
TYPE Original Research

PUBLISHED 23 July 2024

DOI 10.3389/fnins.2024.1403804

OPEN ACCESS

EDITED BY

Kurt G. Schilling,

Vanderbilt University Medical Center,

United States

REVIEWED BY

Ilaria Gabusi,

University of Verona, Italy

Yurui Gao,

Vanderbilt University, United States

*CORRESPONDENCE

Sanna Persson

sannape@kth.se

RECEIVED 19 March 2024

ACCEPTED 08 July 2024

PUBLISHED 23 July 2024

CITATION

Persson S and Moreno R (2024) Bounding

tractogram redundancy.

Front. Neurosci. 18:1403804.

doi: 10.3389/fnins.2024.1403804

COPYRIGHT

© 2024 Persson and Moreno. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Bounding tractogram
redundancy

Sanna Persson1* and Rodrigo Moreno1,2

1Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology,

Huddinge, Sweden, 2MedTechLabs, BioClinicum, Karolinska University Hospital, Solna, Sweden

Introduction: In tractography, redundancy poses a significant challenge, often

resulting in tractograms that include anatomically implausible streamlines or

those that fail to represent the brain’s white matter architecture accurately.

Current filtering methods aim to refine tractograms by addressing these issues,

but they lack a unified measure of redundancy and can be computationally

demanding.

Methods: We propose a novel framework to quantify tractogram redundancy

based on filtering tractogram subsets without endorsing a specific filtering

algorithm. Our approach defines redundancy based on the anatomical

plausibility and di�usion signal representation of streamlines, establishing both

lower and upper bounds for the number of false-positive streamlines and the

tractogram redundancy.

Results: We applied this framework to tractograms from the Human

Connectome Project, using geometrical plausibility and statistical methods

informed by the streamlined attributes and ensemble consensus. Our results

establish bounds for the tractogram redundancy and the false-discovery rate of

the tractograms.

Conclusion: This study advances the understanding of tractogram redundancy

and supports the refinement of tractography methods. Future research will

focus on further validating the proposed framework and exploring tractogram

compression possibilities.

KEYWORDS

di�usion MRI, tractography, tractogram filtering, tractogram redundancy, Hoe�ding’s
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1 Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) has emerged as a

revolutionary tool for non-invasively probing the complex architecture of white matter

tracts in the living brain. The technique captures the diffusion of water molecules,

which preferentially occurs along the length of axonal fibers, thereby providing insights

into the orientation and integrity of neural pathways. Tractography algorithms leverage

this information to reconstruct the three-dimensional trajectories of white matter tracts,

known as streamlines, resulting in a tractogram which is a comprehensive map of neural

connections within the brain (De Benedictis et al., 2016; Hau et al., 2017; Maffei et al.,

2018; Jeurissen et al., 2019; Henderson et al., 2020). Applications range from connectivity

network studies (Yeh et al., 2021; Zhang et al., 2022), segmentation (Wasserthal et al., 2018;

Rheault et al., 2020, 2022; Warrington et al., 2020; Bertò et al., 2021; Maffei et al., 2021;

Schilling et al., 2021; Siegbahn et al., 2022), to the identification of neural pathways for

surgery planning (Henderson et al., 2020; Yang et al., 2021).

Many tractography algorithms have been proposed in the last two decades using

diverse methodologies (Mori et al., 1999; Basser et al., 2000; Smith et al., 2012; Christiaens

et al., 2015; Neher et al., 2017; Poulin et al., 2017, 2019; Konopleva et al., 2018; Jeurissen

et al., 2019; Théberge et al., 2021; Sinzinger and Moreno, 2022; Legarreta et al., 2023).
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This large number of available methods has made it difficult for

end users to choose the most appropriate tractography algorithm

for their applications. Furthermore, there is little consensus on

which parameters to use, such as the most appropriate number

of streamlines. In order to address this issue, one of the goals

of the International Society for Magnetic Resonance in Medicine

(ISMRM) 2015 Tractography Challenge (Maier-Hein et al., 2017)

was to help end users by quantitatively assessing the performance of

tractography pipelines in a realistic phantom. This challenge used

the Tractometer (Côté et al., 2013) for this aim. The Tractometer

uses regions of interest (ROIs) to define six different measurements.

While using ROIs gives insights into the quality of the tractogram,

such a methodology is unable to assess the quality of individual

streamlines. For example, anatomically implausible streamlines

that do not go outside of a bundle segmentation mask connecting

two brain regions will not penalize Tractometer measurements.

This restriction can potentially affect connectivity and tractometry

analyses (Chandio et al., 2020). Thus, there is currently an unmet

need to create new measurements that can address the limitations

of the Tractometer. This study contributes to this goal by leveraging

tractogram filtering methods.

Despite its widespread application in neuroscience research and

clinical settings, tractography faces significant challenges (Daducci

et al., 2016; Maier-Hein et al., 2017; Schilling et al., 2019). One of

the most critical issues is the presence of false-positive streamlines

within tractograms (Daducci et al., 2016; Jörgens et al., 2021). False-

positive streamlines manifest as either anatomically implausible

streamlines that do not correspond to true neural pathways or

as overlapping with other streamlines (duplicates) that result in

redundancy in the representation of the diffusion signal. We

refer to the duplicated streamlines as redundant. These erroneous

streamlines can obscure the true structural connectivity, leading

to misinterpretations in both research and clinical applications

(Garyfallidis et al., 2012; Durantel et al., 2022).

