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Cortical surface parcellation for fetal brains is essential for the understanding 
of neurodevelopmental trajectories during gestations with regional analyses 
of brain structures and functions. This study proposes the attention-gated 
spherical U-net, a novel deep-learning model designed for automatic cortical 
surface parcellation of the fetal brain. We  trained and validated the model 
using MRIs from 55 typically developing fetuses [gestational weeks: 32.9  ±  3.3 
(mean  ±  SD), 27.4–38.7]. The proposed model was compared with the surface 
registration-based method, SPHARM-net, and the original spherical U-net. Our 
model demonstrated significantly higher accuracy in parcellation performance 
compared to previous methods, achieving an overall Dice coefficient of 
0.899  ±  0.020. It also showed the lowest error in terms of the median boundary 
distance, 2.47  ±  1.322 (mm), and mean absolute percent error in surface area 
measurement, 10.40  ±  2.64 (%). In this study, we  showed the efficacy of the 
attention gates in capturing the subtle but important information in fetal cortical 
surface parcellation. Our precise automatic parcellation model could increase 
sensitivity in detecting regional cortical anomalies and lead to the potential for 
early detection of neurodevelopmental disorders in fetuses.
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1 Introduction

Cortical surface parcellation of the human brain refers to the process of dividing the 
cerebral cortex into distinct regions based on various criteria, including anatomical landmarks, 
functional properties, connectivity patterns, or developmental trajectories (Fischl et al., 2004; 
Xia et al., 2019; McGrath et al., 2022). Anatomical cortical parcellations based on sulcal/gyral 
folding patterns using magnetic resonance imaging (MRI) have been widely used for various 
region-based cortical structural, functional, and network analyses. Regional analysis via 
cortical surface parcellation is even important for fetal brains since regional variations in brain 
structures affected by genetic and environmental factors and neurodevelopmental disorders 
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already occur during this period (Rajagopalan et al., 2011; Vasung 
et al., 2016, 2020, 2021; Andescavage et al., 2017; Ortinau et al., 2019).

As manual cortical parcellation is labor-intensive, reliant on 
expert knowledge, and time-consuming, several automated methods 
have been proposed for sulcal/gyral parcellations on adult and infant 
cortical surfaces from MRI (Fischl et al., 2004; Lyttelton et al., 2007; 
Destrieux et al., 2010; Yeo et al., 2010; Li and Shen, 2011; Auzias et al., 
2016; Gopinath et al., 2019; Parvathaneni et al., 2019; Zhao et al., 2019, 
2021; Cheng et al., 2020; Hao et al., 2020). One prevalent approach to 
automatic parcellation involves surface registration, where single or 
probabilistic label maps defined on a reference surface are transferred 
to the target individual surface following registration (Fischl et al., 
2004; Lyttelton et al., 2007; Destrieux et al., 2010; Yeo et al., 2010; 
Hazlett et al., 2017; Wu et al., 2019; Yun et al., 2019). However, the 
accuracy of traditional techniques for cortical surface parcellation is 
heavily dependent on the precise registration of the cortical surface, 
which establishes correspondences between the atlas and the subject.

With the advent and success of deep learning in computer vision 
(Deng et al., 2009), deep learning techniques were introduced for 
automatic cortical parcellation (Zhao et al., 2022). One approach was 
transforming the parcellation task into a common image classification 
task by making 2D patches from the cortical surface. Wu et al. (2018) 
directly applied a 2D convolutional neural network (CNN) to the 
cortical shape features, mean curvature, sulcal depth, and average 
convexity, to learn the nonlinear mapping to parcellation labels by 
projecting surface patches into tangent spaces to create regular 2D 
image patches and subsequently classifying those patches. However, 
the patch-wise approach inherently suffers from limitations such as 
the trade-off between spatial contextual information and localization 
during the patching process and redundant computations due to 
overlapping patches.

In order to overcome those issues, spherical CNNs (Jiang et al., 
2019; Zhao et  al., 2019) were proposed, which use the ring 
convolutional filters via spatial re-tessellation of the spherical surface 
onto the standard icosahedron. By the re-tessellation onto the 
icosahedron, the spherical surface could be  transformed into a 
consistent structure with uniform-sampled vertices, which enabled 
the learning of feature maps on the spherical space with hierarchical 
CNN architectures (Zhao et al., 2021). As the U-net and its variations 
have shown state-of-the-art performances in medical segmentation 
fields (Ronneberger et  al., 2015), Zhao et  al. (2019) proposed a 
spherical U-net by replacing 2D convolution and pooling operators in 
the U-net with spherical ring-convolution and pooling. Another 
recent study proposed a deep learning model named SPHARM-net 
for cortical surface parcellation (Ha and Lyu, 2022), which introduced 
spherical harmonics-based convolution filters that can encode all the 
spectral components without the full harmonic expansion to capture 
geometric details. They applied the spherical harmonic convolution to 
the spherical U-net structure. Those studies based on spherical U-net 
structure showed improved performance for cortical surface 
parcellation compared to surface registration-based approaches in 
both adult and infant brains (Hao et al., 2020; Zhao et al., 2021; Ha 
and Lyu, 2022).

