
TYPE Original Research

PUBLISHED 21 August 2024

DOI 10.3389/fnins.2024.1402154

OPEN ACCESS

EDITED BY

Han Zhang,

University of North Carolina at Chapel Hill,

United States

REVIEWED BY

Hongtao Wang,

Wuyi University, China

Christoph Reichert,

Leibniz Institute for Neurobiology (LG),

Germany

*CORRESPONDENCE

Honglin Hu

huhl@sari.ac.cn

RECEIVED 17 March 2024

ACCEPTED 30 July 2024

PUBLISHED 21 August 2024

CITATION

Si Y, Wang Z, Xu G, Wang Z, Xu T, Zhou T and

Hu H (2024) Group-member selection for

RSVP-based collaborative brain-computer

interfaces. Front. Neurosci. 18:1402154.

doi: 10.3389/fnins.2024.1402154

COPYRIGHT

© 2024 Si, Wang, Xu, Wang, Xu, Zhou and Hu.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Group-member selection for
RSVP-based collaborative
brain-computer interfaces

Yuan Si1,2, Zhenyu Wang1, Guiying Xu1,2, Zikai Wang1,2,

Tianheng Xu1,3, Ting Zhou1,3,4 and Honglin Hu1,2*

1Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China, 2University of

Chinese Academy of Sciences, Beijing, China, 3Shanghai Frontier Innovation Research Institute,

Shanghai, China, 4School of Microelectronics, Shanghai University, Shanghai, China

Objective: The brain-computer interface (BCI) systems based on rapid serial

visual presentation (RSVP) have been widely utilized for the detection of target

and non-target images. Collaborative brain-computer interface (cBCI) e�ectively

fuses electroencephalogram (EEG) data from multiple users to overcome the

limitations of low single-user performance in single-trial event-related potential

(ERP) detection in RSVP-based BCI systems. In a multi-user cBCI system, a

superior group mode may lead to better collaborative performance and lower

system cost. However, the key factors that enhance the collaboration capabilities

of multiple users and how to further use these factors to optimize group mode

remain unclear.

Approach: This study proposed a group-member selection strategy to optimize

the group mode and improve the system performance for RSVP-based cBCI. In

contrast to the conventional grouping of collaborators at random, the group-

member selection strategy enabled pairing each user with a better collaborator

and allowed tasks to be done with fewer collaborators. Initially, we introduced

the maximum individual capability andmaximum collaborative capability (MIMC)

to select optimal pairs, improving the system classification performance. The

sequential forward floating selection (SFFS) combined with MIMC then selected

a sub-group, aiming to reduce the hardware and labor expenses in the cBCI

system. Moreover, the hierarchical discriminant component analysis (HDCA) was

used as a classifier for within-session conditions, and the Euclidean space data

alignment (EA) was used to overcome the problem of inter-trial variability for

cross-session analysis.

Main results: In this paper, we verified the e�ectiveness of the proposed

group-member selection strategy on a public RSVP-based cBCI dataset. For

the two-user matching task, the proposed MIMC had a significantly higher

AUC and TPR and lower FPR than the common random grouping mode and

the potential group-member selection method. Moreover, the SFFS with MIMC

enabled a trade-o� betweenmaintaining performance and reducing the number

of system users.

Significance: The results showed that our proposed MIMC e�ectively optimized

the group mode, enhanced the classification performance in the two-user

matching task, and could reduce the redundant information by selecting the

sub-group in the RSVP-based multi-user cBCI systems.

KEYWORDS

brain-computer interfaces (BCIs), electroencephalogram (EEG), event-relatedpotentials
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1 Introduction

Brain-computer interfaces (BCIs) are human-machine

interaction systems that forge a direct pathway between the

user’s brain and the external world, bypassing conventional

peripheral pathways (Vidal, 1973; Martins et al., 2019; Moioli et al.,

2021). Traditional BCIs are designed to provide communication

and control solutions for people with severe neuromuscular

disorders (McFarland and Wolpaw, 2011). Therefore, the typical

BCI applications include brain-controlled spellers (Farwell and

Donchin, 1988; Volosyak et al., 2009), brain-controlled wheelchair

(Long et al., 2012), and brain-controlled cursor (Li et al., 2008), etc.

Recently, some kinds of electroencephalogram (EEG)-based BCIs

have been developed for able-bodied users, aiming to enhance

human capabilities (Värbu et al., 2022). The Rapid Sequence Visual

Presentation (RSVP) based BCI is one of them (Lees et al., 2018).

RSVP focuses on enhancing users’ visual search capabilities by

utilizing split-second perceptual judgments (Huang et al., 2011;

Matran-Fernandez and Poli, 2017). Visual search is a perceptual

process that involves scanning the environment to find an item of

interest. RSVP-based BCI systems can be employed in designing

spellers (Acqualagna and Blankertz, 2013) and for detecting targets,

including both static images (Bigdely-Shamlo et al., 2008; Poolman

et al., 2008) and videos (Weiden et al., 2012; Rosenthal et al.,

2014). The RSVP-based BCIs for target image detection can be

applied in counterintelligence and policing for detecting potential

threats (Marathe et al., 2015), in medical diagnostics for screening

mammograms (Hope et al., 2013), and in geoscientific research for

analyzing complex images (Sivarajah et al., 2014). As an example, in

counterintelligence and policing work, teams composed of multiple

police officers screen large volumes of images daily to identify

suspicious individuals or items.

As shown in Figure 1, in RSVP-based target image detection,

sequences of image stimuli are rapidly presented at a consistent

spatial position (Lees et al., 2018). The stream of images comprises

frequent non-target samples and infrequent target samples.

Compared to non-target samples, target samples are rare, thus a

P300 event-related potential (ERP) is elicited when users observe

a target sample (Polich and Donchin, 1988). By recording EEG

signals and detecting the single-trial ERPs, the RSVP-based BCI

systems can distinguish target and non-target images.

Due to the low signal-to-noise ratio (SNR) of EEG signals, the

performance of single-trial ERP detection remains limited in RSVP-

based BCI systems (Henry, 2006; McFarland and Wolpaw, 2011).

Many feature extraction and classification algorithms have been

developed to enhance the performance of RSVP-based BCIs (Lees

et al., 2018; Lotte et al., 2018; Wu andWu, 2022; Wang et al., 2023).

Typical feature extraction algorithms include xDAWN (Rivet

et al., 2009) and SIM (Wu and Gao, 2011). Major classification

algorithms include hierarchical discriminant component analysis

(HDCA; Sajda et al., 2010), discriminative canonical pattern

matching (DCPM; Xiao et al., 2020) and discriminant analysis

and classification for interval ERPs (DACIE; Li et al., 2021). With

the development of deep learning, the network models such as

EEGNet (Lawhern et al., 2018) and its enhanced variants (Zhang

et al., 2022) have shown superior classification performance in

RSVP-based BCIs.