This study aims to create a statistical framework to estimate

the lower and upper bounds of tractogram redundancy from

per-streamline estimates obtained with tractogram filtering. These

estimates can potentially be used to rank tractography pipelines

by their inefficiency, with the ambition of fostering research

for improved tractography methods. Although the proposed

framework is generic, we use three specific tractogram filtering

methods: ExTractor (Petit et al., 2023), randomized spherical-

deconvolution-informed filtering of tractograms (rSIFT) (Hain

et al., 2023), and randomized convex optimization modeling for

microstructure informed tractography (rCOMMIT) (Wan, 2023).1

2 Background

2.1 Redundancy in tractograms

A false-positive streamline in a tractogram does not contribute

to, or may even detract from, the accurate representation of the

brain’s white matter architecture as inferred from diffusion MRI

data. False positives canmanifest either through streamlines that do

not correspond to anatomically plausible structures or redundant

1 Persson, S., Wan, X., and Moreno, R. (Submitted). Randomly Committing:

Iterative Convex Optimization for Microstructure-Informed Tractography.

streamlines that do not enhance the fidelity of the tractogram to the

diffusion signal (duplicates), thereby failing to improve or clarify

the depiction of the brain’s structural connectivity. The fraction of

duplicated streamlines is also referred to as the redundancy in the

tractogram and constitutes an important distinction from the total

number of false-positive streamlines. An anatomically implausible

streamline would not be seen in a brain and is likely the result

of an error produced during tractography. The identification and

removal of these streamlines aim to refine the tractogram, ensuring

that it more faithfully reflects the underlying neural pathways and

microstructural characteristics.

2.2 Tractogram filtering methods

Tractography filtering is the process of refining a tractogram

by identifying and removing streamlines that are considered false

positives. This process is essential to enhance the quality and

usability of tractograms for both research and clinical applications.

Filteringmethods vary in their approach, with some focusing on the

anatomical plausibility of streamlines, while others aim to ensure

that the streamline distribution corresponds to the underlying

diffusion signal (Jörgens et al., 2021).

The concept of tractography filtering is rooted in the

understanding that not all streamlines in a tractogram contribute

equally to the representation of the white matter structure.

Some streamlines may be artifacts of the tractography process,

while others may represent genuine neural pathways but are

overrepresented due to biases in the algorithm. Filtering methods

aim to identify these discrepancies and adjust the tractogram

accordingly to produce a more accurate and reliable representation

of the brain’s white matter. Specifically, in this study, we used

three different tractogram filtering methods: ExTractor, rSIFT, and

rCOMMIT.

2.2.1 ExTractor: filtering for anatomical
plausibility

ExTractor (Petit et al., 2023) is a rule-based automatic pipeline

designed to enhance the anatomical plausibility of tractograms

by filtering streamlines inconsistent with known neuroanatomical

principles. ExTractor operates on the premise that every cortical

area is interconnected with other cortical and subcortical regions

via association, commissural, and projection fibers, which adhere

to a certain anatomical organization. The method is grounded

in the neuroanatomical categorization established by previous

research (Meynert, 1885; Ludwig and Klingler, 1956; Crosby, 1963;

Schmahmann and Pandya, 2006; Nieuwenhuys et al., 2008).

In the process of automatic filtering, ExTractorFlow

(Cousineau et al., 2017; Di Tommaso et al., 2017; Kurtzer

et al., 2017), an implementation of the ExTractor method, employs

anatomical rules derived from the structural organization of white

matter fibers. The filtering method uses ROIs from established

brain templates (Oishi et al., 2009) to enforce sequential filtering

conditions that discard streamlines unlikely to represent true

anatomical pathways. For instance, streamlines are considered

implausible if they are shorter than a specified length, make

excessive loops, terminate along ventricular surfaces, or end within
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deep white matter structures inconsistent with expected tract

trajectories.

2.2.2 SIFT: spherical-deconvolution-informed
filtering of tractograms

SIFT (Smith et al., 2013) refines tractograms by selectively

discarding streamlines that poorly fit the fiber orientation

distributions (FODs) derived from constrained spherical

deconvolution (Tournier et al., 2007). It operates under the

premise that the streamline density within a voxel should be

proportional to the FOD amplitude, which reflects the volume of

white matter fibers in that orientation. Streamlines are assessed

based on their contribution to the FODs, and those that over-

represent or under-represent the FOD-derived fiber volume are

filtered out. This targeted removal reduces reconstruction biases,

such as overemphasis on longer pathways or straighter courses

in branching tracts, leading to tractograms that more plausibly

represent the structural connectivity. SIFT works independently of

the tractography method.

In SIFT, each streamline is evaluated for its alignment with the

FODs, which provide a probabilistic estimate of the direction and

density of fibers within each voxel. SIFT employs a cost function

that quantifies the discrepancy between the streamline density and

the FOD amplitude across the tractogram. Streamlines contributing

to an excess of density in comparison to the FODs are deemed false-

positive and are preferentially removed, while those in deficit areas

are retained, ensuring a balance that mirrors the estimated fiber

volumes. SIFT does not distinguish between redundant streamlines

and anatomically implausible ones.

The filtering process is iterative, with a gradient descent

approach guiding the selection of streamlines for removal. The

algorithm calculates a proportionality coefficient, which scales

the streamline density to the FOD amplitude, and it adjusts

this coefficient dynamically as streamlines are removed. This

ensures that the remaining streamline distribution continues

to provide the best possible fit to the FODs throughout the

filtering process.

2.2.3 COMMIT: convex optimization modeling
for microstructure-informed tractography

COMMIT (Daducci et al., 2015) is a filtering algorithm

that refines tractograms by leveraging a convex optimization

framework to incorporate microstructural tissue properties,

discerning between anatomically plausible tracts and artifacts.

It adjusts the weight of each candidate fiber derived from

standard tractography to best fit the diffusion signal to ensure

the quantitative integrity of the tractogram. COMMIT models

the diffusion signal within each voxel as a linear combination

of the diffusion responses from these tracts. The method applies

convex optimization to solve for the global weights of these tracts,

effectively pruning the tractogram by removing or down-weighting

contributions that do not align with the observed diffusion signal.

This results in a filtered tractogram that more accurately reflects the

underlying structural connectivity with reduced redundancy and

improved anatomical plausibility.

2.2.4 Randomized SIFT and COMMIT filtering
algorithms

One issue with both SIFT and COMMIT is that they cannot

be used for estimating the anatomical plausibility of individual

streamlines. Indeed, the very same streamline can be accepted

or rejected depending on the composition of the tractogram.

This is because both methods aim to reject both anatomically

implausible and redundant streamlines. Thus, an anatomically

plausible streamline can be rejected if it is deemed a duplicate.

