Skip to main content

ORIGINAL RESEARCH article

Front. Neurosci.
Sec. Neuromorphic Engineering
Volume 18 - 2024 | doi: 10.3389/fnins.2024.1401690

Paired Competing Neurons Improving STDP Supervised Local Learning in Spiking Neural Networks

Provisionally accepted

The final, formatted version of the article will be published soon.

    Direct training of Spiking Neural Networks (SNNs) on neuromorphic hardware has the potential to significantly reduce the energy consumption of artificial neural network training. SNNs trained with Spike Timing-Dependent Plasticity (STDP) benefit from gradient-free and unsupervised local learning, which can be easily implemented on ultra-low-power neuromorphic hardware. However, classification tasks cannot be performed solely with unsupervised STDP. In this paper, we propose Stabilized Supervised STDP (S2-STDP), a supervised STDP learning rule to train the classification layer of an SNN equipped with unsupervised STDP for feature extraction. S2-STDP integrates error-modulated weight updates that align neuron spikes with desired timestamps derived from the average firing time within the layer. Then, we introduce a training architecture called Paired Competing Neurons (PCN) to further enhance the learning capabilities of our classification layer trained with S2-STDP. PCN associates each class with paired neurons and encourages neuron specialization toward target or non-target samples through intra-class competition. We evaluate our methods on image recognition datasets, including MNIST, Fashion-MNIST, and CIFAR-10. Results show that our methods outperform state-of-the-art supervised STDP learning rules, for comparable architectures and numbers of neurons. Further analysis demonstrates that the use of PCN enhances the performance of S2-STDP, regardless of the hyperparameter set and without introducing any additional hyperparameters.

    Keywords: spiking neural networks, Image Recognition, Supervised STDP, winner-takes-all, Intra-class Competitive Learning

    Received: 15 Mar 2024; Accepted: 11 Jul 2024.

    Copyright: © 2024 Goupy, Tirilly and BILASCO. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Ioan Marius BILASCO, Université de Lille, Lille, France

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.