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The interrelation between acute ischemic stroke, persistent disability, and

uncertain prognosis underscores the need for improved methods to predict

clinical outcomes. Traditional approaches have largely focused on analysis

of clinical metrics, lesion characteristics, and network connectivity, using

techniques such as resting-state functional magnetic resonance imaging

(rs-fMRI) and diffusion tensor imaging (DTI). However, these methods are

not routinely used in acute stroke diagnostics. This study introduces an

innovative approach that not only considers the lesion size in relation to the

National Institutes of Health Stroke Scale (NIHSS score), but also evaluates

the impact of disrupted fibers and their connections to cortical regions

by introducing a disconnection value. By identifying fibers traversing the

lesion and estimating their number within predefined regions of interest

(ROIs) using a normative connectome atlas, our method bypasses the

need for individual DTI scans. In our analysis of MRI data (T1 and T2)

from 51 patients with acute or subacute subcortical stroke presenting with

motor or sensory deficits, we used simple linear regression to assess

the explanatory power of lesion size and disconnection value on NIHSS

score. Subsequent hierarchical multiple linear regression analysis determined

the incremental value of disconnection metrics over lesion size alone in

relation to NIHSS score. Our results showed that models incorporating the

disconnection value accounted for more variance than those based solely

on lesion size (lesion size explained 44% variance, disconnection value

60%). Furthermore, hierarchical regression revealed a significant improvement

(p < 0.001) in model fit when adding the disconnection value, confirming

its critical role in stroke assessment. Our approach, which integrates a

normative connectome to quantify disconnections to cortical regions, provides

a significant improvement in assessing the current state of stroke impact

compared to traditional measures that focus on lesion size. This is achieved

by taking into account the lesion’s location and the connectivity of the

affected white matter tracts, providing a more comprehensive assessment

of stroke severity as reflected in the NIHSS score. Future research should
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extend the validation of this approach to larger and more diverse populations,

with a focus on refining its applicability to clinical assessment and long-term

outcome prediction.

KEYWORDS

acute ischemic stroke, brain connectivity, normative connectome, sensorimotor
deficits, NIHSS score

1 Introduction

Stroke, as the second leading cause of death and the leading
cause of acquired disability, remains a major burden in Western
countries (Katan and Luft, 2018; Gbd 2019 Stroke Collaborators,
2021). Over the past decade, substantial advancements have been
made in both diagnostic and therapeutic strategies for acute stroke.
Perfusion imaging has emerged as a vital tool, offering insights into
potentially salvageable at-risk tissue. Acute treatment modalities,
notably thrombolysis therapy and mechanical thrombectomy,
hold tremendous promise. However, they are not without risks,
necessitating a careful evaluation of the potential benefits against
inherent risks.

One of the challenges in acute stroke management is the
absence of a reliable method to assess the future clinical
implications of a specific lesion. The inability to accurately predict
untreated outcomes, both in the immediate aftermath and over the
long term, complicates acute treatment decisions. These studies are
mostly based on either the National Institutes of Health Stroke
Scale (NIHSS score) or the volume of brain tissue at risk (Goyal
et al., 2016; Ma et al., 2019). However, more detailed knowledge
of the potential harm of a particular lesion would be extremely
useful.

The critical need to address this issue has spurred a plethora
of studies aiming to predict patients’ clinical outcomes, employing
various data types. These approaches can be broadly categorized
into three main strategies: (i) analysis of pure clinical data, (ii)
assessment of lesion size and location, and (iii) integration of
network connectivity information.

Efforts to forecast clinical outcomes based solely on clinical data
have yielded moderate results, indicating that patients with more
severe initial symptoms generally experience poorer outcomes
(Sato et al., 2008; Sablot et al., 2011; Wouters et al., 2018; Kazi
et al., 2021). Another approach involves incorporating the size
and location of the lesion in outcome prediction models. Initially,
this approach was expected to enhance prediction accuracy
significantly, as the lesion directly contributes to clinical symptoms
and potential persistent disability. However, despite considerable
efforts, the results have not reached a level of accuracy applicable
in clinical practice (Schiemanck et al., 2005; Yoo et al., 2010).
This limitation extends to other parameters in prediction models,
such as cortical thickness in certain contralesional cortices (Rojas
Albert et al., 2022) and metrics of brain age and resilience
(Liew et al., 2023).

