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Intracerebral hemorrhage (ICH) is characterized by hematoma development 
within the brain’s parenchyma, contributing significantly to the burden of 
stroke. While non-contrast head computed tomography (CT) remains the 
gold standard for initial diagnosis, this review underscores the pivotal role of 
magnetic resonance imaging (MRI) in ICH management. Beyond diagnosis, 
MRI offers invaluable insights into ICH etiology, prognosis, and treatment. 
Utilizing echo-planar gradient-echo or susceptibility-weighted sequences, MRI 
demonstrates exceptional sensitivity and specificity in identifying ICH, aiding 
in differentiation of primary and secondary causes. Moreover, MRI facilitates 
assessment of hemorrhage age, recognition of secondary lesions, and evaluation 
of perihematomal edema progression, thus guiding tailored therapeutic 
strategies. This comprehensive review discusses the multifaceted utility of MRI 
in ICH management, highlighting its indispensable role in enhancing diagnostic 
accuracy as well as aiding in prognostication. As MRI continues to evolve as 
a cornerstone of ICH assessment, future research should explore its nuanced 
applications in personalized care paradigms.
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1 Introduction

Intracerebral hemorrhage (ICH) is characterized by hematoma development within the 
brain’s parenchyma. In the United States alone, it contributes to roughly 10–20% of the 795,000 
annual stroke cases (Rajashekar and Liang, 2023; Unnithan et al., 2023). ICH can be broadly 
classified into primary and secondary forms, with primary ICH accounting for about 80% of 
cases, while secondary ICH makes up the remaining 20% (Macellari et al., 2014; Jain et al., 
2021). Primary ICH stems from underlying small vessel diseases such as hypertension and 
cerebral amyloid angiopathy (CAA), whereas secondary ICH can result from various factors 
such as hemorrhagic conversion of acute ischemic stroke (AIS), vascular malformations, or 
other structural anomalies (Macellari et al., 2014; Raposo et al., 2023). This review delineates 
the role of magnetic resonance imaging (MRI) in ICH, including its use for diagnosis, 
treatment, and prognostication.
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2 Need for imaging in ICH and 
urgency

ICH is associated with high rates of severe disability and mortality, 
including an approximately 40% mortality rate within 1 month and a 
combined severe disability and mortality rate of up to 75% within 
1 year (van Asch et al., 2010; Jain et al., 2021). Given these data on the 
severity of the natural history of ICH, emergent evaluation is critical. 
Early identification enables initiation of ultra-early treatment to 
prevent hematoma expansion and mitigate neuroinflammation. The 
potential of reduced morbidity and mortality associated with ICH 
through timely recognition and intervention has led to an increasing 
emphasis on its prompt diagnosis (Li et al., 2024).

Initial imaging for ICH is predicated on non-contrast head computed 
tomography (NCCT), commonly performed in the emergency 
department. CT or MR angiography may be used to identify risk of 
hematoma expansion and vascular causes, while MRI is also effective in 
identifying other structural causes of ICH (Hemphill 3rd et al., 2015). 
Once an ICH is visualized using neuroimaging, early interventions via 
management of airway, hemostasis, seizures, hypertension, intracranial 
hypertension, hyperglycemia, fever, and surgical intervention are critical 
as they can contribute to decreased rates of morbidity and mortality 
(Morotti and Goldstein, 2016). Rapid imaging is crucial for swift 
diagnosis. While both CT and MRI are highly sensitive in diagnosing 
ICH, a NCCT is typically the first-line diagnostic tool due to its ability to 
differentiate between ischemic strokes and ICH, wider availability, shorter 
scanning time and patient factors such as clinical instability, presence of 
pacemaker or claustrophobia (Macellari et  al., 2014; Morotti and 
Goldstein, 2016; Fandler-Höfler et al., 2023).