To the best of our knowledge, there have been no studies reporting 
automatic cortical parcellation for the fetal brain. Unlike infant or 
adult brains, fetal brains have small sizes and weights, smooth surfaces 
with limited gyrification, and immature regional structures (Habas 
et al., 2012; Dubois et al., 2014; Dubois and Dehaene-Lambertz, 2015). 

In addition, fetal brains have variations in relative position and size of 
cortical folds along with gestational age (GA). Since automatic cortical 
parcellation learns the mapping between cortical folding features and 
regional labels, cortical region definition and parcellation are 
challenging for fetal brains with immature cortical folding. Due to 
those reasons, previous methods developed for postnatal brains might 
not be  robust enough to handle the unique anatomy of the fetal 
brain surface.

A deep learning model with the attention mechanism, inspired 
by human cognitive processes, allows it to focus selectively on 
specific parts of the input data, emphasizing regions of interest 
while downplaying less relevant areas (Vaswani et al., 2017; Wang 
et al., 2017; Oktay et al., 2018). This characteristic may be beneficial 
to address the challenges in the cortical surface parcellation of the 
fetal brain. First, it may help the model find and focus on subtle 
but important features from incomplete cortical folding maps of 
the fetal brain (Schlemper et al., 2019). Secondly, fetal brains have 
wide temporal variations in their folding characteristics under the 
neurodevelopment process. Therefore, the parcellation model 
should adaptively adjust the model’s internal focus on input 
feature maps according to GA (Jetley et al., 2018). Third, it can 
distinguish between genuine cortical features and imaging artifacts 
ensuring that the latter do not adversely affect the parcellation 
process (Liu et  al., 2022). Lastly, it may make more informed 
decisions about the boundaries and classifications of cortical areas 
through the extension of receptive fields to consider the 
relationships between different brain regions widely (Zhang 
et al., 2018).

In this study, we propose an attention-gated spherical U-net by 
applying the attention mechanism to the spherical U-net for fetal 
cortical surface parcellation. The utilization of the attention 
mechanisms in the cortical surface parcellation model may promise a 
breakthrough to address the challenges posed by the unique fetal brain 
structure, allowing the model to focus adaptively on relevant features 
and contexts, which can significantly enhance the accuracy, 
robustness, and generalizability of fetal brain parcellation models.

2 Methods

2.1 Subjects and MR image acquisition

We collected MRIs from 55 typically developing (TD) fetuses [GA 
(mean ± SD, range): 32.9 ± 3.3 weeks, 27.4–38.7 weeks; sex (n, male/
female/unknown): 23/12/20] for this study from prior prospective 
recruitment studies or clinical fetal MRIs that were performed to 
screen for fetal brain abnormalities but were clinically interpreted as 
normal by two board-certified radiologists. To construct a confirmed 
parcellation dataset, we  included fetuses with successful cortical 
surface reconstruction and over 27 gestational weeks when gyral and 
sulcal folding starts visibly forming. This study was reviewed and 
approved by the Institutional Review Board at Boston Children’s 
Hospital. We  acquired fetal brain MRIs on a Siemens 3 T Skyra 
scanner using a T2-weighted Half-Fourier Acquisition Single-Shot 
Turbo Spin-Echo (HASTE) sequence with the following parameters: 
in-plane resolution of 1 mm, field of view (FOV) of 256 mm × 256 mm, 
time repetition of 1.6 s, time echo of 120 ms, and slice thickness of 
2–4 mm. After localization of fetal brains, multiplanar HASTE stacks 
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were acquired at least three times in different orthogonal orientations 
to reconstruct reliable 3D motion-corrected volume of the fetal brain.

2.2 MRI processing

We used our fetal MRI processing pipeline (Im et al., 2017; Yun 
et al., 2020, 2021) to reconstruct the cortical surfaces, which consists 
of the brain extraction (Hong et  al., 2021), the isotropic high-
resolution volume reconstruction algorithm via a slice-to-volume 
registration (Kuklisova-Murgasova et al., 2012), and deep learning-
based cortical plate (CP) segmentation (Hong et al., 2020). For the 
brain extraction, we used our in-house fetal brain extraction model 
based on a 2D U-net structure, which had been trained with 291 MRI 
stacks from 65 typical developing (TD) fetuses.1 After brain extraction, 
we corrected intensity inhomogeneity via N4 bias field correction 
(Tustison et al., 2010) and created a motion-corrected 3D volume with 
0.75 mm isotropic resolution using a slice-to-volume super-resolution 
technique (Kuklisova-Murgasova et al., 2012). Then, we applied our 
automatic CP segmentation algorithm that had been developed for the 
fetal brain (Hong et al., 2020; https://github.com/jwhong1125/fetal_
CP_segmentation). The CP segmentation algorithm is based on 2D 
U-net models trained separately for the sagittal, coronal, and axial 
planes, which had been trained with 52 TD fetuses. It includes multi-
view aggregation and test-time augmentation for precise CP 
segmentation onto the 3D volumes.