Furthermore, with the widespread application of BCI

technology, the socialization of BCI has emerged as a trend

(Hu et al., 2024). In this context, collaborative brain-computer

interfaces (cBCIs), which fuse EEG signals from multiple users,

have become another approach to enhancing the SNR of EEG

signals. In the cBCI paradigm, multiple subjects participate in

identical tasks simultaneously (Wang and Jung, 2011; Zheng

et al., 2020). The EEG data from these subjects are concurrently

recorded and integrated to derive the final classification result.

Numerous studies have demonstrated that, when compared to

traditional single-brain BCI systems, cBCI systems exhibit superior

performance, particularly in terms of speed and accuracy (Wang

and Jung, 2011; Stoica et al., 2013; Zhang et al., 2021).

In recent years, the exploration and development of multi-

user cBCI systems have garnered significant attention in the

scientific community. Wang and Jung (2011) categorized cBCI

paradigms into centralized cBCI and distributed cBCI as shown

in Figure 2, and they proposed three distinct approaches for fusing

EEG signals from multiple users. Cecotti and Rivet (2014) further

refined the typology of BCI systems, building upon the hybrid BCI

(Pfurtscheller et al., 2010) and the cBCI. They suggested a more

nuanced categorization of BCIs, based on the diversity of BCI-

based tasks and the number of participating subjects. To improve

group decisions in cBCIs, Valeriani et al. (2015, 2017a,b) introduced

the confidence-weighted voting method specifically designed for

cBCI systems. They assessed the confidence level of each group

member based on their response times, using this as a measure

to evaluate individual capabilities. Subsequently, these confidence

levels were used to assign weights to the decisions of each group

member, thereby enhancing the overall performance of group

decision-making. Furthermore, Salvatore et al. (2022) introduced

optimization methods for EEG confidence decoders that take into

account both individual capabilities and the overall composition

of the group. They also used a hyperparameter to fine-tune the

balance between the confidence weights of group members, aiming

to strike an optimal balance between accuracy and fairness within

the group. However, there is still a gap in research concerning

the development of group formation strategies to enhance the

performance of cBCI systems.

Two kinds of group mode optimization tasks are shown

in Figure 3. The two-user matching task aims to pair a

specific user with the most suitable collaborator to enhance

collaborative performance. In conventional two-user cBCI systems,

the prevailing approach of randomly matching collaborators is less

effective (Matran-Fernandez and Poli, 2014; Zhao et al., 2024).

Matran-Fernandez and Poli (2014) proposed a two-user matching

method for forming cBCI groups by assessing the similarity of

individual performances. They utilized a trained SVM classifier

to match users in a two-user cBCI system, focusing on pairing

those with minimal dissimilarity in their AUC scores. However, the

performance of this method was suboptimal and heavily dependent

on the manually set threshold. Upon analyzing various cBCI group

modes, Zhao et al. (2024) suggested that the classification AUC

might be a criterion for identifying the ideal matched subject in

an RSVP-based cBCI system. Yet, their findings indicated that

the highest AUC did not always align with the ideal match,

leading them to hypothesize that feature distribution similarity
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FIGURE 1

The overview of RSVP stimulation. The target sample is highlighted with a red frame, while non-target samples are marked with a green frame. In a

target sample on the left, the human figure is further highlighted with a yellow frame. The images were from Zheng et al. (2020).

A B

FIGURE 2

Di�erent types of cBCI. (A) The centralized cBCI. (B) The distributed cBCI.

might play a role. However, despite this insight, Zhao et al. did

not incorporate feature distribution similarity into their selection

method, suggesting there may be further opportunities to refine

the two-user matching strategy. Moreover, the sub-group selection

task aims to select a subset from all collaborators to complete the

tasks that are initially assigned to the all-member group. Some

studies (Wang and Jung, 2011; Zheng et al., 2020; Zhao et al., 2024)

have shown that as the number of subjects increases, there is a
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A B

FIGURE 3

Two kinds of group-member selection tasks. The green boxes with the circle mean a specific user who needs a collaborator. The blue boxes mean

users which can be selected and the green boxes with the cross mean the selected collaborator. (A) Two-user matching task. (B) Sub-group

selection task.

significant enhancement in classification accuracy and a substantial

reduction in standard deviation. However, with the involvement

of more subjects in the system, there is a corresponding increase

in hardware and labor costs, as well as computational complexity.

Furthermore, the experimental results in Du et al. (2023) showed

that the performance of two-user cBCI might outperform that of

three-user or four-user cBCI, indicating there might be redundant

information between the EEG of the collaborators. Therefore,

how to reduce the number of members while still preserving the

original critical information is one of the significant challenges in

cBCI research.

To address the above drawbacks, this paper proposed a group-

member selection strategy for the two-user matching task, which

was then further applied to tackle the issue of sub-group selection

in RSVP-based cBCI systems. Firstly, in the two-user matching

task, we proposed a novel performance score for candidates, taking

into account both the individual performance of the candidates

and the correlation between a predefined user and the candidates.

Drawing inspiration from xDAWN (Rivet et al., 2009, 2011; Xiao

et al., 2021), we estimated the signal to signal-plus-noise ratio

(SSNR) of each candidate’s EEG signal to quantify their individual

capabilities. Subsequently, inspired by Liu et al. (2020), we used

the Pearson correlation coefficient to estimate the similarity of

the ERP waveform from the two users as their collaborative

capability. Then the parameter µ was utilized to assign weights

to individual capability and collaborative capability, and the user

with maximum individual capability and maximum collaborative

capability (MIMC) was considered the most suitable collaborator.

Secondly, we combined theMIMC strategy with sequential forward

floating selection (SFFS) (Pudil et al., 1994) to select the optimal

sub-group to reduce the hardware costs, the labor costs, and the

computational complexity in multi-user cBCI systems. Thirdly,

HDCA (Sajda et al., 2010) was applied for single-trial ERP signal

classification. The Euclidean space data alignment (EA) (He and

Wu, 2020) was further employed to address the issue of inter-

trial variability in cross-session conditions. To the best of our

knowledge, it is the first attempt to optimize the group mode

by using both the individual capabilities and the collaborative

capabilities to improve the system performance in the multi-user

RSVP-based cBCI system.