3 Role of MRI in ICH diagnosis

MRI demonstrates sensitivity, specificity, and overall accuracy, 
approaching nearly 100%, for diagnosing ICH in hyperacute and acute 
settings (Fiebach et al., 2004; Romanova et al., 2014). MRI, specifically 
echo-planar gradient-echo (GRE) or susceptibility-weighted imaging 
(SWI) sequences, are particularly useful in the hyperacute (less than 
24 h of symptom onset) setting of ICH because as time progresses, the 
hemorrhage can obscure the underlying brain parenchyma, and this 
occurs to a greater degree after 24 h. MRI also has higher diagnostic 
accuracy for chronic ICH when compared to CT (Linfante et al., 1999; 
Kidwell et al., 2004; Macellari et al., 2014). However, despite this, MRI 
should not replace CT as the primary imaging method due to its 
greater expediency, which is crucial for promptly detecting ICH.

MRI is a useful tool in determining the acuity of ICH, especially 
in instances where the ICH is composed of hemorrhagic components 
of different ages, or when the patient has had multiple ICHs. The 
findings on MRI are dependent on the age of the hemorrhage. As a 
hematoma ages, hemoglobin undergoes various transformations, 
transitioning through oxyhemoglobin, deoxyhemoglobin, 
methemoglobin, and ultimately leading to the breakdown of red blood 
cells (RBCs) into ferritin and hemosiderin (Bradley, 1993). As the 
hemoglobin breaks down from oxyhemoglobin to the rest of the RBC 
products, it transitions from diamagnetic material, having no unpaired 
electrons, to paramagnetic material, having unpaired electrons. The 
intensity seen on MRI depends on whether unpaired electrons are 
present, how many unpaired electrons there are, and the location of 
the RBC products. The phases of ICH (see Table 1) can be classified as 
hyperacute (< 24 h of the hemorrhage, intracellular oxyhemoglobin, 
Figure  1A, Images A1,A2), acute (1–3 days, intracellular 
deoxyhemoglobin, Figure 1A, Images B1,B2), early subacute (3–7 days, 
intracellular methemoglobin, Figure 1A, Images C1,C2), late subacute 
(7–28 days, extracellular methemoglobin, Figure 1A, Images D1,D2), 
or chronic (>1-month, extracellular ferritin and hemosiderin, 
Figure 1A, Images E1,E2) (Bradley, 1993; Weerink et al., 2023).

4 Role of MRI in identifying an ICH 
etiology

MRI is useful in identifying primary causes of ICH, such as small-
vessel disease (SVD) or cerebral amyloid angiopathy (CAA). In 
particular, findings of lobar macrohemorrhage, exclusively cortical 
microbleeds (CMBs), cortical superficial siderosis (cSS), and a 
multispot pattern of white matter hyperintensities have been 
associated with CAA, whereas CMBs in subcortical locations and 
basal ganglia white matter hyperintensities may indicate SVD as the 
ICH etiology (Charidimou et al., 2016, 2022). Making the distinction 
between CAA and SVD is essential, as it has implications on risk of 
ICH recurrence, progression, and decision-making regarding the 
safety of antithrombotic treatments (Charidimou et al., 2019).

MRI plays a critical role in identifying secondary causes of ICH as 
well. These include structural vascular lesions such as arteriovenous 
malformations (AVMs), cavernomas, or dural arteriovenous fistulae. 
Other readily apparent secondary causes of ICH diagnosed 
predominantly via MRI include hemorrhagic conversion of AIS, cerebral 
neoplasms, along with cerebral venous thrombosis (CVT), arterial 
dissection and non-atheromatous vasculopathies such as moyamoya 
disease, vasculitis, reversible cerebral vasoconstriction syndrome (RCVS) 

TABLE 1 Stages of hemorrhage on MRI.

