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Background: An increasing body of evidence suggests that neuroinflammation 
is one of the key drivers of late-onset Alzheimer’s disease (LOAD) pathology. 
Due to the increased permeability of the blood–brain barrier (BBB) in older 
adults, peripheral plasma proteins can infiltrate the central nervous system 
(CNS) and drive neuroinflammation through interactions with neurons and glial 
cells. Because these inflammatory factors are heritable, a greater understanding 
of their genetic relationship with LOAD could identify new biomarkers that 
contribute to LOAD pathology or offer protection against it.

Methods: We used a genome-wide association study (GWAS) of 90 different 
plasma proteins (n  =  17,747) to create polygenic scores (PGSs) in an independent 
discovery (cases  =  1,852 and controls  =  1,990) and replication (cases  =  799 and 
controls  =  778) cohort. Multivariate logistic regression was used to associate 
the plasma protein PGSs with LOAD diagnosis while controlling for age, sex, 
principal components 1–2, and the number of APOE-e4 alleles as covariates. 
After meta-analyzing the PGS-LOAD associations between the two cohorts, 
we  then performed a two-sample Mendelian randomization (MR) analysis 
using the summary statistics of significant plasma protein level PGSs in the 
meta-analysis as an exposure, and a GWAS of clinically diagnosed LOAD 
(cases  =  21,982, controls  =  41,944) as an outcome to explore possible causal 
relationships between the two.

Results: We identified four plasma protein level PGSs that were significantly 
associated (FDR-adjusted p  <  0.05) with LOAD in a meta-analysis of the discovery 
and replication cohorts: CX3CL1, hepatocyte growth factor (HGF), TIE2, and 
matrix metalloproteinase-3 (MMP-3). When these four plasma proteins were 
used as exposures in MR with LOAD liability as the outcome, plasma levels of 
HGF were inferred to have a negative causal relationship with the disease when 
single-nucleotide polymorphisms (SNPs) used as instrumental variables were 
not restricted to cis-variants (OR/95%CI  =  0.945/0.906–0.984, p  =  0.005).

Conclusion: Our results show that plasma HGF has a negative causal relationship 
with LOAD liability that is driven by pleiotropic SNPs possibly involved in other 
pathways. These findings suggest a low transferability between PGS and MR 
approaches, and future research should explore ways in which LOAD and the 
plasma proteome may interact.
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1 Introduction

Late-onset Alzheimer’s disease (LOAD) is a progressive, 
neurodegenerative condition with no known cure and a diverse 
range of contributing pathologies that make it difficult to diagnose 
(Fang et al., 2020). Even after diagnosis, this treatment is hindered 
because LOAD patients often exhibit heterogeneity in their clinical 
symptoms at diagnosis (Devi and Scheltens, 2018), brain 
neuropathology (Murray et al., 2011), and comorbidities from other 
diseases such as type 2 diabetes (Santiago and Potashkin, 2021). 
Therefore, they likely require therapeutic options tailored to their 
individual needs. Due to the highly polygenic nature of LOAD, 
there are many potential contributing genetic factors to either 
disease risk or protection against it, none of which are individually 
necessary or sufficient for the development of LOAD (Baker and 
Escott-Price, 2020). Furthermore, many of the genes contributing 
to the risk of LOAD are considered to be pleiotropic, with upstream 
effects on multiple different traits that may give rise to some of the 
patterns of comorbidities seen in the LOAD patient population. 
Understanding the polygenic overlap of different traits with LOAD 
could help guide diagnosis and treatment by pinpointing which 
factors negatively or positively contribute to the overall health of 
patients, thus aiding in the management of risks.

Like LOAD, circulating levels of cytokines and other plasma 
proteins are highly heritable and polygenic (de Craen et al., 2005; 
Li et  al., 2016). Blood samples from children of parents with a 
history of LOAD show a higher production capacity for multiple 
pro-inflammatory cytokines than those from children without a 
familial history of LOAD, suggesting a shared genetic liability 
between inflammation and LOAD (van Exel et  al., 2009). This 
notion is supported by recent genome-wide association studies 
(GWASs) for LOAD, in which several associated loci were 
implicated in inflammatory pathways (Harold et  al., 2009) and 
candidate gene investigations (Desikan et al., 2015). Genetic risk 
factors for LOAD, including the APOE-e4 isoform and rare variants 
of TREM2, have further been shown to exacerbate 
neuroinflammation through their effect on the activation state of 
microglia (Colonna and Wang, 2016; Parhizkar and Holtzman, 
2022). Recent studies have also suggested a genetic overlap between 
predictors of circulating proteins and LOAD, with some exploring 
inflammation-specific markers (van der Linden et al., 2021a) and 
others focusing on plasma proteins with evidence of a role in the 
disease (Handy et al., 2021).