To obtain data on functional or structural connectivity,
resting state functional magnetic resonance imaging (rs-fMRI),
diffusion tensor imaging (DTI) and connectivity analyses have been

employed (Horn et al., 2014; Ktena et al., 2019; Kao et al., 2020;
Koch et al., 2021; Peng et al., 2023). However, these data (rs-fMRI,
DTI) are not typically gathered during routine diagnostics in stroke
cases. Moreover, obtaining them requires patient cooperation and
extends the examination time, rendering them impractical in the
hyperacute phase of stroke, where therapeutic decisions are time-
sensitive. In acute stroke diagnostics, a diffusion sequence and
FLAIR are necessarily acquired in MRI. Our approach utilizes a
T1 and FLAIR data set, whereby even the T1 could be generated
from the FLAIR (Iglesias et al., 2023). This emphasis on basic
MRI sequences reduces the MRI acquisition time to just several
minutes. Consequently, systemic thrombolysis and mechanical
thrombectomy can be rapidly initiated during the hyperacute phase
of stroke.

Our alternative approach combines individual MRI data
with probabilistic information sourced from the Human
Connectome Project (HCP). We hypothesized that the
clinical state of a patient can be predicted using probabilistic
information from the HCP, rather than individual DTI data.
Specifically, we posit that this connectome information
could enhance the predictability of clinical stroke severity, as
measured by the NIHSS score, beyond what can be achieved
by considering lesion size alone. To estimate the number
of fibers traversing the lesion, we calculated the number of
disconnected fibers and used the term disconnection value. In
order to evaluate the hypothesis, we assessed the number of
disconnected fiber tracts to specific cortical areas (quantified
by the disconnection value), drawing on probabilistic data
from the HCP alongside individual T1 and T2-weighted fluid-
attenuated inversion recovery (FLAIR) imaging data from our
cohort of 51 patients.

2 Materials and methods

The study was reviewed and approved by the Ethics Committee
of Friedrich Schiller University Jena in accordance with the
Declaration of Helsinki.

We employed a uniform and standardized examination design
for all patients included in the project. Stroke patients underwent
clinical examinations, and their medical histories were reviewed.
This procedure, as well as asking specific questions within the
framework of the anamnesis, is well-established. In addition, we
developed a software that utilizes data provided by the HCP along
with a high-resolution image of the patient’s ischemic lesion to
create a probabilistic surface atlas of the disconnected areas.
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2.1 Patients

Fifty-one stroke patients (aged 47 to 88 years, mean age
69.0 ± 10.5; 24 female) were screened at the stroke unit and
intensive care unit within the Department of Neurology of the
University Hospital Jena, Germany. We analyzed data from a two-
year period, starting in December 2019 and ending in December
2021. After presentation to the Emergency Department the patients
were admitted to our certified stroke unit or neurologically
managed intensive care unit. They received an interdisciplinary
stroke unit treatment over at least 24 h.

The following inclusion criteria were defined: (a) acute or
subacute single subcortical ischemic stroke in anterior, media, or
posterior territory visible in cranial magnetic resonance imaging
(MRI) not older than 5 days, (b) focal neurological symptoms
(motoric and/or sensoric) caused by the stroke, (c) NIHSS score
under 15 points at the time of admission, (d) aged 18 years
or older, and (e) no evidence of other neurological disorders to
explain the symptoms.

In addition to sociodemographic data, we documented a
range of parameters and clinical information, including the
CHA2DS2-VASc score, which assigns 1 point for congestive
heart failure, hypertension, age 65–74 years, diabetes mellitus,
vascular disease, female sex and 2 points for age > 75 years and
previous stroke, transient ischemic attack or thromboembolism
(January et al., 2014). Long-term medication, such as oral
anticoagulation, and (dual) platelet aggregation inhibition, were
also carefully recorded. Acute therapeutic interventions, such
as systemic thrombolysis, mechanical thrombectomy, and acute
carotid artery thromboendarterectomy, were documented, along
with the duration of hospital stay (comprehensive details available
in Table 1).