The remainder of this paper is organized as follows. Section 2

introduces the experimental procedure, the dataset, and the

proposed methods. Then, the Section 3 presents the classification

performance of the proposed method on both the two-user

matching task and the sub-group selection task. Finally, the

advantages and the limitations of the proposed method and the

future research directions are drawn in the Section 4.

2 Material and methods

2.1 Data description

We used a cross-session RSVP-based cBCI dataset (Zheng et al.,

2020) to verify the effectiveness of the proposed method. In this

dataset, all 14 subjects were divided into seven fixed groups, each

comprising two subjects. These groups respectively participated

in two separate sessions of experiments on different days, and

each session consisted of three blocks. Each block comprised 14

stimulus sequences, and within each stimulus sequence, 100 street

scene images were presented with a presentation rate of 10 Hz in

the center of the screen. As shown in Figure 1, these 100 images

consisted of four target images which contained humans, and the

target images were interspersed within each stimulus sequence,

with a minimum time gap of 500 ms between consecutive target

images. Thus, there are 1,400 image presentations (56 target and

1,344 non-target image presentations) in one block. Both subjects

in a group pressed keys to start a stimulus sequence, and their 62-

channel EEG signals were simultaneously recorded. The subjects

pressed a button as soon as they detected a target. Regardless of

whether the subjects successfully responded, all 56 target trials

EEG signals were used for subsequent verification analysis. The

experiment was conducted at a sample rate of 1, 000 Hz and a notch

filter at 50 Hz was used to remove the power-line noise.
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2.2 Data preprocessing

The data pre-processing stage includes down-sampling, data

segmentation, band-bass filtering, and re-referencing. The EEG

data from each subject in the group was down-sampled to 250 Hz.

For each block, the down-sampled data was segmented into trials

based on event triggers. Each trial included 1, 200 ms of EEG data,

starting from 200 ms before the event trigger and extending to

1, 000 ms after the event trigger. Then, the EEG data were band-

pass filtered at 2–30 Hz, and the average of all electrodes was used

for re-reference. It should be noted that, for each trial EEG signal,

we used the 0–500ms data after the event trigger for group-member

selection and classification.

2.3 MIMC for two-user matching

In this subsection, we introduced the proposed two-user

matching strategy,MIMC. Suppose that Sall = {s1, s2, · · · , sNM }was

the set of all members in a multi-people collaborative group, where

NM was the number of all members. The two-user matching task

aimed to pair a specific user, such as sα ∈ Sall, with themost suitable

collaborator. The set of the candidate collaborator was denoted as

Scandi = Sall − {sα}, and MIMC was a performance score for the

candidate collaborator in Scandi.

For a candidate collaborator sβ , Xk,β ∈ R
NC×NS was the

kth trial preprocessed EEG signal, where NC was the number of

channels and NS was the number of sampling points. The template

signal induced by the non-target and target image was respectively

denoted by P
(0)
β ∈ R

NC×NS and P
(1)
β ∈ R

NC×NS :

P
(0)
β =

1

N
(0)
T

N
(0)
T∑

i=1

X
(0)
i,β , P

(1)
β =

1

N
(1)
T

N
(1)
T∑

i=1

X
(1)
i,β , (1)

where N
(j)
T and X

(j)
i respectively represented the number of trials of

pattern j and the ith trial data of pattern j ( with j = 0, 1).

2.3.1 Individual capability estimation
xDAWN (Rivet et al., 2009, 2011; Xiao et al., 2021) was

proposed to maximize the SSNR of P300 evoked EEG signals

by estimating spatial filters. For a candidate collaborator sβ , the

estimated spatial filter was denoted as

Uβ = argmax
Uβ

ρ(Uβ ), (2)

and the estimated SSNR ρ(Uβ ) was given by

ρ(Uβ ) =
UT

β 6̂
(1)
β Uβ

UT
β 6̂βUβ

, (3)

where

6̂
(1)
β = (P

(1)
β )TP

(1)
β (4)

was the covariance matrix of P
(1)
β , and

6̂β = XT
r,βXr,β (5)

was the covariance matrix of the reshaped preprocessed EEG

signals Xr,β ∈ R
NC×(NT×NS).

The spatial filter Uβ could be estimated by the generalized

eigenvalue decomposition of pair (6̂
(1)
β , 6̂β ) such that:

6̂
(1)
β U1,β = λ1,β6̂βU1,β , (6)

where λ1,β was the largest generalized eigenvalue and U1,β was the

associated eigenvector. The estimated spatial filter was Uβ = U1,β ,

and the estimated SSNR ρβ = λ1,β was the estimated individual

capability score for candidate collaborator sβ .

We estimated the ρ of each candidate in Scandi and the

individual capability matrix was

Min,α =
[
ρ1, ρ2, · · · , ρNcandi

]
, (7)

where Ncandi = NM − 1 was the number of candidates for the

predefined user sα .

2.3.2 Collaborative capability estimation
Liu et al. (2020) proposed selecting a subset of source domain

subjects to form a new source domain based on the correlation

between source and target domain subjects to enhance cross-

subject classification performance in RSVP-based BCI systems.

Inspired by their work, we utilized the ERP waveform similarity

between the predefined user and the candidate as an indicator of

their collaborative capability.

Suppose that X
(1)
k,α,flat

∈ R
1×(NC×NS) and X

(1)
k,β ,flat

∈ R
1×(NC×NS)

respectively represented the kth trial flattened processed EEG data

of the predefined user sα and candidate collaborator sβ induced

by the target image. The collaborative capability between the

predefined user sα and candidate collaborator sβ was denoted as

σαβ =
1

N
(1)
T

N
(1)
T∑

i=1

corr(X
(1)
i,α,flat

,X
(1)
i,β ,flat

), (8)

where the corr(·) was the Pearson correlation. We estimated the

collaborative capability between each candidate in Scandi and user

sα , then the collaborative capability matrix was denoted as

Mco,α =
[
σα1, σα2, · · · , σαNcandi

]
, (9)

2.3.3 Two-user matching
Considering the different significance of individual capability

and collaborative capability for optimizing group mode, we set the

parameter µ to balance the weights assigned to each capability. Z-

score normalization was conducted to unify the two capabilities,

and M∗in,α and M∗co,α were the unified scores, respectively. The

performance score matrix of the candidate for the special user

sα was

Mα = µM∗in,α + (1− µ)M∗co,α . (10)

To optimize µ, we employed five-fold cross-validation for each

session. Taking session 1 as an example, block 1 of session 1 was

used to optimize µ and to execute the two-user matching strategy.
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There are 1,400 trials of EEG data in block 1, and every 100 trials

consists of four target and 96 non-target trials. Given the imbalance

of RSVP-based EEG data, we partitioned block 1 into five folds by

trial. The first four folds each contained 300 trials, while the last

fold contained 200 trials. For each fold, we defined the range of µ

as [0, 1], incrementing by a step size of 0.01. Then, for each µ, we

used it to construct Msi for si ∈ Sall, i = 1 . . .NM , and selected

the candidate collaborator corresponding to the maximum value

in Msi as the matched collaborator for si. We applied the average

ERP strategy in Section 2.5 and HDCA in Section 2.6 to validate

the collaborative capability of these groups selected using this µ.