The understanding of polygenic traits and their relationship 
with other phenotypes has been considerably improved by the 
implementation of polygenic scores (PGSs), which are single-unit 
estimates of an individual’s genetic liability for a trait (Dudbridge, 
2013). PGSs represent the sum of individual predisposing single-
nucleotide polymorphisms (SNPs), which tend to be weighted by 
their effect size as drawn from a GWAS. A PGS is typically 
calculated using individual genotyping data in a target population 

according to the effect allele of SNPs and their effect sizes provided 
by GWAS summary statistics. PGSs are most commonly developed 
for disease prediction, with genotyping information and GWAS 
summary statistics for the same trait. For example, LOAD-specific 
PGSs have achieved an area under the curve of up to 84% in 
distinguishing LOAD cases from controls (Leonenko et al., 2021). 
Using summary statistics of a trait different from the target trait 
provides a measure of shared genetic etiology between the two 
(Choi et  al., 2020). This approach has seen recent success in 
identifying genetic associations between the blood levels of 31 
different lipids consistent across two independent LOAD target 
cohorts (van der Linden et al., 2021b) and in showing associations 
between a LOAD PGS and markers of inflammation (Morgan et al., 
2017). However, as shown by Handy et al. (2021), using a GWAS of 
plasma proteins to create PGSs of LOAD for association testing 
requires further causal validation, as even literature-selected 
proteins may show a weak association with the disease after 
accounting for factors such as population stratification.

A genetic association does not necessarily indicate that a trait 
causally contributes to disease pathology, as even at the genetic level, 
associations are subject to confounding. Mendelian randomization 
(MR) provides a means by which a causal relationship can be inferred 
between heritable traits by using SNPs as genetic instruments to test 
for a causal effect (Davey Smith and Ebrahim, 2003; Davey Smith and 
Hemani, 2014). In MR, a causal relationship between an exposure 
and an outcome is inferred where SNPs associated with an exposure 
trait, e.g., plasma protein levels, show a proportional association with 
an outcome trait, e.g., LOAD, under the assumption that they do not 
have an independent impact on the outcome (i.e., no pleiotropic 
effects across exposure and outcome), and are not associated with 
confounding variables (Davey Smith and Hemani, 2014). Two-sample 
MR leverages the MR approach using the summary statistics of two 
independent GWASs to serve as the exposure and outcome traits. For 
example, using well-powered GWASs across several measures of 
body mass, one study found a protective relationship between genetic 
predictors of lean body mass and LOAD (Daghlas et  al., 2023), 
implicating a causal effect.

Using a recent GWAS of 90 different plasma proteins published 
by the SCALLOP consortium (Folkersen et al., 2020), we sought to 
develop plasma protein PGSs and test their association with LOAD 
diagnosis as a means of identifying novel genetic etiologies and 
potential pathways that may be associated with the disease. We then 
selected plasma protein PGSs that showed significant associations 
with LOAD as exposures in a two-sample MR analysis where LOAD 
liability served as the outcome to test whether they play a causal role 
in the disease. We expect that our unbiased selection of proteins 
and the larger participant sample size (n = 17,747) of the plasma 
protein GWAS used compared to prior studies will aid our goal of 
discovering novel relationships between plasma proteins and 
LOAD, which may assist future efforts in identifying diagnostic 
factors for the disease.
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2 Materials and methods

2.1 Study design

The overall design of this study is given in Figure 1. The goal of 
this study was to discover plasma proteins with a genetic association 
with LOAD diagnosis using PGSs and then determine if any of them 
have a causal relationship with LOAD using two-sample MR. To do 
this, we  first performed quality control on the GWAS summary 
statistics of plasma protein levels, using LDSC to calculate the 

heritability of each plasma protein and retain summary statistics with 
an h2

SNP ≥ 0.05. To control the known strong effects of the APOE locus, 
we removed it from the GWAS summary statistics prior to their use 
in creating plasma proteins PGSs and as exposures in MR (Figure 1A).

Next, PGSs were calculated in our discovery cohort using the 
summary statistics of plasma proteins (Figure 1B). Plasma protein 
PGSs that had a significant association (FDR-adjusted p < 0.05) with 
LOAD diagnosis while accounting for the age, sex, APOE-e4 genotype, 
and first two genetic principal components (PCs) of discovery cohort 
participants were tested in our replication cohort. PGS-LOAD 

FIGURE 1

Overall study design. (A) Quality control of GWAS summary statistics (base data) and AD genotyping datasets (target data). (B) PGS association analysis 
using PRSice-2, followed by a random-effects meta-analysis. (C) Two-sample Mendelian randomization analysis.
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associations with a consistent direction of effect by their odds ratio 
(OR) in the replication cohort were then meta-analyzed with their 
discovery cohort PGS-LOAD association in a random-effects model.

