7 GW; sex: 58/37/41 [male/
female/unknown]) with the subject-wise random split (Figure  1A). 
Among the training sets, we used 5,696 slices from 1,424 MRI volumes 
recorded from 111 fetuses for optimization, with four central slices from 
each MRI volume. The remaining 1,460 slices from 365 MRI volumes 
recorded from other 25 fetuses, were used for validation during training.

In this study, no strategy for data splitting, such as cross-validation, 
was used because the performance of our brain age prediction was 
evaluated in a previous study (Hong et al., 2021) which focused on the 
analysis of the relationship between the estimated PAD and cortical 
structural features from fetal brain MRI. The brain age prediction model 
used in this study has proven the effectiveness of precise brain age 
prediction via multi-view aggregation with central tendency estimation 
showing accurate prediction compared to the 2D multi-channel or 3D 
approach (Hong et al., 2021). Using central four slides as input helps the 
model clearly focus on the distinctive regions for brain age prediction, 
such as the ventricles. Besides, considering the thickness of fetal MRI, 
the four central slides on three different planes (sagittal, axial, and 
coronal) could cover most anterior–posterior, superior–inferior, and 
left–right structures of the fetal brain within the model’s receptive field.

For the brain age prediction and PAD estimation in the target 
dataset, we applied our in-house fetal brain extraction tool and N4 bias 
field correction (Tustison et al., 2010; Hong et al., 2020) on the raw fetal 
MRI before performing brain age estimation on them. We  selected 
central four slices for each volume as the inputs for the brain age 
prediction model and performed test-time augmentation (Matsunaga 
et al., 2017) with 20 repetitions to minimize the prediction error by 
ensembling multiple predictions with augmentations for each slice. 
We then computed the mode for continuous variables (Pearson, 1894) 
to obtain the central tendency of the brain age prediction from multiple 
predicted age values with multiple volumes and slices as the estimated 
brain age for each case. Finally, we measured the difference between the 
predicted brain age and the corresponding GA to estimate the PAD for 
each case.

2.5 Cerebral volume and global cortical 
surface measures

We measured the cerebral volume, cortical surface area, average 
absolute mean curvature, GI, and average sulcal depth of the whole 
brain (Figure 1B). The surface area of each vertex was computed using 

the area of the Voronoi region (Meyer et  al., 2003). The angular 
deviation from the patch around each vertex was calculated as the 
mean curvature. Positive and negative signs of the mean curvature 
indicate outwardly and inwardly folded regions, respectively (Meyer 
et al., 2003). We used the absolute mean curvature to measure the 
complexity of the cortical folding shape (Figure 2A). To define the GI, 
we  first performed a 3D morphological closing operation with a 
spherical kernel of 15 mm diameter as a structural element on the 
inner volume of the cortical plate (Schaer et  al., 2008). Using the 
marching cube algorithm, we created the outer hull surface wrapping 
the cortical plate surface from the binary closed volume (Lepage et al., 
2017). The ratio between the 3D convex hull and the entire area of the 
cortical plate surface was then calculated (Zilles et al., 1988). Sulcal 
depth was calculated using our adaptive distance transform, which 
searches for the shortest paths from the convex hull to the surface 
vertices (Yun et  al., 2013; Figure  2B). The global cortical surface 
measures were correlated with GA and the changes in those 
measurements along with GA were visually inspected to ensure the 
reliability of results. Specifically, cortical surfaces were identified as 
outliers if they exhibited the deviation from typical developmental 
patterns in global cortical measures along with GA.

2.6 Cortical parcellation and regional 
measures

We manually parcellated and defined the cortical gyral regions on 
the 29 GW template surface according to the FreeSurfer Desikan 
parcellation protocol, which has been extensively used as a standard 
in neuroimaging studies (Desikan et al., 2006). The template surface 
was extracted from the previously generated T2 MRI volume 
templates (Serag et al., 2012). The original Desikan parcellation map 
includes 34 cortical regions in each hemisphere. As the secondary and 
tertiary sulci are not fully developed in the fetal cortex, it is not feasible 
to parcellate the subdivisions of the gyrus. The original map was 
simplified and 21 cortical areas were delineated in each hemisphere. 
Individual cortical plate surfaces were aligned to the template surface 
using a 2D sphere-to-sphere warping method (Robbins et al., 2004; 
Boucher et  al., 2009) and then resampled to obtain the vertex 
correspondence with the template. The parcellated regions on the 
template were directly applied to the registered individual surfaces 
(Figures 2C,D), and the cortical surface area, average absolute mean 
curvature, and average sulcal depth for each cortical region were 
calculated (Figure 1B).