We focused on relatively less severely affected stroke patients to
make participation in the study practically possible. By definition,
these were patients with mild or moderate stroke (determined by
NIHSS score < 15 points). Specifically, this was determined by the
NIHSS score ranging from 0 to 6 points for mild stroke and 7–
14 points for moderate stroke. Patients with severe clinical deficits
often had complicated courses, which made inclusion in the study
impossible (e.g., due to prolonged stays in the intensive care unit).

Patients meeting any of the following criteria were excluded
from the study: the presence of acute visual defects (such as
hemianopsia), pre-infarcts in the same cerebral area affected
by the current stroke, pre-existing motor or sensory deficits
related to stroke, and any contraindications to MRI, e.g., patients
having a pacemaker.

2.2 Clinical assessment

Neurological deficits were quantified using the NIHSS score,
which is suitable for early detection and follow-up assessment
(Brott et al., 1989; Kasner, 2006). The NIHSS score was recorded
by trained neurologists (assistant and specialist doctors) at
the time of admission. To determine the degree of disability
after stroke, the modified Rankin Scale (mRS) score was
utilized in the currently widely modification (Rankin, 1957;
van Swieten et al., 1988).

TABLE 1 Cohort characteristics.

N 51

Age in years 69.0± 10.5 (47–88)

Females (in %) 24 (47.1%)

NIHSS score admission 4.4± 3.2 (0–14)

NIHSS score release (early follow-up) 2.1± 2.6 (0–10, N = 50)

mRS (pre-stroke level) 0.5± 0.9 (0–3, N = 48)

mRS release (early follow-up) 1.8± 1.2 (0–4, N = 47)

Oral anticoagulation in premedication (in %) 2 (3.9%)

Platelet aggregation inhibition in
premedication (single or dual; in %)

14 (27.5%)

Affected hemisphere (right vs. left in %) 20 vs. 31 (39.2% vs. 60.8%)

CHA2DS2-VASc score 4.8± 1.6 (2–8)

Systemic thrombolysis (in %) 10 (19.6%)

Mechanical thrombectomy (in %) 4 (7.8%)

Acute carotid artery thrombendarterectomy
(in %)

0 (0%)

Duration of hospital stay in days 7.0± 3.0 (2–15)

NIHSS, National Institutes of Health Stroke Scale; mRSm modified Rankin Scale, CHA2DS2-
VASc score [acronym stands for congestive heart failure, hypertension, age in years (>65 = 1
point, >75 = 2 points), diabetes mellitus, vascular disease, female sex and previous
stroke/transient ischemic attack/thromboembolism (2 points)]. Values are given in mean
value± standard deviation (range).

2.3 Magnetic Resonance Imaging (MRI)

All patients included in the project underwent MRI
scanning, which included acquiring a high-resolution T1
dataset with an isotropic voxel size of 1 mm and a FLAIR
sequence with identical resolution. The MRI scans were
conducted using a 3 Tesla MRI scanner (Skyra, SIEMENS,
Erlangen, Germany) approximately 2–5 days post-hospitalization
(average 2.6 days). A standardized MRI protocol was
employed for all scans, encompassing both a T1-weighted
and FLAIR sequence. The high-resolution T1-weighted
anatomical dataset was acquired using a three-dimensional
(3D) magnetization-prepared, rapid acquisition gradient-echo
(MPRAGE) sequence with the following parameters: voxel
size of 1 mm isotropic, acquiring 176 sagittal slices with a
slice thickness of 1 mm. The repetition time (TR) was 2300
milliseconds (ms), echo time (TE) 3.06 ms and inversion time
(TI) 1,100 ms. Additionally, FLAIR images were captured
with the following parameters: voxel size of 1 mm isotropic,
176 sagittal slices, slice thickness 1 mm. TR = 5000 ms,
TE = 394 ms, TI = 1,800 ms.