The average AUC of these groups was considered the score for this

µ in this fold. We recorded the score for eachµ across all folds. The

µwith the highest average score in the five folds was considered the

optimal result.

2.4 SFFS with MIMC for sub-group
selection

We implemented the SFFS with MIMC to select the sub-group

and reduce the redundant information in the training stage. The

pseudo-code was shown in Algorithm 1.

Suppose that Sall = {s1, s2, · · · , sNM } was the set of all members

in a multi-people collaborative group, where NM was the number

of all members. We determined the parameter µ in the two-

user matching task, and then the µ was used as the input.

The output Ssub = {s1, s2, · · · , sNsub
} was the set of the sub-

group selected, where Nsub was the number of members in the

selected sub-group.

In the initialization phase, we estimated the individual

capabilities of all members according to Equation 6. The user

with the best individual capability was used as the initial sub-

group S1 = {sbest}. Algorithm 1 selected group members through

the following steps until the termination condition was met. In

the ith iteration, we first treated the inclusion process as a two-

user matching problem. The fusion(·) referred to the average ERP

strategy in Section 2.5. The Ssub,i was considered as a whole, with

the members’ EEG signals fused using the average ERP strategy.

We included a member by maximizing the objective function

J(Ssub,i ∪ {s}). Then, we also treated the conditional exclusion

step as a special two-user matching task. When a member s was

excluded from Ssub,i+1, we regarded Ssub,i+1 − {s} as a whole and

then s and Ssub,i+1 − {s} were viewed as a pair of collaborators.

The fused data of Ssub,i+1 − {s} could be treated as a specific

member and s could be seen as the candidate. The objective

function J(Ssub,i+1 − {s}) was minimized to remove a member.

We used the average ERP strategy in Section 2.5 and HDCA

in Section 2.6 to calculate the AUC of Ssub,i and Ssub,i+1 in the

termination step.

2.5 Fusion strategies

In this subsection, we introduced several common fusion

strategies for the cBCI paradigm. For the centralized cBCI,

the EEG signals or features from multiple users were fused

Require: (1) Sall = {s1, s2, · · · , sNM }, (2) µ.

Ensure: Ssub = {s1, s2, · · · , sNsub
}.

Initialization: The initial group size i = 1.

Initialization: The initial sub-group Ssub,i = S1 =

{sbest}:

while i ≤ NM do

Step 1 (Inclusion):

1) Suppose that, αin,i = fusion(Ssub,i), Sin,candi = Sall −

Ssub,i

2) J(Ssub,i ∪ {s}) = µρs + (1 − µ)σαin,i ,s, according to

Equations 6, 8

3) s+ ← argmax
s

J(Ssub,i ∪ {s}), where s ∈ Sall − Ssub,i

4) Ssub,i+1 ← Ssub,i ∪ {s
+}, Go to Step 2.

Step 2 (Conditional exclusion):

1) Suppose that, αex,i = fusion(Ssub,i+1 − {s}), Sex,candi =

{s}, where s ∈ Ssub,i+1

2) J(Ssub,i+1 − {s}) = µρs + (1 − µ)σαex,i ,s, according to

Equations 6, 8

3) s− ← argmin
s

J(Ssub,i+1 − {s})

4) S′
sub,i
← Ssub,i+1 − {s

−}, Go to Step 3.

Step 3 (Termination):

if S′
sub,i
6= Ssub,i then Ssub,i ← S′

sub,i
; i← i.

else if then

if AUC(Ssub,i) ≥ AUC(Ssub,i+1) then Termination; The

sub-group Ssub ← Ssub,i.

else if then Ssub,i ← Ssub,i+1; i← i+ 1.

end if

end if

end while

Algorithm 1. SFFS with MIMC for sub-group selection.

before being input into the classification model. ERP averaging

and data combination were two popular centralized fusion

strategies. The average ERP strategy averaged the pre-processed

EEG signals or extracted features from the collaborators. The

combination could be divided into parallel combination and

serial combination. Parallel combination concatenated information

across the spatial domain, while serial combination concatenated

information across the temporal domain. Moreover, the distributed

cBCI was based on multiple sub-classifiers and a voting system.

In a distributed cBCI system, each user’s EEG signals were

processed by their respective sub-classifier, which made individual

predictions based on those signals. These predictions were then

fused using a voting system to form the final decision. Weighted

voting was a classic distributed method, in which individual

decisions were weighted by the training performance or other

confidence weight.

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2024.1402154
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Si et al. 10.3389/fnins.2024.1402154

2.6 Classification

HDCA (Sajda et al., 2010) was commonly used to classify the

ERP component in the RSVP-based BCI system. Suppose that X
′
∈

R
NT×N

′

C×N
′

S was the fused EEG signal and NT , N
′

C, N
′

S were the

number of trials, channels and sample points, respectively. The

core idea of HDCA was to train spatial projection matrix u ∈

R
N
′

C×W and temporal projection vectors v ∈ R
W×1 for single-trial

classification, where W was the number of non-overlapping time

windows. Suppose that X
′

w ∈ R
NT×N

′

C×Nw was the fused data in

the wth time window. In this study, we set Nw =
1
5N
′

S. First, at

each time window, Fisher Linear Discriminant (FLD) was used to

calculate spatial projection vectors uw ∈ R
N
′

C×1,

uw = FLD(X
′

w),w = 1, · · · ,W, (11)

In the wth time window, the fused data induced by the non-

target and target image was respectively denoted by X
(0)′

w ∈

R
N
(0)
T ×N

′

C×Nw and X
(1)′

w ∈ R
N
(1)
T ×N

′

C×Nw . Suppose that X
′

w,r ∈

R
(NT×Nw)×N

′

C was the reshaped X
′

w, then X
(0)′

w,r ∈ R
(N

(0)
T ×Nw)×N

′

C

and X
(1)′

w,r ∈ R
(N

(1)
T ×Nw)×N

′

C were the reshaped X
(0)′

w and X
(1)′

w

respectively. The template signal of the reshaped fused data in the

wth time window induced by the non-target and target image was

respectively denoted as P
(0)
w,r ∈ R

1×N
′

C and P
(1)
w,r ∈ R

1×N
′

C :