T1 Sequence MR T2 Sequence MR Gradient-echo sequence MR

Hyperacute (<24 h) Hypointense/isointense Isointense/hyperintense center with peripheral hypointensity 

and hyperintense rim of vasogenic edema

Marked hypointensity

Acute (1–3 days) Isointense/slightly 

hypointense

Hypointense with hyperintense rim Marked hypointensity

Early subacute (3–7 days) Hyperintense Hypointense Hypointense

Late subacute (7–28 days) Hyperintense Hyperintense Hypointense

Chronic (>1 month) Hypointense Hypointense Hyperintense/Isointense core with 

hypointense rim
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and infective endocarditis (IE) (Wijman et al., 2010; Macellari et al., 
2014; Morotti and Goldstein, 2016; Fandler-Höfler et al., 2023; Raposo 
et al., 2023). In addition, MRI can even be used to aid diagnosing IE in 
individuals with silent emboli, without neurologic symptoms (Habib 
et al., 2015). Given its utility in identifying an etiology for ICH, MRI is 
recommended in all patients without a clear macrovascular cause of ICH 
identified on a CTA (Greenberg et al., 2022).

MRI is the most sensitive and specific method for identifying 
cerebral cavernous malformations, which often exhibit a distinct 
“popcorn” appearance on T2-weighted imaging, with central 
hyperintensity indicating recent bleeding and a surrounding 
hypointense halo indicative of hemosiderin from prior bleeding events 
(Figure 1B, Images H,I). In cases of CVT, contrast-enhanced MR 

venography provides detailed visualization of thrombosed segments 
within the venous sinus, showing strong correlation with conventional 
digital subtraction angiography (DSA) findings and distinguishing 
anatomical variations, such as hypoplastic sinuses, from CVT. CVT, 
which is defined as a thrombus in a venous sinus, superficial 
intracranial vein, or deep intracranial vein (Oliveira et al., 2022) can 
also be visualized on MRI. This is due to the fact that patent dural 
sinuses typically appear as a flow void – a signal loss that occurs within 
moving fluids. Meanwhile CVTs can be recognized best on T2 or 
fluid-attenuated inversion recovery (FLAIR) sequences as an absence 
of a flow void (Chiewvit et al., 2011; Oliveira et al., 2022). MRI is also 
useful in identifying AVMs, where clusters of hypointense vascular 
channels and enlarged draining veins (pre-contrast, Figure 1B, Image 

FIGURE 1

ICH stages of blood over time on MRI and common Etiologies of ICH on MRI. (A) Stages of blood in ICH: (A1) ICH hyperacute blood on T1, (A2) ICH 
hyperacute blood on T2 FLAIR, (B1) ICH acute blood on T1, (B2) ICH acute blood on T2 FLAIR, (C1) ICH early subacute blood on T1, (C2) ICH early subacute 
blood on T2 FLAIR, (D1) ICH late subacute blood on T1, (D2) ICH late subacute blood on T2, (E1) ICH chronic blood on T1. (E2) ICH chronic blood on GRE. 
(B) Common ICH etiologies on MRI: (F) AVM on T1 Pre-Contrast, (G) AVM on T1 Post-Contrast, (H) Cavernous hemangioma on T2 FLAIR, (I) Cavernous 
hemangioma on GRE, (J) Hemorrhagic conversion of ischemic stroke on T2 FLAIR, (K) Hemorrhagic conversion of ischemic stroke on GRE, 
(L) Hemorrhagic conversion of ischemic stroke on T1, (M) Hemorrhagic metastasis on T2 FLAIR, (N) Hemorrhagic metastasis on GRE, (O) Hemorrhagic 
metastasis on T1. ICH = Intracerebral hemorrhage, FLAIR = fluid-attenuated inversion recovery, GRE = gradient-echo, AVM = arteriovenous malformation.
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F) enhance following contrast administration (post-contrast, 
Figure 1B, Image G).

Diffusion-weighted imaging (DWI) sequences of MRI play a 
crucial role in the evaluation of ICH, as they can help to differentiate 
between AIS with hemorrhagic conversion and primary ICH. Central 
hyperintensity on DWI can be seen in both AIS as well as hyperacute 
hematomas, and these etiologies can appear very similar on T2 
weighted imaging. However, using FLAIR sequences can allow for the 
visualization of the peripheral hypointense rim that is present in 
hyperacute hematoma and not in AIS (Kang et al., 2001). AIS with 
hemorrhagic conversion may also have a mixed appearance on DWI 
sequence, and have microbleeds on GRE or SWI, as opposed to a more 
homogenous appearance of ICHs (Bradley, 1993).