2.7 Quantitative sulcal pattern analysis

To investigate the relationship between the estimated PAD and 
sulcal folding patterns, we performed a quantitative sulcal pattern 
analysis proposed by Im et al. (2011, 2017). We first identified the 
sulcal basins based on a smoothed curvature map of the extracted 
cortical surface using a watershed algorithm (Tarui et  al., 2018). 
Spectral matching was performed using geometric sulcal features (3D 
position, depth, and area) to define the correspondence between the 
sulcal basins of an individual brain and those of the fetal template 
brain (Im et al., 2017). For each fetus, the sulcal pattern similarity 
index (SI) of the templates, reflecting the deviation from the typical 
sulcal pattern, was defined by averaging the similarities of all matched 
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corresponding sulcal basins and inter-sulcal relationships (Tarui et al., 
2023). We assessed the pattern similarities of 3D sulcal position, sulcal 
area, sulcal depth, and a combination of all three features by changing 
the weight of each feature (Ortinau et  al., 2019). Additionally, 
we separately calculated the similarities of the corresponding sulcal 
regions and the inter-sulcal geometric relationships between the 
individual and template brains.

2.8 Statistical analysis

We analyzed how the regional cortical structural changes affect 
the estimated PAD using a linear regression model, adjusting for GW 
(PAD GW X= + +β β β0 1 2 , where X  denotes global and regional 
cortical measurements or sulcal pattern SI; Figure 1B). We assessed 
the association between the estimated PAD and global and regional 
cortical measurements calculated from the extracted surface models 
for each hemisphere. Sulcal pattern SIs to the template brains were 
also used to examine their effect on PAD using the same regression 
model. Additionally, we examined the measure-by-sex interaction 
effect to test statistically whether sex influenced the relationship 
between PAD and cortical structural features. A false discovery rate 
(FDR) control was used at a q value of 0.05 to correct for multiple 
comparisons (Benjamini and Hochberg, 1995).

2.9 Saliency map

We generated a saliency map to assign contribution scores to each 
input element (e.g., pixels in an input 2D MRI slice) for deep 
CNN-based brain-age prediction (Figure  1A). We  used the back-
propagation method to track the brain regions that exhibited a high 
contribution to brain age prediction. The resulting saliency maps were 
also Gaussian-smoothed and min-max normalized for better visibility, 
as proposed in a previous study (Hong et al., 2021). We then identified 

areas with high saliency scores and visually compared them with areas 
that showed a significant correlation with brain age in our 
regression analysis.

3 Results

Before analyzing the relationship between PAD and cortical 
surface measurement, we  first confirmed our model’s brain age 
prediction performance after test-time augmentation and central 
tendency estimation via mode. Our brain age prediction model 
showed a mean absolute error (MAE) of 0.94 GW and R2 of 0.908 for 
the target dataset which was used for the analysis in this study.

As shown in Table 2, a significant positive correlation between 
whole cerebral volume and estimated PAD was observed in the 
regression analysis (p < 0.0001). The cortical surface area (p = 0.0005) 
and absolute mean curvature (p = 0.047) of the whole brain were 
significantly increased in fetuses with higher PAD. No significant 
relationships were found between the global cortical GI (p = 0.341) 
and sulcal depth (p = 0.178).

In the regression analysis of the regional cortical measurements, 
fetuses with higher PAD showed significantly higher cortical 
surface areas in most cortical regions, except for the paracentral 
and parahippocampal cortices after FDR correction (Figure 3A). 
The regional cortical curvatures were positively correlated with 
PAD in the precentral (p < 0.001), postcentral (p < 0.001), cuneus 
(p = 0.011), supramarginal (p < 0.001), superior temporal 
(p = 0.013), and inferior frontal (p = 0.009) cortices (Figure 3A). 
There were no significant correlations in the analysis of sulcal 
depth after FDR correction. However, the insula (uncorrected 
p = 0.007), precuneus (uncorrected p = 0.029), superior temporal 
(uncorrected p = 0.008), and supramarginal cortical regions 
(uncorrected p = 0.028) were significantly positively correlated with 
PAD (Figure 3B). The details of the statistical results are provided 
in Supplementary Table S1.

FIGURE 2

Mapping of absolute mean curvature (A), sulcal depth (B), and cortical parcellation (C) on the cortical surface for 4 individual fetuses of 26 to 35 GW 
and 29 GW template brain (D). Anatomical labels: 1. middle frontal, 2. cingulate cortex, 3. cuneus, 4. precentral, 5. fusiform, 6. inferior parietal, 7. inferior 
temporal, 8. insula, 9. precuneus, 10. lateral occipital, 11. orbital frontal, 12. lingual, 13. superior frontal, 14. middle temporal, 15. paracentral, 16. 
parahippocampal, 17. inferior frontal, 18. superior parietal, 19. superior temporal, 20. supramarginal, 21. postcentral.
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Statistically significant associations were observed between sulcal 
pattern similarity and the estimated PAD for the sulcal basin area in 
the entire pattern (p = 0.005) and inter-sulcal relationship (p = 0.020) 
analyses (Table 3). Subjects with higher PAD showed a higher sulcal 
area pattern similarity to the normal templates. In the case of sulcal 
position and depth patterns, there was no significant relationship 
between sulcal pattern similarity and estimated PAD. The association 
between the combinations of all three features was not statistically  
significant.