P(0)w,r =
1

N
(0)
T

N
(0)
T∑

i=1

X
(0)
i,w,r , P

(1)
w,r =

1

N
(1)
T

N
(1)
T∑

i=1

X
(1)
i,w,r . (12)

The total within-class scatter matrix of the fused data in thewth

time window was

SW,w,r =
∑N

(0)
T

i=1 (X
(0)
i,w,r − P

(0)
w,r)(X

(0)
i,w,r − P

(0)
w,r)

T

+
∑N

(1)
T

i=1 (X
(1)
i,w,r − P

(1)
w,r)(X

(1)
i,w,r − P

(1)
w,r)

T . (13)

The spatial projection vectors were calculated by

uw = ((SW,w,r)
−1(P(0)w,r − P(1)w,r)

T)T , (14)

u = [u1, u2, · · · , uW] . (15)

For wth time window, Yw ∈ R
NT×1 represents the data after

spatial projection:

Yw = uTw(X
′

w,r)
T , (16)

Y = [Y1,Y2, · · · ,YW] , (17)

where Y ∈ R
NT×W .

Then Fisher Linear Discriminant (FLD) was used to calculate

temporal projection vector v ∈ R
W×1 for the signals after spatial

projection,

v = FLD(Y). (18)

Suppose that P
′(0) ∈ R

1×W and P
′(1) ∈ R

1×W were the non-

target and target templates of the signals after spatial projection.

P
′(0) =

1

N
(0)
T

N
(0)
T∑

i=1

Y(0), P
′(1) =

1

N
(1)
T

N
(1)
T∑

i=1

Y(1). (19)

The total within-class scatter matrix of the signals after spatial

projection was

SW =
∑N

(0)
T

i=1 (Y(0) − P
′(0))(Y(0) − P

′(0))T

+
∑N

(1)
T

i=1 (Y(1) − P
′(1))(Y(1) − P

′(1))T . (20)

The temporal projection vector was calculated by

v = ((SW)−1(P
′(0) − P

′(1))T)T , (21)

Here, Zth represented the threshold value.

Zth =
1

2
(P
′(0) + P

′(1))v (22)

For a single-trial fused signal X
′

k
∈ R

N
′

C×N
′

S , the data of wth

window was denoted as X
′

k,w
∈ R

N
′

C×Nw . When the value of Zk was

greater than Zth, the classification result would equal 1.

Zk =
[
uT1X

′

k,1, u
T
2X
′

k,2, · · · , u
T
wX
′

k,w

]
v (23)

We used HDCA for the within-session classification and the

EA-HDCA for the cross-session classification. EA (He and Wu,

2020) was proposed for transfer learning in BCI system. The

main idea of EA was to make the data distribution from different

domains more similar to improve the transfer performance of the

classifier on a new domain. Suppose that the reference matrix R

was the mean covariance matrix of all n trials fused EEG signals

of a group:

R =
1

n

n∑

i=1

X
′

iX
′T
i (24)

To make the data distributions from different sessions more

similar, themean covariancematrices of all sessions should be equal

to the identity matrix I after alignment. Suppose X̃
′

k
was the kth trial

after alignment:

X̃
′

k = R−
1
2X
′

k (25)

1
n

∑n
i=1 X̃

′

i X̃
′T
i =

1
n

∑n
i=1 R

− 1
2X
′

iX
′T
i R−

1
2X
′

i

= R−
1
2

(
1
n

∑n
i=1 X

′

iX
′T
i

)
R−

1
2 = I (26)

For EA-HDCA, the aligned training data were utilized to train

the HDCA model, and the aligned test data were used for analysis.
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FIGURE 4

The framework of the cBCI system with group-member selection.

2.7 Framework overview

For an example of the sub-group selection task in a four-user

centralized cBCI, our proposed framework is shown in Figure 4.

For the training stage, the raw EEG signals from all subjects were

preprocessed first. Then, the SFFS with MIMC was used to select a

sub-group. The EEG data of the selected members were fused in the

fusion stage and HDCA was trained to project the single-trial EEG

signals to the decision. For the testing stage, the raw EEG signals

from the selected members in the training stage were fused and the

trained classifier was used to detect the ERP component.

3 Results

This section presented the performance of the proposed

method in both the two-user matching task and the sub-group

selection task. The area under the receiver operating characteristic

curve (AUC), true positive rate (TPR), and false positive rate (FPR)

were used to analyze the effectiveness of the proposed algorithm.

The significant difference was analyzed by one-way ANOVA and

paired t-test. The statistical significance was defined as p-values

< 0.05, and the Post Hoc tests were the Least Significant Difference

(LSD) corrected in the one-way ANOVA. LSD is a statistical

method used in multiple comparisons. It helps to determine which

specific group averages are significantly different from one another.

3.1 AUC comparison of di�erent fusion
strategies

In this subsection, we compared the AUC of four different

fusion strategies for the seven fixed groups in the dataset to find

the best fusion strategy. The AUC of average ERP (AE), parallel

FIGURE 5

Comparison of the AUC with four di�erent fusion strategies.

combination (PC), serial combination (SC), and AUC-weighted

vote (WV) in session 1 (S1) and session 2 (S2) were shown in

Figure 5. Taking S1 as an example, block 1 of S1 was used to train

the classifier, and block 2 and block 3 of session 1 were used to

test (Zheng et al., 2020). For all two sessions, the experiments

were denoted as S1–S1 and S2–S2 in within-session conditions,

respectively. The one-way ANOVA results showed that there

was no significantly better one among the four fusion strategies.

Therefore, the average ERP with the highest averaged AUC value

was taken as the best fusion strategy for HDCA. For the later

analysis, HDCA with average ERP was taken as a model to evaluate

the classification performance.
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TABLE 1 Within-session performance comparison between MIMC and conventional group mode.

S1–S1 S2–S2

AUC (%) TPR (%) FPR (%) AUC (%) TPR (%) FPR (%)

Single subject 86.80 (6.71)∗∗∗ 77.42 (11.47)∗∗∗ 3.83 (2.26)∗∗∗ 89.86 (5.27)∗∗∗ 82.97 (8.78)∗∗∗ 3.25 (3.55)∗∗∗

Fixed grouping 91.36 (4.81)∗∗ 84.82 (8.42)∗∗ 2.10 (1.22)∗ 94.44 (2.71)∗ 89.92 (5.31)∗ 1.05 (0.18)

Random grouping 92.57 (3.40)∗∗∗ 86.94 (6.03)∗∗∗ 1.80 (1.05)∗∗ 95.07 (2.07)∗∗ 91.33 (3.79)∗ 1.19 (0.92)

Proposed MIMC 96.97 (0.75) 94.71 (1.45) 0.78 (0.30) 97.01 (0.92) 94.64 (1.65) 0.62(0.24)

Matched grouping 96.97 (0.75) 94.71 (1.45) 0.78 (0.30) 97.59 (0.70) 95.73 (1.31) 0.55 (0.21)

The bold fonts indicated the best performance across all group modes except for the matched grouping. The result of the matched grouping was theoretically optimal performance.