The GWAS summary statistics of significant plasma protein 
PGS-LOAD associations in the meta-analysis (FDR-adjusted p < 0.05) 
were used as exposures in a bidirectional two-sample MR analysis 
with LOAD as the outcome (Figure  1C). Plasma proteins with a 
p-value less than 0.05 by the random-effects inverse-variance weighted 
(RE IVW) or Wald ratio methods, and a consistent direction of effect 
in sensitivity analyses (fixed effects IVW, MR-Egger, weighted 
median), were inferred to have a causal effect on LOAD liability. As an 
additional sensitivity analysis, we used a LOAD GWAS as the exposure 
and the prior plasma protein exposures as outcomes to test possible 
bidirectional relationships between the plasma proteins and LOAD.

2.2 Genotyping (target) data

In this study, two LOAD genotyping datasets were requested from 
the database of Genotypes and Phenotypes (dbGaPs) for PGS 
association analyses. These include the National Institute of Aging 
Late-Onset Alzheimer’s Disease (NIA-LOAD) study (phs000168.
v2.p2) (Lee et al., 2008) and the Multi-Site Collaborative Study for 
Genotype-Phenotype Associations in Alzheimer’s Disease (GenADA) 
(phs000219.v1.p1) (Li et al., 2008; Filippini et al., 2009). Both studies 
were conducted on European American (EA) individuals, except the 
NIA-LOAD study, which included a small cohort of African 
Americans (AA). Because the plasma protein GWASs were conducted 
in European-origin populations, we  restricted our analyses of the 
NIA-LOAD study to EA individuals identified using principal 
component analysis (PCA). The NIA-LOAD study was used as our 
discovery cohort, while the GenADA study was used as our replication 
cohort. Information on the diagnosis, age, sex, and APOE-ε4 allele 
frequencies of individuals in the NIA-LOAD and GenADA datasets 
can be found in Table 1.

LOAD cases in both studies were defined as any individual with 
probable LOAD dementia by the National Institute of Neurological 
and Communicative Disorders and Stroke and the Alzheimer’s 
Disease and Related Disorders Association (NINCDS-ADRDA) 
criteria. Controls were neurologically evaluated to be  cognitively 
normal and matched to the age and sex of cases. NIA-LOAD 
participants (cases = 1,852 and controls = 1,990) had 601,273 SNPs 
genotyped using the Illumina Human610 QuadV1-B platform. In the 
GenADA study, participants (cases = 799 and controls = 778) were 

genotyped using the Affymetrix 500 k Set, which includes the Mapping 
250 k STY and Mapping 250k_NSP arrays. To fill in missing genetic 
information, both genotyping datasets were imputed to genome build 
37 (hg19) with the 1,000 Genomes Phase 3v5 reference panel (Auton 
et al., 2015) on the Michigan Imputation Server1 (Das et al., 2016). 
After imputation, we used Plink (v.1.9) to quality control SNPs with 
imputation quality (INFO) greater than 0.3, a minor allele frequency 
less than 0.01, Hardy–Weinberg equilibrium test p-value less than 
0.000001, missing genotype rate, and missing rate per person less than 
0.01 (Chang et al., 2015), resulting in a final total of 8,530,670 SNPs in 
both datasets.

2.3 GWAS summary statistics

In this study, we used summary statistics from GWASs of plasma 
levels of proteins and of LOAD. Prior to generating PGSs, we removed 
all SNPs within the APOE locus (genome build hg19-chromosome 19; 
base pairs 45,365,990–45,458,030) of the plasma protein summary 
statistics. This is because the APOE locus has a large effect on LOAD 
risk, and including many SNPs in linkage disequilibrium (LD) with 
APOE would falsely tag its effects and potentially bias any PGS results 
(Farrell and Brookes, 2022). Information on the two studies is 
summarized in Table 2.

2.3.1 LOAD summary statistics
We downloaded the Stage 12,019 Kunkle et  al. (2019) GWAS 

summary statistics from the IEU GWAS catalog.2 The International 
Genomics of Alzheimer’s Project (IGAP) is a large three-stage study 
based on GWAS on individuals of European ancestry. In stage 1, IGAP 
used genotyped and imputed data on 11,480,632 SNPs to meta-
analyze GWAS datasets consisting of 21,982 LOAD cases and 41,944 
cognitively normal controls from four consortia: The Alzheimer 
Disease Genetics Consortium (ADGC); The European Alzheimer’s 
disease Initiative (EADI); The Cohorts for Heart and Aging Research 
in Genomic Epidemiology Consortium (CHARGE); and The Genetic 
and Environmental Risk in AD Consortium Genetic and 
Environmental Risk in AD/Defining Genetic, Polygenic and 

1 https://imputationserver.sph.umich.edu

2 https://www.ebi.ac.uk/gwas/studies/GCST007511

TABLE 1 Demographic information of genotyping data.