The resulting saliency maps for the randomly selected 2D MRI 
samples are shown in Figure 4. We observed that specific regions, 
including the precentral, postcentral, (pre)cuneus, supramarginal, 
superior temporal, and inferior frontal cortices showed high saliency 
values, which were significantly associated with PAD in our regression 
analysis. However, beyond the overlapping areas, regions with high 

saliency scores showed large spatial variability across individuals, 
precluding meaningful group-level interpretations.

No significant interaction effects of sex were detected in any of the 
global or regional brain measures.

4 Discussion

We examined the association between the estimated PAD on fetal 
brain MRI and global and regional cortical structural features, such as 
whole cerebral volume, cortical surface area, curvature, GI, folding 
depth, and sulcal patterns. Although existing deep-learning-based 
brain age prediction studies have employed either input-level salience 
maps or attention mechanisms and have shown a localized visual 
explanation without any prior domain-specific knowledge, they are 
limited by the inherent ambiguity of indirect interpretations. In 
contrast, Hong et  al. (2021) showed that the cerebral cortex 
contributed significantly to estimating brain age by applying saliency 
visualization to their prediction model. Furthermore, they replicated 
the brain age prediction after adjusting for the brain size of individuals 
and suggested that whole brain size could considerably affect the 
predicted brain age. Motivated by these findings, we examined the 
relationship between these cortical structural changes and estimated 
PAD. Given that regulated areal expansion and folding of the human 
brain cortex occurs during fetal development, complicated patterns of 
cortical development, such as curvature, GI, depth, and sulcal patterns 
of the cortex, have been characterized (Im et al., 2017). Our results 
showed significant relationships between these cortical structural 
variances and the estimated PAD in global and local cortical regions. 

TABLE 2 Statistical results of the regression analysis investigating the 
association between the estimated PAD and global measurements.

Measures β  ± SE (p-value)

Whole cerebral volume 1.970 ± 0.334 (<0.0001**)

Cortical surface area 1.133 ± 0.316 (0.0005**)

Cortical mean curvature 0.717 ± 0.356 (0.047*)

Cortical GI 0.216 ± 0.226 (0.341)

Cortical depth 0.336 ± 0.248 (0.178)

β, standardized regression coefficient; SE, standard error; GI, gyrification index.
**p < 0.0005.
*p < 0.05.

FIGURE 3

Statistical results for regression analysis of regional cortical measurements. Statistical maps for β coefficients show positive correlations between the 
estimated PAD and cortical surface area and absolute mean curvature (A) (FDR-corrected p  <  0.05), and sulcal folding depth (B) (Uncorrected p  <  0.05).
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Significant regions, including the precentral, postcentral, (pre)cuneus, 
supramarginal, superior temporal, and inferior frontal cortices were 
also identified as contributing regions in the saliency map analysis. 
However, unlike our results, the saliency maps were only acquired 
from a limited region of a few central 2D MRI slices, lacking 
comprehensive information. The saliency maps highlighted the 
contributing regions without offering any rationale for the prediction 
related to brain structural changes, whereas the proposed method 
demonstrated associations between various global and local cortical 
structural variances and the predicted PAD. Moreover, the most 
contributive regions in the saliency map exhibited a large inter-subject 
spatial variability as shown in Figure  4, which can lead to vague 

group-level explanations. In contrast, our results provide a better 
interpretation by utilizing complicated structural features derived 
from whole-brain cortical surfaces within the training dataset of the 
prediction model.

Several studies have explored the non-deep-learning-based 
relationship between fetal cortical folding features and GA. Clouchoux 
et al. (2012) characterized fetal cortical folding features, such as the 
sulcal area and GI, and suggested a non-linear relationship between 
the measures and GA. Wu et al. (2015) applied a regression model to 
predict the GA using eight different sulcal folding features, including 
sulcal depth and curvature-based measures. Wright et  al. (2014) 
utilized a non-linear model to predict fetal brain age based on 

TABLE 3 Statistical results of the regression analysis investigating the association between the estimated PAD and sulcal pattern similarity.