2.4 Image processing and data evaluation

The raw datasets contained the T1 and FLAIR images. Ischemic
lesions were detected in the FLAIR sequence. All images were pre-
processed using Statistical Parametric Mapping (SPM12, Friston
et al., 2007) and the Computational Anatomy Toolbox (CAT12,
Gaser et al., 2022). The following Figure 1 gives an overview of the
schematic workflow:
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FIGURE 1

The figure shows a step-by-step overview for processing MRI scans and mapping fiber tracts to investigate the effects of stroke lesions on brain
connectivity. We start with co-registration of FLAIR to T1-weighted images using SPM12 and utilize the derived parameters to align lesion masks.
Subsequently, the Lesion Segmentation Toolbox (LST) is employed for lesion identification and filling on T1 images, a process designed to mitigate
the bias of spatial normalization to the MNI152NLin2009cAsym space with CAT12. The HCP1065 Population-Averaged Tractography Atlas then
facilitates the identification of fiber tracts intersecting the lesions. These fibers are projected onto a cortical mesh in MNI space. To ensure consistent
analysis across subjects, lesion projections from the right hemisphere are mirrored to the left hemisphere. Affected cortical regions, specifically the
precentral, postcentral, and superiorparietal areas deliniated by the Desikan-Killiany (DK40) atlas, are quantified by the logarithmically (log) scaled
number of terminating fibers, elucidating the extent of disconnection following stroke. To obtain the disconnection value, we multiplied the total
number from the three specified regions. The color spectrum in the fiber detection and projection images serves as an indicator of disconnection:
warmer tones denote a greater number of severed fibers, whereas cooler tones indicate fewer disconnections.

2.4.1 Preprocessing of images
To create lesion masks from the stroke patients, we used in-

house software under the guidance of expert supervision. The
following steps were performed:

(1) Labeling: We assigned the existing image data to the respective
correct image modality.

(2) Preprocessing: We changed the orientation (rotation from
sagittal to axial) and marked the commisura anterior for
correct normalization. If the MRI images appeared misaligned,
additional alignment along an angle was executed according
to radians (especially important for very oblique images).
Manually, we set the course of the axis along the falx cerebri.

(3) Detection and marking regions of interest (ROIs): Every image
underwent thorough visual inspection. Acute ischemic lesions
were located and marked by delineating the entire lesion on
each layer, utilizing the FLAIR dataset as reference.

After creating the lesion masks, we co-registered the FLAIR
images to the T1-weighted image using normalized mutual
information (NMI) in SPM12. The estimated registration
parameters were then applied to the lesion masks. Following this,
we used the Lesion Segmentation Tool (LST, Schmidt and Wink,
2017) employing the lesion growth algorithm (LGA, Schmidt et al.,
2012) approach to accurately segment the stroke lesions, utilizing
the default parameters. Subsequently, the segmented lesions were
filled in the T1 image using the LST lesion filling function. Our
preference for LST over manually defined lesions stems from its
ability to not only fill stroke lesions but also address other lesions

in the white matter. This ensured the creation of a lesion-filled
T1 image, mitigating any potential biases induced by lesions in
estimating spatial registration. This lesion-filled T1 image served
as the basis for estimating the deformations from the T1 image to
the standardized template space MNI152NLin2009cAsym using
CAT12. Finally, the deformations were applied to the co-registered
stroke lesion mask, facilitating the transformation of all images
into MNI152NLin2009cAsym space.