NIA-LOAD GenADA

Cases Controls Total Cases Controls Total

Sample Size 1852 1990 3,842 799 778 1,577

Age (Mean ± SD) 76.7 ± 6.99 70.8 ± 10.8 73.6 ± 9.61 72.2 ± 8.41 73.4 ± 7.92 72.8 ± 8.19

Sex (Male/Female) 645/1207 789/1201 1434/2408 339/460 276/502 615/962

APOE-ε4 

Alleles, n (%)

0 575 (31.0) 1,303 (65.5) 1878 (48.9) 296 (37.0) 589 (75.7) 885 (56.1)

1 1,003 (54.2) 634 (31.9) 1,637 (42.6) 397 (49.7) 177 (22.8) 574 (36.4)

2 274 (14.8) 53 (2.66) 327 (8.51) 106 (13.3) 12 (1.54) 118 (7.48)

Age, age at onset (cases)/age at examination (controls); APOE-ε4 alleles, number of ε4 alleles in the genome of each individual.
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Environmental Risk for Alzheimer’s Disease Consortium (GERAD/
PERADES).

2.3.2 Plasma protein summary statistics
The summary statistics for each of the 90 blood plasma proteins 

by Folkersen et al. (2020) were downloaded from Zenodo.3 To discover 
genome-wide significant loci for each of the 90 proteins, a meta-
analysis was performed on 21.4 million SNPs derived from 13 studies 
totaling 21,758 European individuals. Due to inter-cohort differences 
in genotype imputation, each protein had an average sample size of 
17,747 individuals with 20.3 million SNPs. In each cohort, blood 
plasma levels of proteins were measured using the Olink proximity 
extension assay cardiovascular 1 panel (Assarsson et al., 2014). The 
log2 normalized protein expression (NPX) values from the Olink 
assay for each protein had been ranked and either inverse normal 
transformed or standardized to unit variance to control for batch 
effects. In total, 467 genome-wide significant loci were reported in the 
original study to be associated with 85 of the 90 blood plasma proteins.

2.4 Heritability estimated from GWAS 
summary statistics

The heritability (h2) of a trait is defined as the proportion of its 
phenotypic variance attributed to genetic variance (Evans et al., 2018). 
Estimates of heritability ascribed to SNPs (h2

SNP) are important in 
ensuring the reliability of analyses using GWAS data. Following the 
recommendation by Choi et al. (2020), we required an h2

SNP ≥ 0.05 for 
each plasma protein GWAS before performing PGS analyses. 
We calculated the h2

SNP from each GWAS using LD score regression 
(LDSC) (Bulik-Sullivan et al., 2015). LDSC calculates an “LD Score” 
for each SNP in a GWAS, which measures the amount of genetic 
variance tagged by the SNP. The χ2 association test statistic for each 
SNP is then regressed against their LD Score, and the slope of this 
regression serves as an estimate of the GWAS’s h2

SNP. Before a GWAS’s 
h2

SNP calculation, its SNPs were limited to those on an ancestry-
matched reference panel of ~1.2 million SNPs from the HapMap 3 
project to avoid estimating the h2

SNP with genetic variants of low 
imputation quality that were not reported by the original GWAS.

2.5 Plasma protein PGS modeling

In this study, we generated PGSs with the PRSice-2 software (Choi 
and O’Reilly, 2019). PRSice-2 takes the “Clumping and Thresholding” 

3 https://zenodo.org/records/2615265

(C + T) approach to create a PGS. First, SNPs are grouped across user-
defined kilobase (kb) sized regions of the genome, and SNPs in LD 
above an r2 threshold are pruned to remove those that are highly 
correlated (Wray et al., 2014). p-values from the GWAS summary 
statistics are then used to select a set of clumped SNPs under different 
p-value thresholds (PT), which are then used to generate the PGSs. A 
PGS is generated as the sum of effect alleles in a target individual’s 
genome that are weighted by the effect size of those alleles drawn from 
GWAS summary statistics. We used standardized PGSs of plasma 
protein levels in our association analysis:

 
PGS

S G Mean PGS

SD PGS
j

i i ij
�

�� � � � �
� �

�

Where Si is the effect size of the effect allele for SNP i, Gij is the 
genotype of SNP i (0, 1, 2) for individual j.

For the C + T approach, we clumped SNPs in 250 kb regions of the 
genome that had an r2 greater than 0.1. PGS models for each protein 
were calculated using the “best-fit” approach implemented in the 
PRSice-2 program, where a range of PTs was applied to the base data 
(the plasma protein GWASs), attempting to find a set of SNPs under 
a certain PT that can explain the most of the target cohort’s phenotype 
(LOAD diagnosis). In this study, a range of PTs was assessed from 
5 × 10−8 to 1 with an incremental interval of 5 × 10−5 to find the best 
PGS model for each protein.

2.6 Multivariate logistic regression and 
meta-analysis

Using PRSice-2, we  evaluated the association of our plasma 
protein PGSs with LOAD diagnosis in a multivariate logistic regression 
model that included age, sex, APOE-ε4 allele genotype, and the first 
two genetic PCs of the target data individuals as covariates. We used 
these same covariates when performing the PGS-LOAD association 
in both the discovery and replication cohort. PGS-LOAD associations 
were considered significant if their FDR-adjusted p-value was less than 
0.05. The random-effects meta-analysis between the PGS-LOAD 
associations of the discovery and replication cohorts was performed 
using the metafor package in R (Viechtbauer, 2010). PGS-LOAD 
associations were considered significant in the meta-analysis if their 
FDR-adjusted summary estimate p-value was less than 0.05.