This issue has been addressed by randomized SIFT (rSIFT) and

COMMIT (rCOMMIT). rSIFT (Hain et al., 2023) introduces a

sampling method offering a statistical framework for the evaluation

of each streamline’s inherent importance to the tractogram. By

employing random sub-sampling, rSIFT iteratively applies the

SIFT algorithm across numerous tractogram subsets, effectively

creating a distribution of filtering outcomes for each streamline.

This process enables the quantification of streamline acceptance

rates, which serve as a probabilistic measure of the streamline’s

fidelity to the underlying diffusion signal.

rSIFT uses the collective behavior of streamlined subsets

to infer the likelihood of anatomical plausibility. The method

uses the variability introduced by the randomization process to

discern between duplicates and outliers that are inconsistent with

the diffusion data. This distinction is critical, as it addresses

the intrinsic limitations of global optimization strategies in

conventional SIFT, which may penalize both types of streamlines.

rCOMMIT (Wan, 2023) (see text footnote 1) uses the same

sampling and voting method as rSIFT but implements COMMIT

as the filtering method of the tractograms. That is, each subset is

filtered by weights that are larger than zero.

The unavoidable result of both randomized algorithms is that

the aggregation over many tractogram subsets is prohibitively

computationally expensive. Efforts have been made to imitate

the filtering algorithm with deep learning using streamline-by-

streamline classification. The current accuracy of those methods is

in the range of 80%. In order to obtain an accurate measurement

of redundancy, we used the standard rSIFT and rCOMMIT in the

experiments.

3 Methods

3.1 Quantifying tractogram redundancy

In Section 2.1, we propose a definition of redundancy that

distinguishes between the total number of false-positive streamlines

and the number of duplicates. We now attempt to formalize

this notion of redundancy further in a tractogram. Assume there

is a tractogram T∗, which is the optimal representation of the

underlying structural connectivity. In line with previous research,

we assume for the sake of simplicity that the unfiltered tractogram

T is redundant, i.e., T∗ ⊆ T. In particular, we assume that

|T| = |T∗| + |D| + |I|,

where |D| and |I| are the number of redundant (duplicated)

and anatomically implausible streamlines, respectively. We aim to
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propose a framework for bounding the fraction of false-positive and

redundant streamlines in tractograms:

l ≤
|T| − |T∗|

|T|
≤ u,

where l and u are the lower and upper bounds of the fraction of

false-positive streamlines, given by

l ≡
|I|

|T|
,

u ≡
|I| + |D|

|T|
.

The fraction of false-positive streamlines can also be referred

to as the false discovery rate (FDR), which is the fraction of

streamlines in the tractogram that are falsely discovered

FDR = FP
FP + TP =

false positive streamlines
false positive streamlines (filtered) + true positive streamlines

It should be noted that, depending on the application, one of

the bounds is more relevant. For example, duplicates are not an

issue for bundle segmentation. Thus, l can be used as a measure

of the FDR. In turn, structural connectivity analyses and bundle-

wise tractometry can be affected by redundancy, so u can be used

instead. That is, we bound the redundancy R as 0 ≤ R ≤ u− l.

As described in Jörgens et al. (2023), some tractogram filtering

methods restrictively filter only the anatomically implausible

streamlines, while others filter both implausible and redundant

ones. The former can be used to estimate the lower bound l, while

the latter is useful for u. In our case, ExTractor is appropriate for

l and rSIFT and rCOMMIT for u, as described in the following

subsections. Both rSIFT and rCOMMIT use streamline attributes

and the consensus of filtering different subsets to assess streamline

plausibility.

3.2 Estimating the lower bound with
ExTractor

The lower bound of the FDR requires a filteringmethod focused

on the anatomical plausibility of streamlines. It should be noted

that the definition of anatomical plausibility is not unambiguous,

therefore we consider the notion of geometrical plausibility as a

surrogate that allows us to quantify the lower bound l. ExTractor

is a method that can be used for this aim since it does not discard

redundant streamlines, which is necessary to estimate the lower

bound. In particular, we estimated the FDR lower bound as the

percentage of rejected streamlines with ExTractor.

It is important to note that, unlike SIFT and COMMIT, the

filtering decision of ExTractor on every streamline does not depend

on the composition of the tractogram. The main implication of this

is that ExTractor will not benefit from randomized approaches to

estimate acceptance rates, as is the case with SIFT and COMMIT.

Thus, ExTractor is applied only once per tractogram.

3.3 Estimating the upper bound

SIFT and COMMIT, and consequently, rSIFT and rCOMMIT,

target both anatomically implausible and redundant streamlines.

Thus, combinations of rSIFT and rCOMMIT are good candidates

for estimating the upper bound of the streamline FDR. We

estimated the upper bound using two methodologies, as described

below.

3.3.1 Upper bound by sub-sampling with
Hoe�ding’s bound

In the methods of rSIFT and rCOMMIT, tractogram filtering

is repeated over randomized samples from the original tractogram

without replacement. This property allows us to compute a

probabilistic bound for the deviation of the average FDR from the

expected value.

Assume that the tractogram filtering method has been applied

to m subsets. Let Xi be the random variable representing the

number of false-positive streamlines in the i-th subset, Ai of size

ni. Since each streamline in a subset can either be classified as false-

positive or not, we have that Xi is bounded. Specifically, 0 ≤ Xi ≤

ni, where ni is the total number of streamlines in subset Ai.

Let Sm = X1 + · · · + Xm be the total number of false-positive

streamlines across all subsets. The expected value of Sm is given by

E[Sm] =
m
∑

i=1

E[Xi].

Applying Hoeffding (1963)’s theorem to the sum Sm, we can

bound the probability that the observed total number of false-

positive streamlines deviates from its expected value by at least a

certain amount t > 0. Specifically, for all t > 0,

P (|Sm − E[Sm]| ≥ t) ≤ 2 exp

(

−
2t2

∑m
i=1 n

2
i

)

= p, (1)

where p = 0.05 provides a t that gives a 95% confidence interval

around Sm, that is given by

t =

√

−

∑m
i=1 n

2
i

2
log

(p

2

)

.