After CP segmentation on 3D volumes, we extracted 3D inner CP 
surfaces using matching-cube algorithms from the CIVET,2 which 
generates tessellated triangular meshes for the boundary between the 
CP and its inner region. The algorithm tessellates a surface by 
collapsing an outer ellipsoid mesh enclosing the inner CP volumes 
and resampling it to the standard mech format with 81,920 triangles 
and 40,962 vertices (Liu et  al., 2021). Lastly, we  geometrically 
smoothed the resampled surface with the Taubin smoothing approach 
(Taubin, 1995) to obtain a natural shape of the surface without 
shrinking and voxelated patterns. In order to get brain surfaces on the 
standard mesh structure, we flipped the right hemisphere to the left, 
resampled onto the standard mesh, and re-flipped to the right. In this 
manner, both hemispheres share the same vertex indices and the 
neighborhood definition following the standard mesh structure, 
which enables the usage of both hemispheres together in the same 
model. After the resampling of individual cortical surfaces onto the 
standard mesh, both left and right surface models have the same 
vertex indices and neighborhoods. Therefore, both hemispheres were 
used for the training and evaluation of the parcellation models together.

We computed three folding feature maps, mean curvature, average 
convexity, and adaptive distance transform-based sulcal depth (Yun 
et al., 2013) as inputs for surface parcellation. The mean curvature 
measures the cortical folding in a fine view, the average convexity 
measures the cortical folding in a coarse view, and our adaptive 
distance transform-based sulcal depth measures the cortical folding 
by combining both the coarse and fine views. For the parcellation 
label, we manually parcellated individual cortical surfaces following 
the Freesurfer Desikan parcellation protocol that has been extensively 

1 https://github.com/FNNDSC/fetal-brain-segmentation

2 https://mcin.ca/technology/civet/

used as a standard in neuroimaging studies (Desikan et al., 2006). The 
original Desikan parcellation map consists of 34 cortical regions in 
each hemisphere. However, the secondary and tertiary sulci are not 
fully developed in the fetal brain, so it is not feasible to parcellate 
subdivisions of the gyrus. We simplified the original map and defined 
30 cortical regions in each hemisphere (Figure 1).

2.3 Network architecture

In this study, we implemented an attention-gated spherical U-net 
by modifying the attention module and applying it to the original 
spherical U-net as backbone architecture (Figure 2). The spherical 
U-net architecture has an encoder path and a decoder path each with 
five up/down-sampling steps. Each path consists of repeated layers of 
convolution, batch normalization, and leaky rectified linear units like 
the original U-net. However, there are several differences from the 
original U-net in handling spherical structures as input and output. 
The general 2D convolution layers are replaced with ring convolutions. 
The ring convolutions are designed to perform convolution operations 
on the mesh structures (Zhao et  al., 2021). Likewise, the 
up-convolution and max pooling are replaced with surface-transposed 
convolutions and surface mean pooling. The final layer will be  a 
vertex-wise filter to map the feature vector to the output surface shape.

2.4 Attention gates for spherical U-net

Attention mechanisms can potentially enhance the network’s 
ability to focus on relevant features while ignoring irrelevant ones, 
thereby improving the accuracy and robustness of cortical surface 
parcellation (Oktay et  al., 2018). The coefficient of attention, 
ai , ,Î[ ]0 1  identify salient regions and prune feature response to 
preserve only the activations relevant to the specific task of the 
network which is the parcellation in this study. The output of the 
attention gate is the vertex-wise multiplication of input feature maps 
and attention coefficients, , ,ˆl l l

i c i c ix x α= ⋅  (Figure 2). We used the 
multi-dimensional attention coefficients (Oktay et  al., 2018) that 
enable each attention gate to learn to focus on multiple target regions 
of interest on each level of the icosahedron. The gating vector, 
gi FgÎ , is defined as multi-dimensional attention coefficients for 
each vertex i on the input icosahedron, where Fg  corresponds to the 
number of feature maps in layer l . The gating vector contains 
contextual information to determine regions to be focused on lower-
level feature maps. We used the additive attention (Bahdanau et al., 
2014) to get the gating vector for spherical feature maps on each level 
of the icosahedron.
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The attention gate is defined as a set of parameters Qatt  containing: 
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b bgy Î Î , intF , which are based on the original paper (Oktay et al., 
2018) but the transform and dimensions are modified for spherical data 
shape on icosahedrons. Instead of the 1 1 1´ ´  convolutions, 
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channel-wise one-ring convolutions were used to linearly map those 
concatenated inputs, i.e., xl and g , on icosahedrons toward an 
intermediate space with Fint  dimension. After that, the rectified linear 
unit (ReLU) was applied to the concatenated features before linear 
transformation with another one-ring convolution and sigmoid 
activation function for vector concatenation-based attention (Jetley 
et al., 2018). The gating signal forms a grid on vertices conditioned to 
spatial information for each level of icosahedron from skip-connection, 
which enables the network to combine information from multiple scales 
of spherical feature maps to achieve better performance. The parameters 
within those attention gates can be optimized with the general back-
propagation-based training of neural networks.