Significant difference was analyzed by one-way ANOVA and LSD-adjustment post hoc multiple comparisons. The “∗” indicated the significant difference between the proposed two-user

matching strategy and other group modes. “∗”, “∗∗”, and “∗∗∗” meant p-values < 0.05, p-values < 0.01, and p-values < 0.001, respectively. Without “∗” meant p-values > 0.05.

3.2 Two-user matching performance

In this subsection, to verify the effectiveness of the proposed

method in the two-user matching task, we first compared the

MIMC with other conventional group modes in both within-

session and cross-session conditions. Then, to analyze the key

factors affecting the collaboration capabilities of two users,

we compared the MIMC with other potential group-member

selection strategies.

3.2.1 Performance comparison between MIMC
and conventional group modes

Table 1 showed the AUC, FPR, and TPR of single-user mode,

several conventional group modes in cBCI and proposed MIMC in

S1–S1 and S2–S2. The fixed grouping was the seven fixed group in

the dataset. The random grouping was the group that was randomly

selected from all users. The matched group was the group that

had the best test performance for each subject (Zhao et al., 2024).

One-way ANOVA was conducted for the group modes, which

showed significant differences in AUC, TPR, and FPR among these

group modes in both S1–S1 and S2–S2 (p-values < 0.001). As

shown in Table 1, in the within-session conditions, compared with

other group modes except for the matched grouping, the MIMC

had higher AUC and TPR and lower FPR. Moreover, the one-

way ANOVA result showed that there was no significant difference

between theMIMC and thematched grouping. It was indicated that

the MIMC significantly improved the collaborative performance in

two-user matching tasks.

The group-member selection process in the cBCI system was

labor-intensive and time-consuming for the whole group due to the

need for substantial computational resources to collect and analyze

EEG signals from all potential collaborators. Cross-session analysis

was necessary to validate the robustness of the selected groups,

ensuring that a group selected on one day could be effectively used

on other days. This avoids the need for repeated labor-intensive

and time-consuming selection processes before each session. The

cross-session condition was denoted as S1–S2 and S2–S1, in which

block 1 of one session was used to train, and block 2 and block 3 of

another session were used to test. To ensure that the experimental

results are not influenced by the classifier’s own cross-session

capabilities, we conducted cross-session experiments and used EA-

HDCA as the classifier. This was crucial because a stable and

FIGURE 6

Comparison of the performance with HDCA and EA-HDCA in

cross-session situations. The “∗” indicated the significant di�erence

between HDCA and EA-HDCA. “∗∗” and “∗∗∗” meant p-values < 0.01

and p-values < 0.001, respectively. Without “∗” meant p-values

> 0.05.

reliable classifier allows us to accurately assess the robustness of the

selected collaborative groups across different sessions, eliminating

variability introduced by the classifier itself and ensuring that

any observed performance differences are due to the collaborative

groups rather than the classifier’s instability. Figure 6 compared

the cross-session classification performance of the HDCA and

EA-HDCA under the single subject mode. In Figure 6, the red

dashed line represented the chance level, and the TPR of HDCA

was lower than the chance level in S2–S1. It was suggested that

the HDCA was not effective in overcoming the ERP variability

among different sessions.Moreover, the paired t-test results showed

that the EA-HDCA had higher AUC values and lower FPR values

than HDCA. Therefore, for the later analysis of cross-session

conditions, EA-HDCAwith ERP averaging was used to evaluate the

classification performance.

As shown in Table 2, similar to the within-session experiment

results, the one-way ANOVA results showed that there were
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TABLE 2 Cross-session performance comparison between MIMC and conventional group mode.

S1–S2 S2–S1

AUC (%) TPR (%) FPR (%) AUC (%) TPR (%) FPR (%)

Single subject 78.47 (7.88)∗∗∗ 59.95 (14.08)∗∗∗ 3.02 (2.26)∗∗∗ 76.19 (10.66)∗∗ 54.66 (21.07)∗∗ 2.27 (0.99)∗∗∗

Fixed grouping 80.47 (7.54)∗∗ 62.63 (14.13)∗∗ 1.68 (1.29)∗ 77.39 (8.94)∗ 55.87 (17.64)∗ 1.08 (0.34)

Random grouping 82.35 (6.28)∗∗∗ 65.89 (12.28)∗∗∗ 1.19 (1.03)∗ 80.16 (7.70)∗ 61.32 (15.32)∗ 1.00 (0.47)∗

Proposed MIMC 89.28 (4.71) 78.89 (9.41) 0.33 (0.14) 85.28 (7.61) 71.17 (15.07) 0.62 (0.26)

Matched grouping 90.55(3.87) 81.70(7.63) 0.60(0.30) 90.60(2.51) 81.82(5.05) 0.63(0.46)

The bold fonts indicated the best performance across all group modes except for the matched grouping. The result of the matched grouping was theoretically optimal performance.

Significant difference was analyzed by one-way ANOVA and LSD-adjustment post hoc multiple comparisons. The “∗” indicated the significant difference between the proposed two-user

matching strategy and other group modes. “∗”, “∗∗”, and “∗∗∗” meant p-values < 0.05, p-values < 0.01, and p-values < 0.001, respectively. Without “∗” meant p-values > 0.05.

significant differences in AUC, TPR, and FPR among these group

modes in both S1–S2 and S2–S1 (p-values < 0.001) and the

proposed MIMC had better performance compared with other

group modes. There was no significant difference between the

MIMC and the matched grouping in cross-session conditions. It

was indicated that the member combinations selected using MIMC

on one day could be used on the other days. It could contribute

to time reduction and process simplification of the cBCI system

calibration. This might be attributed to the fact that, although

different subjects exhibit varied neural responses to the same

stimulus, these individual differences may demonstrate temporal

consistency. For example, the group that had superior performance

in one session was likely to exhibit superior performance in

another session.

3.2.2 Performance comparison between MIMC
and other group-member selection methods

We also compared the proposed MIMC with other group-

member selection methods. The Individual Performance

Dissimilarity (IPD) (Matran-Fernandez and Poli, 2014) method

used the AUC dissimilarity between two users as the performance

score to pair users. Drawing inspiration from Zhao et al.