5 Role of MRI in ICH treatment

ICH results in blood–brain barrier (BBB) disruption and 
parenchymal cellular swelling, contributing to perihematomal edema 
(PHE). This can cause brain tissue compression, intracranial 
hypertension, herniation and death. The fluid-attenuated inversion 
recovery (FLAIR) sequence of the MRI can be used to quantify the 
volume of PHE, which appears hyperintense (Urday et  al., 2015; 
Ironside et al., 2019). CT can be used for this purpose, however both 
manual and automated quantification are limited by interference of 
leukoariosis and cerebrospinal fluid, which are of similar Hounsfield 
unit densities (Urday et al., 2015). While PHE evolution may correlate 
with functional outcomes, minimally invasive surgery (MIS) for 
hematoma evacuation has been shown to be associated with decreased 
clot burden, PHE, and more recently improved functional outcomes 
(Mould et  al., 2019; Hieber et  al., 2023; Kellner and Mocco, 2023; 
Pradilla et al., 2024). The degree of clot evacuation by MIS has correlated 
with a decrease in pericavity edema (PCE) and PCE remained static 
following MIS ICH evacuation in one study (Horowitz et al., 2022).

Patients with ICH may also be  at risk of AIS and other 
cardiovascular events. When antithrombotic or anticoagulant 
medications are considered for secondary stroke prevention, risk of 
hemorrhage needs to be carefully weighed against the risk of ischemic 
and vaso-occlusive diseases (Greenberg et al., 2022). MRI can identify 
ICH causes that have a heightened risk of ICH recurrence such as 
CAA, or IE hence can provide useful information when making these 
treatment decisions. In patients with IE, MRI can also aid in lesion 
characterization such as identification of abscesses, mycotic 
aneurysms, lobar hematomas and territorial strokes prior to surgical 
evaluation for valve surgery (Chakraborty et al., 2019).

If the initial MRI does not reveal an underlying etiology of the 
ICH, a follow-up MRI could be useful to alter future management. 
Limited literature suggests that the yield of repeat MRI to detect a 
secondary lesion varies between 0 to 16% of patients with spontaneous 
ICH, with secondary lesions typically found to be  tumors or 
cavernomas (Mouchtouris et al., 2021; Wilson et al., 2023). Studies 
evaluating outpatient follow-up MRI in this setting have included 
studies performed any time from 1 day to 2 years post-ICH, and the 
optimal timing of this repeat imaging remains unclear (particularly 
given the complex evolution of blood products discussed above) 
(Mouchtouris et  al., 2021; Wilson et  al., 2023). Future research is 
required to determine optimal timing for follow-up MRI scans, as well 
as to identify the specific patient cohorts who would benefit most from 

such assessments. This may involve considering factors such as the 
location of ICH and other pertinent imaging characteristics. Such 
efforts may enhance diagnostic accuracy while minimizing 
unnecessary testing and associated costs.

6 Role of MRI in ICH risk stratification 
and prognostication

In the acute phase, an MRI can provide more detailed information 
on the severity of ICH-related injury such as hematoma volume, the 
degree of surrounding edema and midline shift, assisting in 
neuroprognostication. Involvement of critical parts of the ascending 
reticular activating system, caudate nucleus, thalami or diffuse damage 
impairing network connectivity identified by MRI, can aid in 
prediction of recovery from disorders of consciousness caused by ICH 
(Rohaut et al., 2019). Task-based and resting-state functional MRI can 
reveal cognitive motor dissociation in patients that appear to 
be unresponsive on bedside examination and predict re-emergence of 
consciousness (Edlow et al., 2021).