2.5 Training of the model

We trained and evaluated the model with fetal cortical surfaces 
extracted from 55 fetuses using 5-fold cross-validation while 10% of 

the training samples selected were used for validation during its 
training. In order to increase the number of training samples, 
we  applied three-dimensional rotational augmentation on the 
icosahedron. We randomly rotated input folding maps and output 
parcellation maps on the sphere and re-tessellated rotated maps onto 
the icosahedron with 40,962 vertices using the barycentric 
interpolation (Berrut and Trefethen, 2004). After rotational 
augmentations, we normalized each input folding map’s value with the 
z-score transform (Devore, 1995). For the loss function, we used the 
Dice loss using the Adam optimizer (Kingma and Ba, 2014) with a 
learning rate of 1e−3. To get the best optimal weights of the model in 
each fold, we monitored the Dice coefficient for the validation set and 
applied the learning rate reducer with a factor of 0.1 with five-epoch 
patience for the stagnation of validation loss. The training continued 
for 100 epochs and the network weights that showed the highest dice 
coefficient for the validation set were stored as the optimal network 
for each fold. The entire automatic parcellation framework was 
developed using Tensorflow (Dillon et al., 2017) backend, and the 

FIGURE 1

Cortical parcellation and anatomical labels. 0: background, 1: caudal middle frontal gyrus, 2: cingulate cortex, 3: cuneus, 4: frontal pole, 5: fusiform 
gyrus, 6: inferior parietal gyrus, 7: inferior temporal gyrus, 8: insula, 9: isthmus of the cingulate cortex, 10: lateral occipital cortex, 11: lateral orbital 
frontal cortex, 12: lingual gyrus, 13: medial orbital frontal cortex, 14: middle temporal gyrus, 15: parecentral lobule, 16: parahippocampal gyrus, 17: pars 
opercularis, 18: pars orbitalis, 19: pars triangularis, 20: pericalcarine cortex, 21: postcentral gyrus, 22: precentral gyrus, 23: precuneus cortex, 24: rostal 
middle frontal gyrus, 25: superior frontal gyrus, 26: superior parietal gyrus, 27: superior temporal gyrus, 28: supramarginal gyrus, 29: temporal pole, and 
30: transverse temporal gyrus.

FIGURE 2

Schematic of the proposed cortical automatic parcellation mode with attention-gated spherical U-net. Left: The network receives cortical features 
mapped on the icosahedron with 40,962 vertices. In the encoder layers, ring convolutions and spherical pooling layers project feature maps onto 
icosahedrons with 10,242, 2,562, 642, and 162 vertices. Meanwhile, the number of channels at each layer is increased from 3  Cin( )  to 32, 64, 128, 256, 
and 512, respectively. In the decoding layers, transposed one-ring convolution layers upsample and project feature maps into the icosahedron with 
40,962 vertices eventually. Right: The attention gate receives feature maps through skip connections and corresponding gating signals as inputs. The 
input feature maps are weighted by attention coefficients  a( )  computed within them.
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training and evaluation process was conducted with Nvidia RTX 
A5000 GPUs.

2.6 Evaluation of the model

We used the dice coefficient to evaluate automatic cortical surface 
parcellation performance, measuring the regional overlap between the 
predicted parcellation label and ground truth. The overall Dice 
coefficient is used to measure the general parcellation performance of 
the model according to the following formulas.
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The l  denotes the class label and i represents the vertex. The pil is 
the one-hot encoded prediction labels at vertex i for class l from 
automatic parcellation models and gil  is the ground truth label at 
vertex i for class l based on manual parcellation.