2.7 Mendelian randomization

For our MR analysis, we used the TwoSampleMR (v.0.6.2) package in 
R (Hemani et al., 2018). MR is used to infer a causal relationship between 

TABLE 2 GWAS summary statistics information.

Author (Year) Consortia Trait(s) Ancestry Sample Size PMID

Kunkle et al. (2019) IGAP Clinically diagnosed 

LOAD

European 21,982 Cases, 41,944 

Controls

30,820,047

Folkersen et al. (2020) SCALLOP 90 Plasma Proteins European 17,747 33,067,605

Author (year) = Primary author of GWAS study and year of study publication, consortia = consortia involved in the conduct of the GWAS study, trait(s) = traits studied by GWAS represented in 
summary statistics, ancestry = study population ethnicity, sample size = number of study participants, PMID = PubMed ID.

https://doi.org/10.3389/fnins.2024.1404377
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://zenodo.org/records/2615265


Cammann et al. 10.3389/fnins.2024.1404377

Frontiers in Neuroscience 06 frontiersin.org

TABLE 3 Ten plasma protein PGSs from Folkersen et al. were significantly associated with LOAD diagnosis (FDR p  <  0.05) in the discovery dataset.

Protein PVT R2 #SNPs BETA SE OR (95%CI) p FDR

PRL 0.0023 0.0066 2,934 0.155 0.038 1.17 (1.09–1.24) 0.00004 0.003

HGF 0.01395 0.0053 17,367 0.141 0.038 1.15 (1.08–1.23) 0.00021 0.006

IL-1ra 0.00035 0.0052 701 0.138 0.038 1.15 (1.07–1.22) 0.00024 0.006

VEGF-D 0.01 0.0048 13,241 0.133 0.038 1.14 (1.07–1.22) 0.00045 0.009

PDGF-B 0.0036 0.0042 5,655 −0.126 0.039 0.882 (0.806–0.957) 0.00109 0.017

IL-18 0.06145 0.0038 56,531 0.121 0.039 1.13 (1.05–1.2) 0.00174 0.020

TIE2 0.091 0.0038 76,021 0.121 0.039 1.13 (1.05–1.21) 0.00188 0.020

MMP-3 0.0002 0.0034 567 −0.113 0.038 0.893 (0.819–0.968) 0.00293 0.028

CX3CL1 0.0014 0.0031 2,557 −0.107 0.038 0.898 (0.824–0.973) 0.00486 0.041

KIM-1 0.2858 0.0030 164,807 0.109 0.040 1.12 (1.04–1.19) 0.00576 0.044

Plasma protein PGS models generated by Folkersen et al. using multivariate logistic regression in the discovery (NIA-LOAD) cohort (covariates: age, sex, #APOE-ε4 alleles, principal 
components 1 and 2). PVT, “Best” p-value threshold from PRSice-2 used to select SNPs from GWAS summary statistics; R2, Nagelkerke’s pseudo-R2; #SNPs, number of SNPs included at the 
PVT; BETA, PGS model coefficient; SE, PGS model standard error; OR (95%CI), odds ratio with 95% confidence interval; p, association p-value; FDR, false-discovery rate adjusted association 
p-value.

an exposure trait and outcome trait when a set of SNPs associated with 
the exposure [referred to as instrumental variables (IVs)] are also 
associated with the outcome through their effects on the exposure, 
assuming three key assumptions are met. SNPs used as IVs must be highly 
associated with the exposure, not associated with traits that confound the 
exposure or outcome, and not independently associated with the outcome 
except through the exposure (Davey Smith and Hemani, 2014).

2.7.1 IV selection
For our primary MR analysis, we used the GWAS summary statistics 

of significant plasma proteins from the PGS meta-analysis as exposures, 
and a GWAS of clinically diagnosed LOAD as our outcome (Kunkle et al., 
2019). In each plasma protein exposure, SNPs used as IVs were genome-
wide significant (GWAS p < 5 × 10−8) and had a first-stage F-statistic 
greater than 10 to ensure that they were highly associated with the 
exposure and considered strong IVs (Pierce et al., 2011). To ensure that 
SNPs were not correlated via LD, we opted to clump them under “strict” 
parameters (r2 < 0.001, kb = 10,000) and “PGS” parameters (r2 < 0.1, 
kb = 250) that match the default variant clumping strategies of the 
TwoSampleMR and PRSice-2 software, respectively. This was performed 
to allow comparison between the methods. For plasma protein exposures, 
we  also tested SNPs under these two clumping strategies in a “Cis” 
analysis, where only SNPs on the same chromosome as the protein’s 
original gene were used, and a “Genome-Wide” analysis, where SNPs 
could come from any chromosome.