This inequality provides a probabilistic upper bound on the

deviation of the observed number of false-positives from the

expected value given by Sm+t. For ease of interpretation, we present

this bound normalized as

uHoeff =
Sm + t
∑m

i=1 ni
. (2)

If the subsets are of equal size, i.e., ni = n for all i, then the

bound simplifies to

P (|Sm −mrn| ≥ t) ≤ 2 exp

(

−
2t2

mn2

)

.

This setting is useful for estimating upper bounds for specific

sampling sizes, as done in rSIFT and rCOMMIT.
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By choosing an appropriate value of t, we can make statements

about the confidence with which the observed FDR does not

exceed the expected streamlined FDR by more than the specified

amount. For example, setting t = ǫmn, where ǫ represents

the acceptable deviation from the expected proportion of falsely

discovered streamlines on a per-streamline basis, we obtain

P

(
∣

∣

∣

∣

Sm

mn
− r

∣

∣

∣

∣

≥ ǫ

)

≤ 2 exp
(

−2mǫ2
)

,

where r is the expected FDR in a subset. This result can be used to

determine the number of subsetsm necessary to achieve the desired

confidence level for bounding the FDR.

For the upper bound of the FDR, we use the one-sided bound

of Equation 1 given by:

P (Sm − E[Sm] ≥ t) ≤ exp

(

−
2t2

∑m
i=1 n

2
i

)

,

where t is any real number.

3.3.2 Upper bound with an empirical Bayesian
approach

Using an empirical Bayesian approach, we can also bound the

streamlined FDR in tractograms by considering the acceptance

rates obtained through randomized tractography filtering

algorithms. We first establish an empirical prior based on the

observed data, then compute the likelihood for each streamline,

update to form the posterior probability, and aggregate the results

to provide an upper bound for the FDR.

GivenN streamlines andm subsets, let ai denote the acceptance

rate of the i-th streamline, which is the proportion of subsets where

the streamline is classified as a true positive. We model the prior

distribution of acceptance rates using a Beta distribution, whose

parameters α and β are estimated by:

α = a

(

a(1− a)

s2
− 1

)

, β = (1− a)

(

a(1− a)

s2
− 1

)

,

where a and s2 are the sample mean and variance of the acceptance

rates, respectively. The likelihood of observing the acceptance rate

ai for the i-th streamline, assuming a binomial model, is given by:

L(ai; ki, vi) =

(

vi

ki

)

a
ki
i (1− ai)

vi−ki ,

where ki is the number of accepted classifications and vi is

the total number of subsets in which streamline i appears. The

posterior distribution for each streamline is under the Beta-

binomial conjugacy, also a Beta distribution

Pi = Beta (α + ki,β + vi − ki).

To aggregate the posteriors, we compute the mean and variance

of the posterior probabilities of the FDR across all streamlines:

FDR = 1−
1

N

N
∑

i=1

α + ki

α + ki + β + vi − ki
,

where N is the total number of streamlines.

To describe the variance of the posterior probabilities for

the FDR across all streamlines, we must consider not only the

individual variances of each posterior but also the covariance

among them. The total variance of the mean of the posterior

probabilities can be expressed as:

σ 2
P
=

1

N2





N
∑

i=1

σ 2
Pi +

∑

i6=j

cov(Pi, Pj)



 .

Given the high dimensionality of most tractograms, calculating

the full covariance matrix between all pairs of streamlines is

computationally prohibitive. To address this challenge, we can

estimate an upper bound on the variance of the mean posterior

probability by assuming the maximum possible variance from

the individual posteriors. This approach circumvents the need for

explicit covariance terms, instead employing the aggregate effect

of the maximum variance among the individual probabilities.

Consequently, we define our conservative upper bound on the

variance as:

σ 2
P,upper

=
1

N2

(

N
∑

i=1

√

σ 2
Pi

)2

This upper bound effectively assumes perfect positive

correlation among streamlines, thereby reflecting the maximal

potential covariance and providing a conservative estimate of

variability. Due to the high dimensionality of tractograms, often

in the order of millions of streamlines, the central limit theorem

ascertains that the distribution of the entire tractogram FDR will

be normally distributed. Subsequently, the upper 95% confidence

bound on the mean posterior probability of the FDR is computed

as:

uBayes = FDR+ Z0.95
√

σ 2
P,upper

where Z0.95 represents the 95th percentile of the standard normal

distribution. This Bayesian approach provides a conservative

estimate of the FDR in the tractogram even when the covariance

is not directly computable.

3.4 Estimators of streamline probabilities

The presented methods to estimate upper bounds require

estimates of streamline FDR in different subsets. For this, we

measure FDR as 1—the acceptance rate of rSIFT or rCOMMIT. A

streamline that has a high acceptance rate can also be considered

non-redundant. In addition, an alternative is combining rSIFT and

rCOMMIT acceptance scores to estimate FDR.

3.4.1 Intersection between rSIFT and rCOMMIT
In this estimator, we compute a filtering result based on the

computed acceptance probabilities for both rSIFT and rCOMMIT.

We obtain the corresponding filtering result by setting a threshold

θ , such that a streamline is considered non-redundant if its

acceptance probability exceeds this threshold in both methods.
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Formally, for a given streamline i, let airSIFT and airCOMMIT denote

its acceptance probabilities according to rSIFT and rCOMMIT,

respectively. The streamline is included in the filtered tractogram

if airSIFT > θ and airCOMMIT > θ . The estimator is then defined as:

P̂inti (θ) = I(airSIFT > θ) · I(airCOMMIT > θ),

where P̂inti is the acceptance probability of the intersection of rSIFT

and rCOMMIT for a specific threshold θ and I is the indicator

function. The choice of θ can be based on the desired specificity

and sensitivity trade-off, and it can be adjusted according to the

distribution of acceptance probabilities. This method provides a

straightforward way to combine information from both methods

and requires less data in the different subset constitutions than the

following methods.