MRI can also aid in individual ICH risk stratification. In patients 
with ICH, features suggestive of CAA on MRI are associated with the 
highest ICH recurrence (Greenberg et  al., 2022). MRI findings 
suggestive of cerebral small vessel disease (SVD) and CMBs strongly 
correlate with poorer functional and cognitive outcomes, an increased 
risk of ICH recurrence and increased long-term mortality (Greenberg 
et al., 2022). Notably, in patients with lobar ICH, the presence of cSS, 
a marker of hemorrhagic risk in CAA, has been associated with higher 
odds of hematoma expansion and an independent biomarker of poor 
prognosis (Boulouis et al., 2016; Sporns et al., 2021). The presence of 
cSS is also associated with a higher recurrence risk in patients with 
lobar ICH, worse cognitive trajectories, and a higher incidence of 
post-ICH dementia. In patients with AIS, CMBs detected on GRE or 
SWI are associated with higher rates of hemorrhagic transformation 
(Dar et al., 2018). In addition to identification of macrovascular causes 
of ICH, MRI can identify small intraventricular hemorrhages that may 
not be  detected on CT, allowing a superior estimation of ICH 
recurrence (Romanova et al., 2014).

PHE, which represents the inflammatory and cytotoxic responses 
of the tissue surrounding the ICH and can be a quantifiable marker of 
secondary brain injury (SBI). Variations in pathophysiological 
mechanisms could affect temporal patterns of PHE formation. While 
it has been suggested that peak PHE volume typically occurs between 
2 to 3 weeks after ICH, observations suggest that PHE can continue to 
progress for up to 21 days following the onset of ICH (Urday et al., 
2015; Ironside et  al., 2019; Chen et  al., 2021). PHE volume on 
admission in small ICHs, and PHE increase at 72 h, have been 
correlated with worse functional outcomes in small studies, with 
variable methods of PHE quantification (Sansing et  al., 2011; 
Appelboom et al., 2013; Urday et al., 2015).

DWI sequences can also detect small remote DWI hyperintensities 
in patients with ICH (Xu et al., 2017). Studies have shown a correlation 
between aggressive blood pressure reduction, systolic blood pressure 
variability, and the occurrence of DWI MRI lesions, suggesting that 
acute disruptions in blood pressure autoregulation may contribute to 
their development (Kidwell et  al., 2017). These lesions have been 
associated with conditions such as SVD and CAA, and their 
pathogenesis may involve additional factors related to 
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microangiopathy and characteristics specific to ICH (Wu et al., 2015; 
Murthy et al., 2020; Xu et al., 2022) Despite being often subclinical and 
unidentifiable on CT, the presence of punctate ischemic DWI lesions 
increases the risk of subsequent ischemic stroke by 2.5 times, and may 
be associated with worse long-term outcomes (Murthy et al., 2021). 
Identifying these DWI lesions through MRI could provide valuable 
insight for stratifying patients based on potential outcomes, and could 
even guide acute blood pressure targets, highlighting the utility of 
MRI in assessing patient prognosis.

Finally, previous literature has utilized MRI in cases of ICH and 
IVH to stratify patients with the van Swieten scale (vSS) to grade 
severity of leukoaraiosis via the Fazekas Score (FS) with severe 
leukoaraiosis defined as FS > 3 or deep FS 2 to 3. Patients with this 
definition of severe leukoaraiosis were found to have persistently poor 
outcomes 1 year after their hemorrhagic event. This exemplifies 
another utilization of MRI for the long term prognostication of ICH 
patients (Shah et al., 2022).

7 Conclusion

MRI is a pivotal tool in the evaluation of ICH. It has a very high 
sensitivity, specificity, and accuracy in diagnosing ICH, particularly in 
the hyperacute stage. Beyond its hyperacute utility, MRI can also 
be utilized to determine ICH age and differentiation of underlying 
causes, thereby influencing disease-specific treatment strategies, and 
offering prognostic value. As MRI continues to serve as a cornerstone 
of ICH assessment and becomes standard of care globally, future 
studies are needed to assess its use in individualized clinical scenarios, 
such as the diagnostic value of performing serial studies and the utility 
of MRI in guiding specific medical and procedural interventions.
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