2.4.2 Fiber projection using normative
connectome

To identify fiber tracts traversing the stroke lesions, we
utilized the HCP1065 Population-Averaged Tractography Atlas
(Yeh, 2022). This probabilistic tractography atlas, constructed
from 1065 DTI scans, provides a normative map of fiber tracts
transformed into MNI152NLin2009cAsym space. It comprises 0.5
million fiber tracts, manually corrected and curated for quality
assurance. The atlas is publicly accessible.1 As the lesions now align
with the HCP1065 atlas, we could determine which fibers traversed
each lesion in each subject and calculate a disconnection value for
each patient using the following steps:

(1) The original HCP1065 atlas records precise coordinates in
MNI152NLin2009cAsym for each of the 0.5 million fiber
tracts. These coordinates are resampled to match the 1.5mm
voxel size of our spatially registered (lesion) images. Each
voxel now contains the count of fibers passing through

1 https://brain.labsolver.org/hcp_trk_atlas.html
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FIGURE 2

This figure illustrates a more detailed description of the use of the normative connectome atlas. The used HCP1065 atlas provides coordinates for
0.5 million fiber tracts, resampled to match our 1.5 mm voxel size. Each voxel now contains a count of fibers, log-transformed for standardization.
This helps to identify fibers that cross lesions. Fibers traversing lesions are identified, creating a map (A) showing their full length and endpoints. The
CAT12 surface mesh of the MNI152NLin2009cAsym template now maps voxel values using inward surface normals to find maximum values within a
given depth (B). The resulting surface map (C) finally encodes the number of fibers traversing lesions. Again, values are stored as log-transformed
values to account for the wide range of values.

it. To standardize the wide range of these values and
reduce distribution skewness, we applied a logarithmic (log)
transformation. For instance, a value of 3 indicates that 1000
fibers traverse the voxel. Notably, all voxel coordinates for all
fiber tracts are retained after this resampling, facilitating the
identification of fibers traversing a lesion in subsequent steps.

(2) All fibers intersecting the lesion are identified, with each voxel
containing information on the number of fibers crossing it.
This produces a map (Figure 2A) illustrating the full length
of fibers traversing the lesion, including their endpoints.

(3) CAT12 provides a surface mesh of the
MNI152NLin2009cAsym template, utilized to map voxel
values from the previous step, containing information on
the number of fibers present in each voxel. Surface normals
pointing inward are employed to find the maximum value
within a specified depth (Figure 2B). This mapping process
is analogous to the mapping of functional MRI data to the
surface, but it extends the search depth to encompass values
close to the gray-white matter boundary.

(4) The resulting surface map (Figure 2C) now encodes the
number of fibers found in the underlying voxels, representing
fibers traversing the lesion and terminating at specific surface
points. Once again, values are stored as log-transformed values
to account for the wide range of values.

In order to facilitate the analysis of all stroke lesions in the
same hemisphere, lesions located in the right hemisphere were
mirrored to the symmetrical left hemisphere (see Figures 1, 2). The
average log-scaled fiber numbers across our sample of 51 patients
are shown in Figure 3. These projected fiber endpoints serve as the
basis for calculating the logarithmic number of fibers terminating
in each of the precentral, postcentral, and superior parietal regions
of the Desikan-Killiany (DK40) atlas (Desikan et al., 2006), thereby
providing insight into the affected cortical areas. The total number
of detected fibers is estimated for each of these regions.

For subsequent statistical analysis, we multiplied rather than
summed the log-scaled fiber counts from the three specified

regions, which now represents our disconnection value. This
approach ensures that all three regions are affected simultaneously,
emphasizing the pervasive effect of stroke on the targeted cortical
regions. By using this multiplicative approach, we ensure that the
resulting values are significant only when fibers are present in each
of the three ROIs, thereby highlighting regions that are profoundly
affected by stroke across all cortical regions targeted in this study.

To summarize the entire calculation of this disconnection value
in one equation:

Disconnection value =∏
r∈{superiorparietal, postcentral, precentral}

( ∑
i∈Lesion(r)

log
(
nfibers,i + 1

))
where nfibers,i represents the number of fibers at position i,∑
i∈Lesion(r)

log
(
nfibers,i + 1

)
is the sum of the log-scaled fiber counts

(incremented by one to ensure that logarithm is defined) within
each specified region r, and

∏
r∈{superiorparietal, postcentral, precentral}

describes the product of the sums of log-scaled fiber counts across
three regions, reflecting the combined effect of disconnection
in multiple areas.