3.4.2 Minimal acceptance rate on a streamlined
basis

One issue with considering the intersection of rSIFT and

rCOMMIT is that we need to set a specific threshold θ , which

can be difficult to choose. An alternative to this is to estimate the

streamline’s probability of being non-redundant by considering the

minimum of the normalized acceptance counts across different

methods. Specifically, for each streamline, we look at the number

of times it has been accepted by both the rSIFT and rCOMMIT

algorithms, normalized by the number of occurrences of that

streamline in the respective method’s subsets. This method creates

a “pseudo-subset" where the streamline’s acceptance is evaluated

based on its most conservative acceptance rate across the methods

for each subset size.

For a given streamline i, let kirSIFT be the number of times

streamline i is accepted by rSIFT, and virSIFT be the number of

subsets in which streamline i appears according to rSIFT. Similarly,

let kirCOMMIT and virCOMMIT denote the corresponding counts for

rCOMMIT. The maximal valid filtering estimator is then defined

as the minimum of the normalized acceptance rates across the

methods for each subset size

kij, vij = argmin
j

(

ki, rSIFT

vi, rSIFT
,
ki, rCOMMIT

vi, rCOMMIT

)

,

with

P̂min
i = min

(

ki, rSIFT

vi, rSIFT
,
ki, rCOMMIT

vi, rCOMMIT

)

,

where P̂min
i is the minimum acceptance probability of i, and

j is the tractography filtering method (rSIFT or rCOMMIT).

This estimator considers each streamline’s relative acceptance rate,

providing a conservative estimate of its probability of being non-

redundant. It is particularly useful when one wishes to ensure

that a streamline is consistently accepted across multiple filtering

methods before considering it non-redundant.

3.4.3 Pooled acceptance rate
In this approach, we pool the subsets from both rSIFT

and rCOMMIT to create a set of meta-subsets. The pooling

TABLE 1 Subset sizes (in thousands) and number of subsets per subset

size used for computing rSIFT and rCOMMIT.

Subset sizes 250 500 1,250 2,500 5,000 10,000

Number of subsets 200 100 40 20 10 5

process involves combining the subsets from each method, thereby

increasing each streamline’s total number of observations. Given

that both methods are assumed to provide valid filtering results,

their combination is expected to enhance the stability of the

acceptance rate estimation due to the increased number of samples

while reducing bias toward any specific tractography filtering

method.

For each streamline i, the pooled acceptance probability P̂
pooled
i

is calculated based on its acceptance across all meta-subsets. If

ki,rSIFT and ki,rCOMMIT represent the number of times streamline i is

accepted in rSIFT and rCOMMIT subsets, respectively, and nrSIFT
and nrCOMMIT are the total numbers of subsets for eachmethod, the

pooled estimator is then:

P̂
pooled
i =

ki, rSIFT + ki, rCOMMIT

nrSIFT + nrCOMMIT
.

This estimator reflects the overall acceptance of a streamline

across the combined evidence from both filtering methods.

3.5 Data

We use a subset of the Human Connectome Project that

consists of seven subjects from a dataset pre-processed by Glasser

et al. (2013) with tractograms generated by Wasserthal et al. (2018)

using the iFOD2 method as developed by Tournier et al. (2010).

Each tractogram consists of 10 million streamlines with a range of

40–250mm in length, was generated with anatomically constrained

tractography with a step size of 0.625 mm, and covers the entire

white matter volume. The subset of HCP subjects was also used

by rSIFT (Hain et al., 2023) and rCOMMIT (Wan, 2023). The

streamlines have been compressed to their most significant points

with the method developed by Presseau et al. (2015) using a

tolerance level of 0.35mm. The rSIFT parameters are the same

as in Hain et al. (2023). For the method of rCOMMIT, we

randomly sample tractogram subsets without replacement and run

the COMMIT algorithm with the Stick-Zeppelin-Ball model. The

parameters used were: axial diffusivity of 1.7× 10−3, perpendicular

diffusivity of 0.51 × 10−3, isotropic diffusivities of 1.7 × 10−3 and

3× 10−3 with a tolerance of 1× 10−3, and maximum iterations of

1,000. Table 1 reports the subset sizes and number of subsets used

in the experiments.

4 Experimental results

4.1 Lower bound estimation with ExTractor

The lower bound of the FDR was computed with the ExTractor

algorithm (Petit et al., 2023) with implementation in Singularity

and NextFlow (Cousineau et al., 2017; Di Tommaso et al., 2017;
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FIGURE 1

Distribution of rSIFT acceptance rates (Left) for accepted streamlines by rCOMMIT (acceptance rate = 1) and distribution of rCOMMIT rates for

accepted streamlines by rSIFT (Right). The percentages are given for the total number of streamlines from all subjects in the dataset.

FIGURE 2

Distribution of the acceptance rate (Left) for rSIFT and rCOMMIT acceptance rates and the proportion of overlapping streamlines with a threshold of

1 (Right).

Kurtzer et al., 2017), obtaining a fraction of removed streamlines of

0.890 (0.857, 0.926) for the data.

To disentangle the effects of the number of streamlines from

the tractography method, a comparison using the same number of

streamlines and subjects would be necessary.

4.2 Agreement between rSIFT and
rCOMMIT

It is interesting to assess the agreement between rCOMMIT

and rSIFT for further estimations of redundancy. Figure 1 shows

the distribution of rSIFT and rCOMMIT acceptance rates of

streamlines that are accepted by the other method for all subjects

in the HCP 10M dataset. As shown, the two methods have a large

number of streamlines where both have an acceptance rate of

1.0, but there are many other streamlines where the two methods

disagree. Figure 2 shows the distribution of acceptance rates and

the Venn diagram between the two sets of accepted streamlines

per method. As shown, the distributions have high concentrations

around 0/1. Further, it should be noted that rSIFT disregards

more streamlines than rCOMMIT, and the intersection of the two

sets is 0.7% of the whole dataset. That means that only around

70,000 streamlines out of 10 million are always accepted by rSIFT

and rCOMMIT. This observation has also been reported by Wan

(2023). This suggests that using intersection or minimal acceptance
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FIGURE 3

FDR estimation for subject ID 877168 in the HCP dataset using Hoe�ding’s inequality using di�erent estimators of FDR. (Left) Deviation of the

sampled FDR from its expected value. (Right) Hoe�ding’s upper-bound estimation of the FDR.