We also computed boundary distance for each region to compare 
how predicted regional boundaries are aligned with boundaries 
defined on ground truth. We measured surface distance over vertices 
from the ground truth boundaries to the boundaries of the predicted 
regions and used their median to represent boundary distance. For 
region j and vertex i on predicted boundaries defined with k vertices, 
di
j denotes the shortest distance toward the ground truth boundary of 

region j. Likewise, we also computed their mean to represent the 
overall boundary distance.
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Additionally, we  investigated the effect of parcellation 
performance on cortical surface measurement. For each region j, 
we  computed the ground truth regional area, areaGT

j , from the 
manual parcellation map and the predicted regional area, areapred

j , 
from each automatic parcellation method for each cortical parcel. 
Then, we computed the absolute percent error for each region and 
measured their mean as the overall error for each automatic 
parcellation method.
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We compared the automatic parcellation performance of the 
proposed attention-gated spherical U-net with surface registration-
based parcellation (Fischl et al., 2004), SPHARM-net (Ha and Lyu, 
2022), and original spherical U-net (Zhao et al., 2019). For surface 
registration-based parcellation, we aligned a 29 GA template surface 
with predefined regional labels, constructed with a different TD fetal 
cohort (Serag et al., 2012; Yun et al., 2019), to the individual cortical 
surface using a 2D sphere-to-sphere non-rigid warping (Robbins 
et  al., 2004). Then, we  resampled the label map for the 
individual surfaces.

2.7 Statistical analysis

All statistical analyses were conducted with IBM SPSS Statistics 
(Version 29), IBM Corp, and MATLAB, MathWorks Inc. For the 
statistical comparison of the parcellation performance, all the metrics 
and measurements are computed subject-wisely to investigate the 
improvement of parcellation performance in a paired manner. We first 
performed paired t-tests on the overall Dice coefficient, median 
boundary distance, and mean absolute percent error of area 
measurements from the proposed model against the registration-
based parcellation, SPHARM-net, and original spherical U-net to 
statistically compare their automatic parcellation performances. For 
the regional evaluation, we  performed paired t-tests on the dice 
coefficient, boundary distance, and absolute percentage error of area 
measurement for each region between methods. We used the false 
discovery rate (FDR) control method at a q-value (FDR adjusted p 
value) of 0.05 to adjust for multiple comparisons (Benjamini and 
Hochberg, 1995).

We examined the performance according to variations of GA 
and gyrification. We  performed linear regression analysis, 
Dice GA c,= +  to examine the relationship between GA and 
parcellation performance. Furthermore, we also divided the subjects 
into two subgroups based on GA, early third trimester (27–33 GA) 
and late third trimester (33–39 GA). Even fetal brains in both 
subgroups are under neurodevelopment for the maturation of the 
brain, cortical folding structures in the late third trimester are much 
more similar to infant or adult brains than those in the early third 
trimester. We performed paired t-tests on the overall dice coefficients 
for early and late third trimester subgroups to assess how 
neurodevelopmental stages affect brain parcellation performance.

3 Results

In terms of global parcellation performance, our proposed 
attention-gated spherical U-net achieved an overall dice coefficient of 
0.899 ± 0.020 (mean ± SD). When we  compared the performance 
metrics across different models, it showed a significantly higher 
overall dice coefficient compared to the surface registration-based 
method (p < 0.001), SPHARM-net (p < 0.001), and the original 
spherical U-net (p = 0.002), respectively (Table 1). Also, the median 
boundary distance from the proposed model achieved the lowest error 
than other methods while showing statistical significance only 
compared to the surface registration-based method (p < 0.001) 
(Table 2). Lastly, the proposed model showed the lowest mean absolute 
percent error in surface area measurement among the parcellation 
methods computed across all regions showing statistical significance 
than the surface registration-based method (p < 0.001) and 
SPHARM-net (p < 0.001) (Table 3).

For regional evaluation of parcellation performance, we first 
compared dice coefficients for each parcellated region (Figure 3). 
The attention-gated spherical U-net outperformed the surface 
registration-based method, showing a statistically significant 
increase in the regional dice coefficient for most regions except for 
the precentral gyrus. When it comes to the comparisons against 
SPHARM-net and original spherical U-net, their trends of 
improvement were notable even though they did not retain statistical 
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significance after FDR correction. The proposed model showed 
higher Dice coefficients than SPHARM-net for every region except 
for the insula and superior temporal gyrus. It also showed increased 
dice coefficients than the original spherical U-net for the caudal 
middle frontal gyrus, cingulate cortex, cuneus, frontal pole, inferior 
parietal gyrus, pars orbitalis, and transverse temporal gyrus. The 
improvement in the regional dice coefficient, although not 
statistically significant after FDR correction, indicates their trend 
toward the most precise parcellation performance.

Similarly, the trends of improvement are observed in both errors 
from boundary distance measurement and surface area measurement. 
The attention-gated spherical U-net showed significantly lower 
boundary distances than the surface registration-based method for every 
region except the cingulate cortex, medial orbital frontal cortex, and 
precuneus cortex after FDR correction. Despite not achieving statistical 
significance following FDR correction, the boundary distances still 
showed decreasing trends compared to SPHARM-net and original 
spherical U-net (Figure 4). In terms of regional absolute percent error of 

FIGURE 3

Regional dice coefficient for each automatic cortical parcellation method. *Significant decrease in dice coefficient when compared to the proposed 
model (FDR adjusted p  <  0.05). Label number: see Figure 1.