2.5 Statistical testing
To evaluate the importance of the predictor variables, lesion

size and disconnection value, we initially conducted simple linear
regression analysis with lesion size as the sole predictor. This initial
model served as the baseline for further analyses. Subsequently,
we performed hierarchical linear regression analysis to investigate
the incremental value of disconnection value in predicting the
outcome variable, beyond what can be explained by lesion size
alone. Hierarchical linear regression allows for the sequential entry
of variables into the regression equation, which is particularly
useful for testing the unique contribution of variables in the
presence of other variables. The hierarchical linear regression
analysis was conducted in two steps: Model 1 (Baseline Model):
Included only lesion size as the predictor. Model 2 (Full Model):
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FIGURE 3

This figure illustrates the mapping of the average number of fibers intersecting stroke lesions in 51 stroke patients. The data are projected onto a
standardized brain template in MNI152NLin2009cAsym space, allowing precise localization of affected brain regions. Logarithmic scaling is used to
manage the wide range of fiber counts, allowing more interpretable visualization. A value on this scale means that, on average, 10 fibers overlap a
given point on the brain surface. The projection highlights the cortical areas most affected by the stroke, providing insight into the impact of the
lesion on brain structure. This technique makes it possible to quantify the extent of disconnection in specific regions.

Included both lesion size and disconnection value as predictors.
Analysis of variance (ANOVA) was employed to compare the
explanatory power of these models. This analysis tests whether
the variance explained by the full model is significantly greater
than that explained by the baseline model, effectively evaluating
the contribution of adding disconnection value to the prediction
of the dependent variable. This method allows us to assess whether
the addition of disconnection value significantly improves the
model fit and predictive accuracy compared to a model relying
solely on lesion size. A significant ANOVA result would suggest
that disconnection value provides valuable predictive information
beyond lesion size. Further methodological details and examples of
hierarchical linear regression in similar contexts can be found in
previous work on applied multiple regression/correlation analysis
in the behavioral sciences (Cohen et al., 2022) and in the discussion
regarding the integration of new predictors into existing regression
models (Hayes, 2018).

3 Results

In our research study we included 20 right and 31 left
hemispheric strokes (n = 51; 39.2% vs. 60.8%; 24 females). All
patients reported acute focal neurological symptoms before first
presentation in the Emergency Department. The mean admission
NIHSS score was 4.4 ± 3.2 points (range: 0–14), and the average
length of hospital stay was 7.0± 3.0 days (range: 2–15).

To assess the respective importance of lesion size and
disconnection value, we initially performed two separate simple
linear regression analyses to test if (1) the lesion size and (2)
the disconnection value significantly predict the NIHSS score.
The model utilizing the lesion size revealed a significant result,

explaining 44% of the measured NIHSS score (R2 = 0.44; adjusted
R2 = 0.43, F-value = 38.0; p < 0.001). We observed that lesion
size significantly predicted the NIHSS score (β = 0.66, p < 0.001,
see Figure 4 and Table 2 for details). Similarly, the model utilizing
the disconnection value also revealed a significant result, explaining
60% of the measured NIHSS score (R2 = 0.60; adjusted R2 = 0.59,
F-value = 72.9; p < 0.001). It was found that the disconnection value
significantly predicted the NIHSS score (β = 0.77, p < 0.001, see
Figure 4 and Table 3 for details).

To further investigate the value of the disconnection value
compared to lesion size, we compared the model that uses log lesion
size as the sole predictor with a model that includes both log lesion
size and the disconnection value as predictors (Model 3, Table 4).
The overall regression in Model 3 was statistically significant
(R2 = 0.64; adjusted R2 = 0.63, F-value = 43.1; p < 0.001). We
found that both predictor variables made a significant contribution
to the model (lesion size: β = 0.28, p = 0.019; disconnection value:
β = 0.60, p < 0.001, Table 4). We then compared both models using
ANOVA to test whether there is a significant difference between
both models in predicting the NIHSS score. Results demonstrated
that the addition of the disconnection value significantly improved
the fit of the model (F = 27.6, p < 0.001, Table 5). In other words,
the prediction of the NIHSS score could be enhanced significantly
by incorporating the disconnection value into the regression model
(p < 0.001).