Sulcal pattern 
similarity

Position Depth Area Combined

Whole pattern −0.039 ± 0.156 (0.804) 0.121 ± 0.137 (0.382) 0.413 ± 0.143 (0.005*) 0.133 ± 0.131 (0.311)

Corresponding sulcal regions −0.008 ± 0.127 (0.948) 0.124 ± 0.152 (0.419) 0.219 ± 0.123 (0.078) 0.157 ± 0.116 (0.180)

Inter-sulcal relationship −0.010 ± 0.150 (0.947) 0.129 ± 0.133 (0.334) 0.300 ± 0.126 (0.020*) 0.092 ± 0.144 (0.523)

Data are represented as β ± SE (p-value).
*p < 0.05.

FIGURE 4

Examples of the saliency map for deep CNN-based brain age prediction model on input 2D MRI slices. The high saliency values indicate that those 
regions most contribute to the brain age prediction.
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curvature-based cortical folding measures and Namburete et  al. 
(2015) developed a regression forest predictor. The abovementioned 
methods directly used pre-computed fetal cortical folding features for 
associating with the GA, whereas the ordinary deep CNN-based 
models have considered raw input images to “learn” parameterized 
feature extractors to minimize a task-specific objective function (e.g., 
mean square error function in brain age prediction). However, despite 
the superior performance of deep CNN-based brain age predictors 
based on their ability to build an expressive non-linear function 
without prior knowledge, the actual reasoning process for the 
prediction is hidden in the black-box nature of deep learning-based 
models. The interpretation of which features are extracted from the 
input MRI and how they affect the brain age prediction task remains 
an open problem. To the best of our knowledge, this is the first study 
to interpret deep-learning-based PAD using various global and 
regional cortical structural features.

Our results showed that the local surface area in all cerebral 
regions except for the paracentral and parahippocampal cortices and 
the whole cerebral volume was significantly increased in subjects with 
higher PAD. Significant correlations between these measures and the 
estimated PAD are consistent with a previous study (Hong et al., 2021) 
that showed a low predicted brain age for subjects with reduced brain 
size. Interestingly, our analysis of the cortical curvature and depth, 
which represent the shape of cortical folding, showed a positive 
correlation with the estimated PAD in specific regions, including some 
perisylvian regions and the insular cortex. Recent studies have shown 
that the perisylvian regions show pronounced age-related changes in 
fetal brains (Vasung et al., 2021)and that significant folding changes 
occur in the middle fetal stage at around 24–25 GW in the insular 
cortex (Ortinau et  al., 2019). Thus, the estimated PAD might 
be affected by the complex patterning of cortical folding structures in 
specific regions during early fetal cortical development as well as 
global cerebral growth.

Sulcal folding patterns may be related to the patterning of cortical 
functional areas and are visible indicators of anatomical neuronal 
connections (Essen, 1997). Cortical areas do not develop 
independently but rather in relation to other functional areas with 
optimized white matter connections, and accordingly show the 
specific positions and sizes of these areas (O'leary et al., 2007). These 
aspects of early cortical arealization and organization may give rise to 
specific sulcal area patterns, which show the geometric and topological 
relationships of the sulcal folds. In humans, changes in complex sulcal 
patterns are difficult to detect by visual inspection. We found that the 
predicted brain age decreased in subjects with more atypical and 
disorganized area patterns of the sulcal folds. In particular, PAD was 
significantly associated with relative inter-sulcal areal relationships 
that characterize intrinsic sulcal patterns less affected by global factors 
such as overall brain size and shape. We  suggest that the PAD 
estimated by our deep learning model can sensitively reflect variations 
in the interrelated arrangement and areal patterning of the sulcal folds.

Since cortical folds are not fully established in early and 
mid-gestation, it is challenging to define gyral parcel labels in unfolded 
cortical areas in early fetal brains. Thus, future studies are needed to 
improve the accuracy of cortical parcellation and regional analysis in 
early fetal stages. Furthermore, although the ventricular regions were 
highly predictive of brain age in previous studies (Shi et al., 2020; 
Hong et al., 2021), the features of the ventricle were not considered in 
this study. Future studies incorporating ventricle segmentation and 

volume quantification would be helpful for further understanding the 
brain structural features associated with brain age estimation.

In conclusion, we  interpreted changes in PAD by identifying 
associations with fetal MRI-derived cortical structural features. 
Specifically, our statistical results show that the estimated PAD is 
correlated with not only size-related features (cortical volume and 
surface area) but also cortical folding measurements. Brain size, 
cortical folding shape (cortical curvature and sulcal depth) in specific 
regions, including the perisylvian areas, and sulcal area patterning 
affect the variance in brain age predicted by the deep learning-based 
model. These results allow us to better interpret the deep learning-
based brain age prediction model by revealing what the model reflects 
when calculating brain age.
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