FIGURE 4

FDR upper-bound estimation using a Bayesian approach for subject ID 877168 in the HCP dataset. (Left) The estimate is determined by the width and

the center of the distribution. (Right) In this example, the posterior and FDR histogram approximately coincide due to the extensive subsets for rSIFT

and rCOMMIT, but generally, the posterior will be shifted in the direction of the prior for the model.

rates may be too tight to estimate the upper bounds of redundancy

compared to a single run of the corresponding method.

4.3 Upper bounds

We implement the upper bounds by sub-sampling in

Section 3.3.1 using Hoeffding’s inequality and the empirical

Bayesian approach in Section 3.3.2 for our dataset, for which

we have the rCOMMIT and rSIFT results. The bounds are

computed for different estimates of the streamlines FDR given by

rCOMMIT, rSIFT, maximal valid filtering and pooled filtering. We

do not include the intersection of rSIFT and rCOMMIT in these

experiments because it requires a threshold that is difficult to set.

As discussed previously, the minimal acceptance rate is similar to

the intersection and has the advantage of not needing thresholding.

Figures 3, 4 show the results for a specific subject from our

dataset. As shown, the maximal filtering approach provides the

most strict upper bound of the FDR, followed by rSIFT. As

was previously seen, rCOMMIT generally filters fewer streamlines

than rSIFT, and we also note that the variance of rCOMMIT

results is wider for the data, especially for the Bayesian approach,

suggesting that COMMIT may be a less stable filtering method.

The pooled estimate is approximately in the middle between rSIFT

and rCOMMIT and has the lowest variance due to the combined

subsets.

Table 2 shows Hoeffding’s bound aggregated over all subjects

in the dataset. These results are consistent with the ones in

Figures 3, 4. It should be noted that the minimal estimate

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1403804
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Persson and Moreno 10.3389/fnins.2024.1403804

TABLE 2 Table of aggregated results for subjects for Hoe�ding’s bound ≤

0.05 computed by Equation 2.

FDR estimate Mean FDR Mean
Hoe�ding’s
bound

95% CI

rSIFT 0.868 0.978 (0.971, 0.985)

rCOMMIT 0.772 0.869 (0.852, 0.886)

Pooled estimate 0.817 0.890 (0.880, 0.901)

Minimal estimate 0.899 1.000 (1.000, 1.000)

TABLE 3 Table of aggregated results for all subjects for empirical

Bayesian upper bound.

FDR estimate Mean
posterior

Mean
upper
bound

95% CI

rSIFT 0.873 0.934 (0.929, 0.939)

rCOMMIT 0.755 0.850 (0.815, 0.885)

Pooled estimate 0.818 0.880 (0.869, 0.892)

Minimal estimate 0.890 0.948 (0.936, 0.960)

TABLE 4 Table of aggregated results for all subjects for the average

number of filtered streamlines, that is 1− a, which is the mean acceptance

rate for all subjects.

FDR estimate Mean FDR 95% CI

rSIFT 0.873 (0.866, 0.880)

rCOMMIT 0.754 (0.703, 0.805)

Pooled estimate 0.817 (0.801, 0.834)

Minimal estimate 0.896 (0.886, 0.907)

gives an upper bound of 1.0, suggesting that (almost) all

streamlines are classified as false positives. As discussed

before, the number of streamlines that are accepted by both

rSIFT and rCOMMIT is very low, which makes the minimal

estimate too strict. It should also be noted that Hoeffding’s

bound is relatively wider than the Bayesian one (compare

the difference between the mean FDR and Hoeffding’s

bound in Table 2 to the mean posterior and upper bound in

Table 3).

The empirical Bayesian upper bound gives a tighter upper

bound with estimates and confidence intervals reported in

Table 3. The Bayesian approach is less strict than Hoeffding’s

bound. Still, both methods show a similar trend between the

probability estimators. Table 4 shows the FDR estimated with

the different methods and we observed that the posterior

Bayesian distribution of Table 3 approximately matches the

mean FDR from Table 4. This is expected since the number of

subsets of rSIFT and rCOMMIT in the dataset is significant

enough to dominate the posterior probabilities, i.e., the

confidence in the empirical estimate increases with the number

of subsets. Figure 5 shows the relation between the subset

size and the FDR for both Hoeffding’s and Bayesian upper

bounds.

5 Discussion

5.1 E�ectiveness of bounds

The effectiveness of our bounds is underscored by their capacity

to accommodate the inherent variability of tractography data. In

our dataset, we predict an FDR that is bounded between 85.7%

[the lower confidence of interval (CI) of the ExTractor method]

and 96% as given by the upper bound of the confidence interval of

the minimal estimate for the empirical Bayesian method in Table 3.

This interval includes all estimated upper bounds by our proposed

methods except for the minimal estimate with Hoeffding’s bound,

which we conclude gives a too-strict upper bound. These results

suggest that the redundancy consists of at least 10% of streamlines

(1 million), excluding those that are also anatomically implausible,

i.e., the difference between the lower and upper bounds.

Our lower bound, derived from the ExTractor algorithm,

confirms the presence of anatomically implausible streamlines,

providing a foundation upon which redundancy can be objectively

assessed. The upper bounds, constrained by Hoeffding’s inequality

and the empirical Bayesian approach, provide different lenses

through which the tractography-filtering outcomes can be

evaluated. These statistical methods offer both means to assess the

redundancy and also serve as means to understand the differences

between different tractography filtering approaches. The variation

in the results between these upper-bound methods reveals the

trade-offs between non-parametric results and the incorporation

of prior knowledge into streamlines’ FDR estimation. We suggest

three methods for combining the tractography filtering results

from rSIFT and rCOMMIT for the upper-bound computations.

The intersection between rSIFT and rCOMMIT determines the

streamline’s acceptance by thresholding the results from both

tractography filtering algorithms. The strategy of pooling combines

the streamlined acceptance of both methods to decrease the

uncertainty and bias toward any particular method. The minimum

acceptance rate strategy uses a subset-level approach to determine

the intersectional streamline acceptance rate as the minimum of

each method.