4 Discussion

This study underscores the potential of probabilistic
connectome data in predicting the clinical status of stroke
patients, showcasing its superiority over methods relying solely
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FIGURE 4

Correlation analysis: The left panel illustrates a linear regression analysis depicting the relationship between the NIHSS scores and the logarithmically
transformed lesion sizes. The right panel shows the correlation between NIHSS scores and disconnection values.

TABLE 2 Model 1, simple linear regression of NIHSS score by lesion size
(B: unstandardized beta, β: standardized beta, SE B: standard error for
unstandardized beta, p: probability value).

Predictors B SE B β P

Constant −3.47 1.32 0.01

Log lesion size 3.08 0.50 0.66 1.3e–7

R2 = 0.44; Adjusted R2 = 0.43, F-value = 38.0; P = 1.3e–7.

TABLE 3 Model 2, simple linear regression of NIHSS score by
disconnection value.

Predictors B SE B β P

Constant 2.75 0.35 2.38e–
10

Disconnection
value

1.1e–8 1.3e–9 0.77 2.9e–11

R2 = 0.60; Adjusted R2 = 0.59, F-value = 72.9; P = 2.9e–11.

TABLE 4 Model 3, multiple linear regression of NIHSS score by lesion
size and disconnection value.

Predictors B SE B β P

Constant −0.15 0.12 0.90

Log lesion size 2.29 9.4e–9 0.28 0.019

Disconnection
value

8.7–e9 1.7e–9 0.60 3.4e–6

R2 = 0.64; Adjusted R2 = 0.63, F-value = 43.1; P = 1.9e–11.

on lesion size. Previous research has already established that
connectivity-based models, which integrate additional insights
about the brain’s functional and structural wiring, offer enhanced
predictive power compared to models limited to clinical data

TABLE 5 ANOVA comparing the two linear regression models predicting
NIHSS admission scores by only log lesion size (Model 1, Table 2) or by
log lesion size and the disconnection value (Model 3, Table 4). The
results indicate that adding the disconnection value as a predictor in
Model 3 significantly improves the model’s fit compared to Model 1,
which only includes the log lesion size (Res.Df: Residual Degrees of
Freedom, RSS: Residual Sum of Squares).

Model Res.Df RSS F P

1 49 294.1 – –

3 48 187.7 27.6 3.4e–6

or lesion metrics (Grefkes and Fink, 2014; Silasi and Murphy,
2014; Dulyan et al., 2022; Rivier et al., 2023). This advantage
aligns with the prevailing network-centric perspective of brain
function, recognizing that brain functionalities are not isolated but
emerge from complex, widely distributed networks that necessitate
constant informational exchange (Siegel et al., 2022). Our findings
also resonate with this perspective, illustrating how focal brain
lesions can profoundly impact local and global network functions
by disrupting not only the directly affected area but also its
connected regions (Foulon et al., 2018; Saenger et al., 2018; Griffis
et al., 2019; Salvalaggio et al., 2020). This is exemplified by studies
on subcortical stroke lesions that indicate their impact extends
beyond the immediate site, influencing connected cortical areas
and leading to cortical thinning due to secondary neuroaxonal
degeneration (Cheng et al., 2015; Duering et al., 2015).