TABLE 1 Statistical comparisons of overall dice coefficients between the proposed model and other parcellation methods.

Parcellation method Param Overall dice coefficient t p value

Surface registration (1) - 0.834 ± 0.036 −17.5 <0.001

SPHARM-net (30) 4.3 M 0.894 ± 0.020 −3.6 <0.001

Original spherical U-net (12) 6.7 M 0.897 ± 0.020 −3.2 0.002

Attention-gated spherical U-net (Proposed 

model)
7.6 M 0.899 ± 0.020 - -

Data for dice coefficient: mean ± SD; Param: number of trainable parameters; t: t-score from the subject-wise paired t-test. Bold p-values denote statistical significance compared to the 
proposed model.

TABLE 2 Effect of parcellation performance on median boundary distance.

Model Median boundary distance (mm) t p-value

Surface registration 3.112 ± 1.225 18.8 <0.001

SPHARM-net 2.484 ± 1.272 1.2 0.24

Original spherical U-net 2.483 ± 1.320 1.1 0.29

Attention-gated spherical U-net 2.471 ± 1.322 - -

Data: mean ± SD; t: t-score from the subject-wise paired t-test. Bold p-values denote statistical significance compared to the proposed model.

TABLE 3 Effect of parcellation performance on global surface regional area measurement.

Model Mean absolute percent error (%) t p value

Surface registration 16.40 ± 3.67 16.0 <0.001

SPHARM-net 11.15 ± 2.62 4.3 <0.001

Original spherical U-net 10.48 ± 2.42 0.8 0.46

Attention-gated spherical U-net 10.40 ± 2.64 - -

Data: mean ± SD; t: t-score from the subject-wise paired t-test. Bold p-values denote statistical significance compared to the proposed model.
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surface area measurement, the attention-gated spherical U-net showed 
significantly lower errors from the surface registration-based method for 
every region except medial orbital frontal cortex, pars opercularis, and 
pars orbitalis after FDR correction. It also showed statistically lower 
errors in the frontal pole, paracentral lobule, and precuneus cortex 
compared to SPHARM-net. However, the attention-gated spherical 
U-net did not achieve statistical significance against the original 
spherical U-net even though it showed decreasing trends (Table 4).

When it comes to the effect of GA on parcellation, the overall dice 
coefficient from the proposed model was not statistically associated 
with GA p =( )0 055. , while the surface registration-based method 
(p < 0 001. ) and SPHARM-net p =( )0 008.  showed a statistically 
significant negative correlation (Table 5; Figure 5). Furthermore, from 
the subgroup analysis dividing the subjects into two subgroups based 
on GA: early third trimester (27–33 GA) and late third trimester (33–39 
GA), the proposed model showed the highest dice coefficients in both 
subgroups maintaining statistical significance (p < 0.05). It highlights its 
robustness across varying stages of brain development (Figure 6).

4 Discussion

In this study, we proposed the attention-gated spherical U-net for 
cortical surface parcellation in the fetal brain. The proposed model 
outperformed the surface registration-based method, SPHARM-net, 
and the original spherical U-net. The proposed model exhibited 
robustness across different GAs, showing no statistically significant 
association with overall Dice coefficients. Subgroup analysis further 
confirmed its high performance and robustness across early and late 
third trimesters of brain development.

4.1 Cortical surface parcellation 
performance in the fetal brain

Previous cortical surface parcellation methods are not sufficient 
for parcellation in fetal brains which have small size, limited 
gyrification, and large temporal variation since those methods rely on 
the presence of well-defined gyral and sulcal patterns. These differences 
require the parcellation model to capture information both adaptively 

and sensitively. The attention mechanism has emerged as a pivotal 
component in deep learning models, particularly in tasks that require 
discerning intricate patterns and relationships within data (Oktay 
et al., 2018; Schlemper et al., 2019). In the context of cortical surface 
parcellation, the attention mechanism plays a crucial role in instructing 
the model to focus on specific patterns on the cortical feature maps, 
which are relevant to infer the parcellation outputs (Jetley et al., 2018; 
Liu et al., 2022), thereby it contributes to improving the accuracy and 
precision of the automatic parcellation in fetal brains. The statistically 
significant improvements in overall dice coefficients (Table  1), as 
compared to previous methods, demonstrate the effect of attention 
mechanisms on fetal cortical parcellation. By focusing on relevant 
features and suppressing irrelevant ones, the attention mechanism 
allowed the model to capture fine-grained boundaries more accurately, 
which leads to the most similar boundaries of ground truth (Figure 7) 
and lowest boundary distances among the automatic parcellation 
approaches both globally and locally (Table  2; Figure  4). This is 
particularly important in cortical surface parcellation in fetal brains, 
where the distinction between different gyral regions can be subtle.