5.2 Di�erence between upper-bound
methods

The two different statistical approaches for bounding the

redundancy of the tractogram give similar results but are based on

different assumptions based on the data. Hoeffding’s inequality, as

a non-parametric method, does not make assumptions about the

distribution of the streamline false discovery rate. Its bounds are

generally less tight than those of the Bayesian method but cover

a broader range of potential tractography scenarios. Meanwhile,

the empirical Bayesian approach offers a different perspective by

introducing prior knowledge into the analysis, narrowing down the

potential variance in tractogram redundancy. The results of this

method rely on the prior chosen to represent the initial distribution

of the data, and in cases of limited data, the effect of the prior will

be enhanced, and a poorly chosen prior could lead to misleading

conclusions.
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FIGURE 5

FDR upper bounds per subset size for di�erent estimates of the streamline probabilities. (Left) Hoe�ding’s upper bound for log-normalized subset

sizes for rSIFT and rCOMMIT. (Right) Bayesian upper bound for log-normalized subset sizes for rSIFT and rCOMMIT.

When comparing Hoeffding’s inequality and the empirical

Bayesian approach, the perspective from which they view the

data is different. Hoeffding’s inequality assesses the redundancy

of tractograms at the subset level. It treats each subset as an

independent event, and the focus is on the resulting aggregate of

these subsets. It does not delve into the individual characteristics of

streamlines but instead evaluates the larger pattern of redundancy

across the entire collection of subsets. This approach is particularly

useful in providing a high-level, macroscopic understanding of the

redundancy.

In contrast, the empirical Bayesian approach considers the

evidence for each streamline on an individual basis. This

perspective allows it to incorporate prior knowledge specific to

each streamline’s behavior across different subsets. By looking at

the streamline acceptance rates, the empirical Bayesian approach

effectively combines evidence from multiple iterations to update

the prior beliefs into a posterior distribution reflective of each

streamline’s probability of being redundant. This approach values

the individual contribution of streamlines within the tractogram.

Figure 5 further shows the difference between the upper-bounding

methods on different subsets, visualizing the interplay between

the Bayesian empirical model and the data for each subset. The

reduction in the Bayesian estimate (Figure 5, right) for the entire

tractogram is due to the low variance of SIFT and COMMIT when

run on a single fixed tractogram.

5.3 E�ciency of redundancy estimation
methods

Many tractogram filtering methods are based on the exact

composition of the tractogram (Smith et al., 2013, 2015; Daducci

et al., 2015; Schiavi et al., 2020) and fail to take into account

the uncertainty inherent to not only probabilistic tractography

methods but the DW-MRI signal. Randomized SIFT and COMMIT

(Hain et al., 2023; Wan, 2023) are methods that aim to

assess the stability of their underlying filtering method, but due

to computational time, these have challenges with widespread

utilization. It should be noted that ExTractor (Petit et al., 2023) is

also very expensive.

Machine learning approaches are promising to reduce the

burden of computations. For example, Astolfi et al. (2023),

Hain et al. (2023), Wan (2023), and (see text footnote 1) used

deep learning for approximate ExTractor, rSIFT and rCOMMIT,

respectively. We decided not to use the method by Astolfi et al.

(2023) to obtain more accurate estimations of the lower bound

of the tractogram FDR. As for rSIFT and rCOMMIT, the deep

learning methods aim to classify individual streamlines from

the streamline coordinates. Thus, duplicates will inexorably be

accepted by the neural networks, making them inappropriate for

estimating the upper bound, although they could potentially be

used for estimating the lower bound provided that their accuracy

is good enough.

We chose ExTractor to estimate the lower bound since it

is based on neuroanatomical knowledge, making it more closely

related to assessing anatomical plausibility. As discussed by Petit

et al. (2023), ExTractor still can have problems with false negatives,

which can affect the estimation of the lower bound of the FDR.

That might imply that the lower bound estimated with ExTractor

might become too strict. While FINTA (Legarreta et al., 2021)

might be a good alternative to ExTractor for estimating the lower

bound of redundancy because of its speed, it lacks explainability.

Moreover, FINTA requires setting thresholds per bundle that are

difficult to generalize for whole-brain tractogram filtering. Indeed,

more research is needed to address the current issues with these

methods.

5.4 Weight-based tractogram filtering
methods

Some tractogram filtering methods produce a weight for each

streamline that reflects its contribution to the diffusion signal.

Examples of these methods are COMMIT (Daducci et al., 2015),
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SIFT2 (Smith et al., 2015), and COMMIT2 (Schiavi et al., 2020).

Effectively, this means that streamlines with a weight of 0 are

removed from the tractogram. SIFT2 (Smith et al., 2015) is

motivated by the computational inefficiency of generating highly

redundant tractograms and proposes to estimate an effective area of

each streamline. The result is a weight for each streamline that can

be used to compute a post-filtering weighted tractogram without

removing streamlines unless the weight is zero. A limitation to

this approach is that there is no explicit removal of anatomically

implausible streamlines unless the weight is zero, leading to a

greater emphasis on an accurate original tractogram.

Building upon the efforts to increase the anatomical accuracy

of tractography, Schiavi et al. (2020) introduced COMMIT2,

a refinement of the original COMMIT framework. COMMIT2

enhances the specificity of reconstructing brain networks by

considering their organization into anatomically plausible bundles.

By balancing the local axon density derived from the diffusion-

weighted MR signals against the sparsity of bundles used to explain

that density, COMMIT2 suppresses the number of false positive

connections more effectively compared to COMMIT, SIFT, and

SIFT2, possibly at the cost of sensitivity.

As discussed in Jörgens et al. (2021), the scores of SIFT2 as

compared to SIFT are not directly related to redundancy. That is,

in a sample of a tractogram, a streamline can be disproportionately

highly weighted compared to its significance in another sample

of the same tractogram since individual streamline weights are

determined by the other streamlines.

Since the inputs of the upper-bound estimations are estimations

of redundancy (acceptance rates) per streamline, weights from

such tractography filtering methods cannot be used directly for

our purposes. That problem can be solved by a method that can

estimate the probability of acceptance from those scores. Proposing

such a method is part of our current research.