2.7.2 Causal effect estimation and sensitivity 
analyses

To calculate the causal effect of our exposure traits on our outcome, 
we used the RE IVW or Wald ratio methods as our primary analysis. 
We used the RE IVW method to match the random-effects meta-analysis 
done in our PGS association analysis and used the Wald ratio to account 
for exposures with only one SNP as a valid IV (Bowden et al., 2017; 
Burgess et al., 2017). We used the fixed effects IVW (FE IVW), MR Egger, 
and weighted median methods as sensitivity analyses to assess the effects 
of horizontal pleiotropy and invalid SNPs (Burgess et al., 2013; Bowden 
et al., 2015, 2016). As an additional analysis to assess potential bidirectional 
relationships between plasma proteins and LOAD liability, we repeated 

our two-sample MR analysis using the LOAD GWAS as the exposure and 
each previously used plasma protein GWAS as the outcome. 
We considered an exposure to have a significant causal effect on an 
outcome when its RE IVW or Wald ratio p-value was less than 0.05 and 
its sensitivity analyses had a concordant direction of effect with the 
primary method.

2.8 Ethics approval statement

This study was approved by the University of Nevada Las Vegas 
(UNLV) Office of Research Integrity (IRB). Informed consent was 
obtained from all subjects and/or their legal guardian(s) in the 
contributing studies. Contributing studies received ethical approval from 
their respective institutional review boards (IRBs).

3 Results

3.1 Plasma protein PGS associations with 
LOAD diagnosis

Of the 90 plasma proteins in the original Folkersen et al. GWAS, 76 
were identified as sufficiently heritable (h2

SNP ≥ 0.05) for use in the PGS 
association analysis (Supplementary Table S1). Notably, the plasma 
protein with the highest h2

SNP in Folkersen et al. was galectin-3 (Gal-3), 
with its SNPs accounting for an estimated 43.6% of the trait’s heritability 
by LDSC. After calculating PGSs for each of the 76 viable plasma proteins 
in our discovery cohort, we found that 10 were significantly associated 
with LOAD diagnosis (FDR-adjusted p < 0.05) (Table 3). Seven of these 
plasma protein PGSs had a positive association with LOAD diagnosis, 
including prolactin (PRL), hepatocyte growth factor (HGF), interleukin-1 
receptor agonist (IL-1ra), vascular endothelial growth factor D (VEGF-
D), interleukin-18 (IL-18), angiopoietin-1 receptor (TIE2), and kidney 
injury molecule 1 (KIM-1). Three plasma protein PGSs had a negative 
association with LOAD diagnosis: platelet-derived growth factor subunit 
B (PDGF-B), matrix metalloproteinase-3 (MMP-3), and fractalkine 
(CX3CL1). The most significant plasma protein PGS-LOAD association 
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in the discovery cohort was PRL (OR: 1.17, 95%CI: 1.09–1.24, p-value: 
0.00004).

Out of 10 plasma protein PGSs associated with LOAD diagnosis in 
the discovery cohort, 4 plasma protein PGSs had a consistent OR in the 
replication cohort (Table 4). Two of these plasma protein PGSs, CX3CL1 
and MMP-3, had a consistent negative association with LOAD 
diagnosis, while HGF and TIE2 had a consistent positive association. 
Out of all plasma protein PGSs in the replication cohort, only CX3CL1 

had a nominally significant association with LOAD diagnosis (OR: 
0.842, 95%CI: 0.719–0.949, p-value: 0.0019). In a random-effects meta-
analysis between the discovery and replication cohort plasma protein 
PGS-LOAD associations with consistent ORs, all associations remained 
significant (FDR-adjusted p < 0.05) (Figure 2). Overall, this analysis 
suggested that plasma protein PGSs of CX3CL1 and MMP-3 tended to 
be higher in control individuals, while PGSs of HGF and TIE2 were 
higher in individuals diagnosed with LOAD.

TABLE 4 Four plasma protein PGSs with consistent ORs in discovery and replication cohorts.

Protein Study PVT R2 BETA SE p OR (95% CI)

CX3CL1
NIA-LOAD 0.0014 0.0031 −0.107 0.038 0.0049 0.898 (0.824–0.973)

GenADA 0.0025 0.0088 −0.182 0.059 0.0019 0.834 (0.719–0.949)

HGF
NIA-LOAD 0.0140 0.0053 0.141 0.038 0.0002 1.15 (1.08–1.23)

GenADA 0.0001 0.0034 0.108 0.056 0.0536 1.11 (1–1.22)

MMP-3
NIA-LOAD 0.0002 0.0034 −0.113 0.038 0.0029 0.893 (0.819–0.968)

GenADA 0.0063 0.0012 −0.063 0.056 0.2593 0.939 (0.828–1.05)

TIE2
NIA-LOAD 0.091 0.0038 0.121 0.039 0.0019 1.13 (1.05–1.21)

GenADA 0.1225 0.0010 0.062 0.058 0.2821 1.06 (0.951–1.18)

Plasma protein multivariate logistic regression models from Folkersen et al. in discovery (NIA-LOAD) and replication (GenADA) cohorts with consistent odds ratio. PGS models with p < 0.05 
are bolded. Coefficient, logistic regression model coefficient; SE, standard error; p, association p-value; OR (95% CI), odds ratio with 95% confidence interval.