Furthermore, the attention mechanism aids in contextual 
understanding (Zhang et al., 2018). In the complex landscape of the 
brain, understanding the contextual information such as global and 
local folding patterns of the cortical surface is important to infer 
regional labels on the cortical surface. The attention mechanism allows 
the model to weigh the importance of different regions based on their 
context, leading to more accurate parcellation (Chen et al., 2018). The 
region-wise evaluation further reinforces the superiority of the 
attention-gated spherical U-net since each cortical region has a different 
rate of growth and gyrification. In the regions where cortical folding 
formed in the early developmental period, such as the precentral gyrus, 
postcentral gyrus, and insula, all of the parcellation methods showed 
stable performances. On the other hand, the proposed model showed 
greater performance in the cortical regions with late gyrification, such 
as the caudal middle frontal gyrus, cuneus, inferior parietal gyrus, par 
orbitalis, and transverse temporal gyrus (Figure 3). Not only did it 
outperform the surface registration-based method, but it also showed 
significant improvements against other deep learning models like 
SPHARM-net and the original spherical U-net. This suggests that the 
attention mechanism is not just a supplementary feature but a core 
component that substantially enhances the model’s performance.

FIGURE 4

Regional median boundary distance of each automatic cortical parcellation method. *Significant increase in boundary distance for each region when 
compared to the proposed model (FDR adjusted p  <  0.05) Label number: see Figure 1.
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Lastly, the improvement of the parcellation performance with the 
proposed model was not limited to the evaluation via dice coefficients. 
The proposed model showed the lowest error in the actual cortical 
surface measurements both globally and regionally (Tables 3, 4). This 
result emphasizes the effectiveness of the attention mechanism for 
automatic cortical surface parcellation, which eventually leads to 
precise regional analysis of the fetal brain.

4.2 Parcellation performance along GA

Analyzing parcellation performance along GA provides valuable 
insights into the model’s adaptability and accuracy across different 
developmental stages. The fetal brains in the third trimester are under 

rapid growth of the cerebral cortex with gyrification, forming foldings 
on the surfaces. It means that the region belonging to the same 
parcellation label could have large temporal variations on its folding 
feature maps along with GA. For the precise parcellation of fetal brains 
across a wide range of GA, the model is required to find peculiar 
patterns composing each cortical region and focus on them, such as 
its sulcus/gyrus and their relative relationship, despite the large 
temporal variation in fetal brains.

The result shows the usefulness of the attention-gated spherical 
U-net for fetal cortical surface parcellation across a wide range of GA 
(Table 5; Figure 5). The surface registration-based method showed lower 
dice coefficients for all GAs and a bigger variation in subjects with higher 
GA, which led negative correlation between GA and dice coefficients. 
The SPHARM-net showed slightly lower performance around 31 weeks 

TABLE 4 Effect of parcellation performance on regional surface regional area measurement.

Regional absolute percent error (%)