(2024), we implemented the Best Individual Performance (BIP)

approach, wherein the user exhibiting the highest AUC value

was identified as the optimal collaborator. We also considered

that the group with the best collaborative AUC on the training

stage would constitute an effective group mode, and implemented

the Best Collaborative Performance (BCP) method. Note that,

we used the HDCA with average ERP to implement these

AUC-based methods.

Table 3 showed the comparison results. The one-way ANOVA

results illustrated that there were significant differences among the

four group-member selection methods in S1–S1 (p-values < 0.001)

and S2–S2 (p-values < 0.05). In S1–S1, according to the Post Hoc

test with LSD adjustment results, the proposed MIMC provided

higher AUC and TPR than IPD and BCP and lower FPR than

IPD. MIMC and BIP selected the same collaborators for each user.

The IPD provided the worst classification performance among the

four methods (p-values < 0.05). In S2–S2, the MIMC provided

higher AUC and TPR than the other three methods and provided

lower FPR than IPD and BCP. There were no significant differences

between IPD, BIP, and BCP in S2–S2. Therefore, the proposed

MIMC selected better collaborators for each subject and improved

the classification performances.

Additionally, we compared IPD, BIP, and BCPwith other group

modes. The one-way ANOVA with LSD adjustment results showed

that there was no significant difference between IPD and random

grouping. It might be because although the two subjects had similar

AUC, it did not necessarily mean they had more similar neural

responses. BIP and BCP also did not demonstrate a significant

difference when compared to random grouping in session 2. One

possible reason could be the AUC-based methods suffered from

over-fitting. For BIP, as shown in Table 1, the decrease in individual

performance variability among subjects in session 2 could be

another reason.

3.2.3 Performance comparison between di�erent
values of µ

InMIMC, the parameterµ played a crucial role in balancing the

contribution of individual capability and collaborative capability.

As shown in Table 4, the one-way ANOVA results indicated there

were significant differences in AUC among different values of µ

in S1–S1 (p-values < 0.001), S1–S2 (p-values < 0.05), and S2–

S1 (p-values < 0.05). The Post Hoc tests with LSD revealed that,

in S1–S1 and S1–S2, the AUC for the method focusing solely on

collaborative capabilities (µ = 0) was surpassed by both other

approaches. Similarly, in S2–S1, the approach centered exclusively

on individual capabilities (µ = 1) demonstrated lower AUC values

compared to its counterparts. The sub-optimal performance of

(µ = 0) and (µ = 1) could likely be attributed to the participants’

varying familiarity with the RSVP paradigm across sessions. In

session 1, subjects’ unfamiliarity with the RSVP paradigm led

to considerable differences in their individual capabilities. Under

these conditions, methods emphasizing individual capabilities

could potentially achieve higher AUC values. However, in session 2,

as participants became more familiar with the RSVP paradigm, the

emphasis shifted toward the importance of collaborative capability.

The optimal µ value adeptly combined both of them, enhancing

system performance. Our experimental results determined optimal

µ values to be 0.86 for session 1 and 0.64 for session 2, suggesting

that individual capability played a more important role than

collaborative capability.
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TABLE 3 Performance comparison between MIMC and other group-member selection methods.

Session S1–S1 S2–S2

AUC (%) TPR (%) FPR (%) AUC (%) TPR (%) FPR (%)

IPD 91.75 (4.03)∗∗∗ 85.46 (7.10)∗∗∗ 1.95 (1.10)∗∗∗ 94.88 (2.63)∗∗ 90.88 (4.90)∗∗ 1.13 (0.53)∗∗

BIP 96.97 (0.75) 94.71 (1.45) 0.78 (0.30) 95.35 (1.41)∗ 91.58 (2.71)∗ 0.88 (0.41)

BCP 95.03 (2.20)∗ 91.26 (3.88)∗ 1.20 (0.89) 95.20 (1.90)∗ 91.45 (3.57)∗ 1.06 (0.56)∗

proposed MIMC 96.97 (0.75) 94.71 (1.45) 0.78 (0.30) 97.01 (0.92) 94.64 (1.65) 0.62 (0.24)

The bold fonts indicated the best performance across all group-member selection methods.

Significant difference was analyzed by one-way ANOVA and LSD-adjustment post hoc multiple comparisons. The “∗” indicated the significant difference between the proposed two-user

matching strategy and other group selection methods. “∗”, “∗∗”, and “∗∗∗” meant p-values < 0.05, p-values < 0.01, and p-values < 0.001, respectively. Without “∗” meant p-values > 0.05.

TABLE 4 AUC (%) of di�erent values of µ.

S1–S1 S2–S2 S1–S2 S2–S1

µ = 0 93.30 (3.57)∗∗∗ 96.72 (1.01) 84.51 (6.44)∗ 85.70 (6.80)

Optimized µ 96.97 (0.75) 97.01 (0.92) 89.28 (4.71) 85.28 (7.61)

µ = 1 96.97 (0.75) 97.25 (0.77) 89.28 (4.71) 78.32 (7.14)∗

The bold fonts indicated the best performance across three different values of µ.

Significant difference was analyzed by one-way ANOVA and LSD-adjustment post hoc multiple comparisons. The “∗” indicated the significant difference between the optimized µ and other

values of µ. “∗” and “∗∗∗”meant p-values < 0.05 and p-values < 0.001, respectively. Without “∗” meant p-values > 0.05.

3.3 Sub-group selection performance

In this subsection, we extended the proposed MIMC from the

two-user cBCI system to the multi-user cBCI system. The all-

member mode was the group with all 14 subjects in the dataset.

The sub-group mode was the sub-group selected by the proposed

SFFS with MIMC from the 14 subjects. The AUC, TPR, FPR, and

the group size of the all-membermode and sub-groupmode in both

within-session conditions and cross-session conditions were shown

in Table 5. In general, the all-member mode provided slightly

higher AUC and TPR with lower FPR compared to the sub-group

mode. However, the group size of the two modes indicated that

the group member number of the sub-group drastically reduced.

Specifically, the selected sub-group consisted ofmerely one-seventh

of the total subjects in session 1 and two-seventh in session 2,

respectively. Therefore, the proposed method could sacrifice a

slight amount of system performance to substantially reduce the

number of members in a multi-user cBCI system. Notably, in the

S2–S1, the sub-group has a higher AUC and TPR than the all-

member mode, indicating that if a better sub-group was selected,

the performance might be improved in the multi-user cBCI system.

As shown in Figure 7, we discussed the effects of the number of

groupmembers on AUC under the random groupingmode and the

MIMC mode in the multi-user cBCI system. For random grouping

mode in multi-user cBCI, with a group size of n, we formed a

group by randomly choosing n participants from all 14 subjects.