FIGURE 2

Multivariate logistic regression and meta-analyses of plasma protein PGSs with consistent ORs. Plasma protein PGSs in the discovery (NIA-LOAD) and 
replication (GenADA) cohorts were meta-analyzed under a random-effects model. Filled-in shapes indicate a significant (FDR-adjusted p  <  0.05) 
analysis.
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FIGURE 3

Forest plot of plasma protein-LOAD MR analyses under strict clumping parameters. RE IVW, random-effects inverse-variance weighted analysis and FE 
IVW, fixed effects inverse-variance weighted analysis. Filled-in shapes indicate a significant (p  <  0.05) analysis.

3.2 Two-sample MR analysis

We used the four plasma proteins from the random-effects 
meta-analysis as exposures in two-sample MR to see if any plasma 
protein had a causal effect on LOAD liability as an outcome. 
When we selected IVs under strict SNP clumping parameters, two 
plasma proteins were inferred to have a significant causal effect 
on LOAD liability, with HGF having a negative causal effect (OR: 
0.945, 95%CI: 0.906–0.984, p-value: 0.004) and TIE2 having a 
positive causal effect (OR: 1.04, 95%CI: 1.01–1.07, p-value: 0.017) 
(Figure 3). As plasma HGF had only two valid SNPs for use as IVs 
in the strict clumping analysis, we were only able to test it under 
the RE IVW and FE IVW methods, which had a consistent 
direction of effect (Supplementary Table S3). Notably, plasma 
TIE2 and HGF were only significant under strict clumping 
parameters when SNPs used as IVs were sourced genome-wide, as 
restricting the SNPs to cis-pQTLs on the same chromosome as the 
plasma protein’s original gene failed to replicate these observed 
causal effects (Figure 3).

When SNPs were clumped using PGS parameters, plasma 
HGF had a negative causal effect on LOAD liability that was 
significant by the RE IVW method in the genome-wide (OR: 
0.931, 95%CI: 0.888–0.975, p-value: 0.0013) and cis (OR: 0.894, 
95%CI: 0.847–0.940, p-value: 2.4 × 10−6) analyses (Figure  4). 

While plasma HGF sensitivity analyses had a consistent direction 
of effect in the cis analysis, the MR-Egger effect estimate of plasma 
HGF in the genome-wide analysis trended in the opposite 
direction (OR: 1.03) (Supplementary Table S4). In contrast to the 
strict clumping parameters, plasma TIE2 was not observed to have 
a causal effect on LOAD liability when using PGS clumping. Out 
of the original four plasma proteins used as exposures in both the 
PGS and strict clumping analyses, plasma HGF was the only one 
to have a consistent negative causal effect on LOAD liability.

In our bidirectional analysis, where LOAD liability was used 
as an exposure and plasma CX3CL1, HGF, TIE2, and MMP-3 were 
used as outcomes, we found that LOAD liability had a significant 
negative causal effect on plasma HGF levels (OR: 0.970, 95%CI: 
0.956–0.984, p-value: 1.33 × 10−5) (Figure 5). In addition to having 
a consistent direction of effect, the FE IVW (OR: 0.970, 95%CI: 
0.952–0.988, p-value: 0.00072) and MR-Egger (OR: 0.970, 95%CI: 
0.956–0.984, p-value: 1.33 × 10−5) sensitivity analyses were also 
significant in the relationship between LOAD liability and plasma 
HGF (Supplementary Table S5). However, this effect on plasma 
HGF was only observed when SNPs were clumped with the PGS 
parameters. Overall, our MR analysis suggests that genetically 
proxied plasma HGF may exert a slight protective effect against 
LOAD liability, and in concordance, LOAD liability may have an 
effect on lowering levels of plasma HGF.
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4 Discussion

Using GWAS summary statistics of the plasma levels of 76 
different proteins (n = 17,747), we identified four plasma protein 
PGSs that had a significant association with LOAD diagnosis 
across both an independent discovery (cases = 1,852 and 
controls = 1,990) and replication (cases = 799 and controls = 778) 
cohort. Of these four plasma protein PGSs, CX3CL1 and MMP-3 
had a negative association with the LOAD diagnosis, implicating a 
protective relationship. Plasma HGF and TIE2 PGSs had a positive 
association with LOAD diagnosis, suggesting a risk-factor 
relationship. Using two-sample MR, we  found no bidirectional 
causal relationship between CX3CL1, MMP-3, or TIE2 and LOAD 
liability. We  inferred a protective causal relationship between 
plasma HGF and LOAD liability when SNPs used as IVs were not 
restricted to the same chromosome as the HGF gene. Cis-IV 
selection for plasma HGF exposure only became significant when 
SNP clumping parameters were relaxed to those used during the 
PGS association analysis. Using this same clumping strategy, 
we  also identified a negative causal effect of LOAD liability on 
plasma HGF levels, but not when the strict parameters were used 
to clump SNPs.