Label index Surface registration SPHARM-net Original spherical 
U-net

Attention-gated 
spherical U-net

1 16.7 + 13.5* 13.7 ± 12.3 12.5 ± 11.4 12.0 ± 10.8

2 13.6 ± 11.2* 10.1 ± 9.0 9.6 ± 7.9 8.9 ± 7.7

3 24.0 ± 21.4* 10.9 ± 10.5 12.3 ± 12.7 11.3 ± 12.0

4 64.0 ± 67.8* 31.7 ± 27.3* 24.1 ± 21.3 24.2 ± 19.9

5 12.2 ± 10.1* 10.7 ± 9.8 9.6 ± 8.1 9.6 ± 10.5

6 13.3 ± 11.2* 10.6 ± 9.3 10.2 ± 8.8 10.9 ± 9.5

7 14.8 ± 10.7* 10.3 ± 9.8 9.9 ± 8.3 10.4 ± 9.6

8 12.9 ± 11.3* 4.6 ± 3.5 3.6 ± 2.8 3.9 ± 2.7

9 25.6 ± 14.9* 16.2 ± 12.1 15.2 ± 12.1 15.2 ± 13.6

10 13.1 ± 12.6* 10.7 ± 8.8 10.9 ± 10.3 10.7 ± 10.5

11 11.5 ± 7.6* 8.0 ± 7.1 6.9 ± 5.6 6.7 ± 5.8

12 11.1 ± 10.2* 9.9 ± 8.9 8.2 ± 7.7 8.6 ± 8.0

13 11.3 ± 9.6 10.1 ± 8.2 9.9 ± 10.1 10.1 ± 9.7

14 14.8 ± 10.7* 8.5 ± 8.0 8.3 ± 6.4 8.7 ± 6.6

15 16.8 ± 13.8* 15.2 ± 12.4* 13.6 ± 9.7 12.4 ± 10.2

16 16.5 ± 12.5* 10.0 ± 8.5 9.7 ± 7.6 10.0 ± 7.9

17 13.1 ± 10.8 13.8 ± 15.3 14.6 ± 13.9 14.2 ± 13.3

18 17.5 ± 14.3 15.1 ± 14.3 18.1 ± 17.3 17.6 ± 15.8

19 22.8 ± 12.5* 12.2 ± 8.9 12.3 ± 10.2 12.9 ± 11.2

20 16.0 ± 16.0* 15.1 ± 13.8 12.5 ± 12.7 12.4 ± 12.1

21 6.4 ± 6.4* 5.9 ± 5.5 5.2 ± 4.4 4.9 ± 4.0

22 8.5 ± 8.5* 5.4 ± 3.8 5.3 ± 3.5 5.4 ± 3.9

23 13.6 ± 11.0* 9.2 ± 7.3* 7.0 ± 5.9 6.8 ± 5.8

24 13.0 ± 8.0* 6.9 ± 6.6 7.1 ± 5.6 6.5 ± 5.7

25 8.5 ± 6.6* 5.9 ± 4.7 5.1 ± 4.7 5.5 ± 4.8

26 10.9 ± 10.4* 8.8 ± 9.5 7.8 ± 7.3 7.5 ± 5.9

27 13.0 ± 9.7* 6.8 ± 5.9 7.1 ± 5.0 6.9 ± 5.1

28 16.0 ± 16.5* 9.5 ± 8.5 8.7 ± 6.5 8.8 ± 7.9

29 21.3 ± 15.4* 16.0 ± 14.1 16.5 ± 14.6 16.7 ± 14.1

30 25.3 ± 23.7* 19.6 ± 16.0 19.6 ± 16.9 19.5 ± 17.0

Data: mean ± SD; *Significant difference compared to the attention-gated spherical U-net after multiple-comparison correction with FDR at q = 0.05; Label number: see Figure 1. Bold p-values 
denote statistical significance compared to the proposed model.

https://doi.org/10.3389/fnins.2024.1410936
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


You et al. 10.3389/fnins.2024.1410936

Frontiers in Neuroscience 09 frontiersin.org

and decreased dice coefficients with GA. Our attention-gated spherical 
U-net was less influenced by the variations in brain development stages, 
suggesting that it could be a more reliable tool for fetal studies across 
different GA. Furthermore, the subgroup analysis dividing subjects into 

early (27–33 GA) and late third trimester (33–39 GA) subgroups further 
emphasizes the proposed model’s capability to adapt to the dynamic 
nature of fetal brain development during this period showing the highest 
overall Dice coefficients within both subgroups (Figure 6).

TABLE 5 Result of linear regression analysis between GA and overall dice coefficient.

Model R2 Standardized coefficients beta for GA t p value

Surface registration 0.11 −0.33 −3.66 <0.001

SPHARM-net 0.06 −0.25 −2.71 0.008

Original spherical U-net 0.03 −0.17 −1.76 0.082

Attention-gated spherical U-net 0.03 −0.19 −1.95 0.055

Bold p-values denote statistical significance compared to the proposed model.

FIGURE 5

Cortical parcellation performance of each method along with GA.

FIGURE 6

Comparison of cortical parcellation performance within subgroups, early third trimester (27–33 GA) and late third trimester (33–39 GA). *Significant 
decrease in dice coefficient when compared to the proposed model (p  <  0.05).
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4.3 Limitations

The proposed attention-gated spherical U-net showed 
improved performance in cortical parcellation of the fetal brain, 
there are some limitations to be addressed in future studies. First, 
the fetal MRIs used in this study were sourced from a single 
center. This may introduce biases related to specific imaging 
protocols, equipment, and patient demographics. Multi-center 
studies are essential to validate the generalizability of our findings 
across different settings and populations. Secondly, the number of 
subjects included in this study is relatively smaller than other 
cortical brain parcellation studies due to the rarity of fetal MRIs. 
For future research, a collaborative multi-center approach with a 
larger cohort is recommended to gather a diverse set of fetal MRI 
data, ensuring broader generalizability. Lastly, constructing a 
comprehensive dataset including possible variations by maternal 
health, socioeconomic status, racial and ethnic background, and 
other clinical factors will enhance the model’s adaptability and 
accuracy in reflecting real-world variability in fetal brain  
development.

5 Conclusion

This study introduced the attention-gated spherical U-net for 
automatic cortical surface parcellation of the fetal brain, showing its 
improved performance over the conventional surface registration-
based method and other previously developed deep learning models. 
The proposed model could work as a valuable tool for precise regional 
analyses in fetuses that help understand brain development and 
neurodevelopment disorders. Furthermore, it could increase 
sensitivity to detect abnormalities in specific regions, which leads to 
the potential for early detection of neurodevelopmental disorders in 
the future.
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