Considering the computational complexity, for a group size of n,

the maximum number of random combinations generated from

choosing n out of 14 was capped at 100 to manage the variety of

possible combinations. As the number of collaborators within the

group increased, the AUCdemonstrated an upward trend under the

random groupingmode. For the group-member selectionmode, we

selected a sub-group from all 14 subjects using SFFS with MIMC.

To analyze the effectiveness of the proposed method, Figure 7

showed the AUC for the selected sub-group terminating at the

predefined number of subjects first. Under this termination policy,

SFFS with MIMC significantly outperformed random grouping

with a smaller predefined number, such as 2–4 members. This

trend highlighted the MIMC strategy’s superior initial selection

of team members, where the benefits of the selection strategy

were maximized with a limited number of collaborators. This

aligned with our original intention of striking a balance between

the size of the group and the collaborative performance. The blue

stars represented the AUC and group size of the selected sub-

group using SFFS with MIMC, indicating that SFFS with MIMC

effectively balanced the number of selected members and the

collaborative AUC.

4 Discussion

In this section, we discussed and concluded the effectiveness

and the limitations of the proposed method, and introduced the

possible future research directions.

4.1 E�ectiveness of proposed method

In this study, we proposed the MIMC strategy to pair

collaborative groups for the two-user matching task. To verify

the effectiveness of the MIMC strategy in the two-user matching

task, we first compared MIMC with other conventional group

modes under both within-session and cross-session conditions.

In both conditions, MIMC achieved higher AUC and TPR,

lower FPR compared to other group modes, and showed no

significant difference from the matched grouping. These results

demonstrated that the MIMC strategy significantly improves

collaborative performance. Secondly, we compared MIMC with
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TABLE 5 Classification performance with all-member and sub-group selected by SFFS with MIMC.

All-member SFFS with MIMC

AUC (%) TPR (%) FPR (%) Num AUC (%) TPR (%) FPR (%) Num

S1–S1 98.53 97.32 0.26 14 97.97 96.43 0.48 2

S2–S2 99.53 99.11 0.04 14 99.05 98.21 0.11 4

S1–S2 98.21 96.43 0.00 14 95.93 91.96 0.11 2

S2–S1 94.14 88.39 0.11 14 95.01 90.18 0.15 4

FIGURE 7

Performance of the random grouping and SFFS with MIMC in the sub-group selection task. The blue stars represented the group size and AUC of the

selected sub-group using SFFS with MIMC.

other existing and potential group-member selection strategies,

including IPD (Matran-Fernandez and Poli, 2014), BIP (Zhao et al.,

2024), and BCP. The IPD strategy (Matran-Fernandez and Poli,

2014) selected the candidate whose AUC is most similar to the

specific user. The BIP strategy (Zhao et al., 2024) selected the

candidate with the highest AUC. In contrast, we estimated the

SSNR of each candidate’s EEG signal to quantify their individual

capabilities and used the Pearson correlation coefficient to estimate

the similarity of the ERP waveform from the two users as their

collaborative capability. The proposed MIMC strategy selected

the collaborator with the maximum individual capability and

maximum collaborative capability. The comparison results showed

that the MIMC outperformed other group-member selection

strategies. Thirdly, we compared the classification performance

with different values of µ. The results showed that the optimized

µ could balance the contribution of individual capability and

collaborative capability. Furthermore, we combined the MIMC

strategy with SFFS to address the issue of sub-group selection in

RSVP-based cBCI systems. The results showed that the proposed

method could sacrifice a slight amount of system performance

to substantially reduce the number of members in a multi-user

cBCI system.

4.2 Limitations and future research

Although the proposed method can effectively optimize the

group mode in the RSVP-based cBCI system, there are three

major limitations to this method. First, this study is based on

public datasets and requires further validation through online

experimentation. Another limitation is that only a group with

fourteen collaborators was included in our experiment. In follow-

up studies, the EEG data of more groups and the EEG data of

groups with more members should be recorded, and the proposed

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2024.1402154
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Si et al. 10.3389/fnins.2024.1402154

method should be tested on these groups. Finally, it should be

noted that the pseudo-multi-user collaboration experiments might

be not identical to the actual multi-user collaboration experiments.

It is necessary to verify our method in a real-world multi-user

cBCI system.

Additionally, the development of cBCI technology is expected

to support the innovation of the next generation of human-

computer interaction systems (Jiang et al., 2019; Gu et al., 2021).

We believe that the Internet of Brains (IoB) is an essential

development direction for multi-user human-computer interaction

systems (Martins et al., 2019; Moioli et al., 2021; Hu et al., 2024).

The IoB can be considered as the next step in the Internet of Things

(IoT) (Silva et al., 2017). In the IoB, multiple brains are seamlessly

connected to the wireless network as nodes of the communication

grid. Compared with the IoT, the IoBwith “brain in the loop” would

allow more direct interactions between users and networks. The

future cBCI-based IoB should be expanded in the following aspects:

(1) Group-member selection strategies: The random grouping

mode results in poor collaborative performance. Therefore, cBCI

systems should optimize the group mode based on both individual

capabilities and relationships between the users to improve the

group’s performance. (2) Task allocation strategies for single BCI

paradigm (Gu et al., 2021): The users performed the same task

together in the existing cBCI system, which did not fully consider

the rationality of task allocation. The division-of-work strategies

that reduced the number of users recognizing the same instructions

could reduce individual workload and improve overall system

performance. (3) Task allocation strategies for hybrid BCI (Cecotti

and Rivet, 2014): Cecotti and Rivet proposed the cooperative-

hybrid BCI, which involved multi-user and multi-paradigm. We

assume that the collaborative has varying adaptability to different

BCI paradigms. Based on this hypothesis, task allocation for hybrid

BCI should consider user adaptability to different paradigms, such

as the P300 speller and RSVP, to further optimize the division-of-

work strategies.

5 Conclusion

In this work, we introduced a novel group-member

selection strategy that considered both individual capability

and collaborative capability within the RSVP-based cBCI system.

The effectiveness of the proposed MIMC was demonstrated

through its application to both the two-user matching task and

the sub-group selection task. For the two-user matching task,

the classification results showed that the specially optimized

group mode surpasses traditional random grouping and other

group-member selection methods based on AUC. Furthermore,

for the sub-group selection task, the implementation of SFFS with

MIMC successfully achieved the trade-off between maintaining

performance and enhancing system efficiency. Consequently, our

research contributes to the practical advancement of RSVP-based

cBCI systems for real-world applications.
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