Combining plasma protein GWAS summary statistics from 
Folkersen et al. with LOAD genotyping from two independent 
cohorts, we identified four plasma proteins that were consistently 
associated with LOAD diagnosis through PGSs but did not 
translate into a consistent causal relationship between the levels of 
the plasma proteins and one’s genetic liability for LOAD. Notably, 
plasma HGF PGSs had a positive association with LOAD diagnosis, 
but plasma HGF levels as an exposure were found to have a 
negative causal relationship with LOAD liability as an outcome in 
two-sample MR. HGF itself is a highly pleiotropic cytokine with 
functions across the body and CNS and is believed to play a role 
in the regulation of adult brain plasticity and learning (Shimamura 
et al., 2006; Kato et al., 2012; Desole et al., 2021). However, a prior 
MR investigation using plasma HGF as an exposure against LOAD 
and hippocampal volume outcomes found no evidence of a causal 
effect on either outcome using the IVW method, which is 
consistent with our findings using this same approach (Fani et al., 
2021). HGF levels in the cerebrospinal fluid (CSF) have also shown 
positive correlations with mild cognitive impairment and other 
LOAD biomarkers in an observational study, further suggesting 
that any observed protective function of plasma HGF in LOAD 
may be pleiotropic rather than a direct effect on the brain (Zhao 

FIGURE 4

Forest plot of plasma protein-LOAD MR analyses under PGS clumping parameters. RE IVW, random-effects inverse-variance weighted analysis and FE 
IVW, fixed effects inverse-variance weighted analysis. Filled-in shapes indicate a significant (p  <  0.05) analysis.
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et al., 2021). Given that plasma HGF as exposure was significant 
in our study when selecting genome-wide rather than cis SNPs 
under the RE IVW method, which is adjusted for possible 
pleiotropy, this could explain the observed causal effect (Bowden 
et al., 2017).

Our study has several strengths and limitations. A strength of our 
approach is the use of an independent discovery and replication 
cohort and meta-analysis to avoid false positives in the PGS 
association analysis, as well as filtering the GWAS summary statistics 
by their h2

SNP beforehand to avoid the inclusion of plasma proteins 
with low SNP-based heritability. Another strength of our study is the 
use of an orthogonal statistical method, two-sample MR, to confirm 
results from our PGS analysis. This is because MR employs stricter 
assumptions for the SNPs proposed to drive an exposure–outcome 
relationship, most notably the use of SNPs that are significantly 
associated with the exposure, and the requirement that they do not 
have pleiotropic effects on the outcome or confounding factors. A 
potential limitation of developing PGSs for a trait separate from the 
phenotype of a target cohort is that the PGSs tend to explain a low 
amount of variance in the target phenotype. Although we were able 
to identify associations between the PGSs of plasma proteins and 

LOAD diagnosis that were robust to confounding factors (age, sex, # 
APOE-e4 alleles, and genetic PCs), the PGSs themselves rarely 
explained more than 1% of the variance in the case/control 
phenotype. Additionally, we only considered the APOE-e4 genotype 
in our logistic regression models rather than the full APOE genotype, 
which leaves out the known protective effects of the APOE-e2 
genotype against LOAD liability (Reiman et al., 2020). Other studies 
using PGSs to associate plasma proteins with LOAD have shown a 
similar trend in the variance explained by their PGSs (Handy et al., 
2021; van der Linden et al., 2021a). This is likely because plasma 
proteins are involved in a myriad of other pathways unrelated to 
LOAD, leading to a large possibility of confounding and pleiotropy 
with a neurodegenerative disease of the CNS (Handy et al., 2021).

The potential for confounding in the plasma protein-LOAD 
relationship highlights the importance of two-sample MR to control 
potential false positives that may be influenced by these factors. Due to 
the aforementioned considerations about using a different “base” and 
“target” trait when generating PGSs, additional forms of verification 
are needed to ensure the validity of the association. To improve our 
approach for future studies, the inclusion of LOAD target cohorts in 
the PGS analysis with information available on the plasma levels of 

FIGURE 5

Forest plot of LOAD-plasma protein MR analyses. RE IVW, random-effects inverse-variance weighted analysis and FE IVW, fixed effects inverse-variance 
weighted analysis. Filled-in shapes indicate a significant (p < 0.05) analysis.
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proteins and metabolites in the participants could help to ensure the 
validity of the relevant protein PGSs. In addition, the inclusion of more 
diverse cohorts would improve the generalizability of the results. 
Future studies that seek to address the genetic relationship between 
plasma proteins and LOAD should focus on the role of confounders 
that may affect the interaction of these plasma proteins with the disease 
due to their role in different pathways. Additionally, future research 
should seek to understand the underlying mechanisms and pathways 
by which LOAD may induce changes in the plasma proteome.
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