5.5 Application area

The proposed methods for bounding tractogram redundancy

have implications for selecting tractography methods, optimizing

the number of streamlines, and choosing filtering algorithms.

The capability to quantify redundancy makes it possible to

systematically compare the efficacy of different tractography

approaches, understand how each method contributes to

redundancy in the tractograms they produce, and possibly

improve the methods. This quantification can guide the selection

of tractography algorithms that balance the requirements of

completeness and efficiency.

Additionally, measuring the effect of the number of streamlines

on the overall redundancy is a potential application for the

established bounds. Streamline counts can be adjusted based on

empirical evidence of redundancy, facilitating the configuration

of tractography pipelines to produce tractograms that are both

informative and resource-efficient. The methods for bounding

redundancy could also assist in evaluating the performance of

various tractography filtering algorithms with a quantitativemetric.

Such evaluations can determine how different filtering methods

reduce redundancy and enhance the anatomical plausibility of

tractograms. These measurements can be used to complement

the traditional tractometer measurements (Côté et al., 2013).

Tractometry methods are also highly dependent on a high-quality

tractogram, and our study contributes to the area of being able to

measure tractogram quality and fidelity, starting with redundancy.

The introducedmethod can be further developed to benchmark

both tractograms and filtering algorithms to assess the stability of

their results as well as the underlying tractogram redundancy.

5.6 Limitations

Both Hoeffding’s inequality and the empirical Bayesian

approach offer valuable frameworks for estimating the FDR;

however, they do not account for the variable topographical

complexity of brain regions. The current methods treat the

tractogram as a homogeneous entity and apply a uniform standard

across all regions, potentially overlooking these variations.

Furthermore, our approach does not incorporate region-

specific biological knowledge about white matter pathways that

could significantly inform the process of identifying redundancy.

Instead, it relies on the underlying tractogram filtering methods—

ExTractor, rSIFT, and rCOMMIT—to give appropriate estimates of

streamline-level redundancy.

ExTractor provides a rule-based approach to filter anatomically

implausible streamlines, but the definition of anatomical

plausibility is not unequivocal; therefore, any rule-based approach

may filter connections that are truly positive and miss erroneous

streamlines. We recognize this limitation and use the ExTractor

as a method to estimate the proportion of geometrically plausible

streamlines. It is, however, an approximation for a lower bound

that excludes implausible streamlines but does not optimize the

representation of the underlying diffusion signal.

The computational load of establishing these bounds is

currently significant; for example, processing each subject with

rCOMMIT takes ∼2 weeks on a high-performance workstation

with a 16-core Intel Xeon processor and 64 GB of RAM. We,

however, note that the acceptance probabilities for each streamline,

as given by rSIFT and rCOMMIT in Table 4, are indicative of the

posterior distribution of each streamline. We, therefore, argue that

approximating the streamline acceptance rate with a noise-injected

deep learning model could be an interesting alternative to explore

to establish the confidence interval over sampled outputs from the

models. This approach would provide a practical estimate of the

redundancy, and previous research has shown this to be a feasible

route (Legarreta et al., 2021; Astolfi et al., 2023; Hain et al., 2023;

Wan, 2023) (see text footnote 1). While this is true for estimating

the lower bound of the false discovery rate, training a model that

can be used for estimating the upper bound of the FDR is more

challenging and deserves additional research.

5.7 Future studies

The proposed method for statistically bounding redundancy in

a tractogram offers several potential future areas of research. Our

study is based on computational methods for filtering tractograms,
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FIGURE 6

Visualization of the tractogram of Subject 877168 in HCP 10M. (Left) Tractogram filtering by rCOMMIT. (Middle) Tractogram filtering by rSIFT. (Right)

Foundational streamlines at the intersection of filtering by rCOMMIT and rSIFT with acceptance probability = 1.

and comparing our results to histological data could provide a prior

for the expected redundancy, similar to what has been done for the

tractogram fidelity (Seehaus et al., 2013; Delettre et al., 2019).

In the intersection of rCOMMIT and rSIFT, we find that there

are certain streamlines that build the overarching structure of the

tractogram that appear uniformly over the entire tractogram (see

Figure 6). We denote them foundational streamlines, and these may

be suggested to form the basis for the tractogram. In this study,

we do not investigate whether these streamlines retain individual

characteristics or whether tractography filtering can compress a

tractogram.

Furthermore, in our study, we apply our methods with

rSIFT and rCOMMIT, but there have been studies extending

these methods, such as SIFT2 (Smith et al., 2015), COMMIT2

(Schiavi et al., 2020), and the blurred streamlines representation

in combination with COMMIT proposed by Gabusi et al. (2024).

Extending our proposed redundancy metric to these methods is

an important avenue for our future research. Regarding SIFT2, the

weights estimated by the method are always positive, according to

Jörgens et al. (2021), which makes it impossible to use the same

randomization procedure we use for SIFT and COMMIT to SIFT2.

In turn, COMMIT, and consequently COMMIT2, encourages

sparsity on the weights. As a consequence, COMMIT2 can give

zero weight to many streamlines, making it suitable for our

randomization procedure. The same is true for other approaches

based on COMMIT (e.g., COMMIT-tree Ocampo-Pineda et al.,

2021 or COMMIT-T2 Barakovic et al., 2021). Similarly, assessing

the redundancy of clinical datasets could provide further insights

into the variation depending on the diffusion MRI quality. For

this, it is relevant to study randomized methods that can run on

single-shell diffusion data.

6 Conclusion

We have presented two statistical approaches for bounding

the redundancy with minimal assumptions that can be applied

to different tractography filtering methods, with examples given

for the randomized SIFT and COMMIT. Our approaches are

designed to be applicable across a variety of filtering methods

and offer reliability in heterogeneous datasets. While there remain

areas for further validation, the methods developed comprise a

step forward toward quantifying the lower and upper bounds of

the false discovery rates of streamlines in tractograms and the

redundancy rate and can provide a viable metric for the quality

of tractography methods. Future research includes evaluating the

proposed bounds on different tractography methods and aims

toward ranking tractography methods by their redundancy to

give an application-dependent recommendation of the number of

streamlines that are necessary for a good representation of brain

neural tracts.
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