An important challenge in epilepsy is to define biomarkers of response to treatment. Many electroencephalography (EEG) methods and indices have been developed mainly using linear methods, e.g., spectral power and individual alpha frequency peak (IAF). However, brain activity is complex and non-linear, hence there is a need to explore EEG neurodynamics using nonlinear approaches. Here, we use the Fractal Dimension (FD), a measure of whole brain signal complexity, to measure the response to anti-seizure therapy in patients with Focal Epilepsy (FE) and compare it with linear methods.
Twenty-five drug-responder (DR) patients with focal epilepsy were studied before (t1, named DR-t1) and after (t2, named DR-t2) the introduction of the anti-seizure medications (ASMs). DR-t1 and DR-t2 EEG results were compared against 40 age-matched healthy controls (HC).
EEG data were investigated from two different angles: frequency domain—spectral properties in δ, θ, α, β, and γ bands and the IAF peak, and time-domain—FD as a signature of the nonlinear complexity of the EEG signals. Those features were compared among the three groups.
The δ power differed between DR patients pre and post-ASM and HC (DR-t1 vs. HC,
FD measured in baseline EEG signals is a non-linear brain measure of complexity more sensitive than EEG power or IAF in detecting a response to ASMs. This likely reflects the non-oscillatory nature of neural activity, which FD better describes.
Our work suggests that FD is a promising measure to monitor the response to ASMs in FE.