While patient-specific data derived from high-resolution
individual DTI and rs-fMRI examinations would offer the most
accurate insight into structural and functional connectivity, the
practical constraints of routine clinical practice often render this
unfeasible. However, our approach, leveraging a probabilistic
connectome, necessitates only the lesion’s size and location and yet
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outperforms methods lacking connectome insights. This implies
that probabilistic connectome information provided by an atlas
offers valuable features for predicting a patient’s clinical condition.
To optimize prediction models, integrating these features into
machine learning approaches is crucial, as the quality of input
features heavily influences model performance (Rehme et al.,
2015; Mouridsen et al., 2020; Jayakumar et al., 2022). Utilizing
preprocessed connectome features is essential, as machine learning
models cannot infer the probabilistic connectivity structure on
a population basis from limited data. It is crucial to emphasize
that for a system to be viable for clinical application, it must be
fundamentally grounded in data that can be routinely obtained
in clinical environments. While advanced methodologies like
DTI and functional connectivity analyses greatly enhance our
scientific understanding, their applicability in clinical settings may
be limited. This limitation becomes particularly pronounced during
the critical, high-acuity phase of stroke management, where swift
and decisive actions regarding recanalization interventions are
paramount. The strength of the approach presented in this study
lies precisely in its clinical applicability, leveraging data that are
readily available and can be efficiently utilized during the time-
sensitive decision-making process inherent in stroke treatment.
This ensures that the methodology is not just theoretically robust
but also practically implementable, aligning with the real-world
constraints and urgent needs of acute stroke care. A primary
objective for the future is to facilitate the availability and routine
individual application of this innovative approach in everyday
clinical practice for stroke patients.

We showed that this method, which uses a normative
connectome in predefined cortical ROIs, can significantly improve
the prediction of stroke outcome compared to traditional measures
of lesion size. This finding is consistent with a growing body of
evidence suggesting that damage to white matter tracts plays a more
important role in stroke outcome than lesion size alone (Moulton
et al., 2019; Kessner et al., 2021). Further, there has been previous
work on assessing stroke severity based on lesion size and location.
One widely utilized approach is voxel-based lesion-symptom
mapping (VLSM), which has generally been used for more specific
scores such as aphasia scores (Bates et al., 2003; Park et al.,
2021), but can also be applied to the NIHSS score (McCullough-
Hicks et al., 2020). Other approaches have focussed on different
measures, such as corticospinal lesion load, which is attributed with
greater explanatory power than lesion size. A comparative study
demonstrated that the extent of functional motor deficits following
stroke strongly depends on the degree of lesion overlap with the
corticospinal tract rather than lesion size itself (Zhu et al., 2010).
Further studies confirmed the predictive value of the lesion load of
the corticospinal tract for motor outcomes after stroke (Feng et al.,
2015; Ito et al., 2022; Park and Ohn, 2022). In recent times, the John
Hopkins University (JHU) white-matter atlas, which comprises
volumetric white matter tracts, has found application. Using it as
a kind of normative connectome, damaged white matter pathways
were identified that could cause a specific deficit (unilateral spatial
neglect) after subcortical stroke (Cha et al., 2022). Similarly, the
JHU atlas could also be applied to neuronal substrates associated
with subcortical aphasia in stroke patients (Kim et al., 2021).
All these methods involve similar approaches that deal with the
clarification or prediction of functional impairment after stroke.
Our study finds its place in this context, demonstrating that the

presented method can significantly improve the prediction of
stroke severity.

Looking ahead, the method has the potential to better support
the clinical management of stroke patients by providing a more
accurate and individualized approach to predicting outcome and
guiding treatment. Notably, the prerequisite for MRI is a FLAIR
image, from which the corresponding T1 can be generated (Iglesias
et al., 2023). This streamlined imaging protocol could reduce image
acquisition time, potentially enabling an earlier start of therapy
without any relevant loss of time.

In general, changes in white matter integrity have been
correlated with alterations in cortical and subcortical structural
connectivity in a range of other neurological conditions. The
Network Modification (NeMo) Tool, for instance, has been
applied to patient data across a spectrum of diseases, including
Alzheimer’s disease, fronto-temporal dementia, normal pressure
hydrocephalus, and mild traumatic brain injury, demonstrating
the potential applicability of these analytical tools in elucidating
and mapping disease-related changes in brain connectivity
(Kuceyeski et al., 2013). These precedents underscore the relevance
and adaptability of connectivity-based approaches and tools in
investigating a wide array of neurological conditions, providing
a comprehensive context for understanding the brain’s complex
network structure and its implications in disease. The ability of
these methodologies to provide nuanced insights into the brain’s
structural and functional wiring underlines their potential in
advancing our understanding of neurological diseases and refining
diagnostic and therapeutic strategies.

It is imperative, however, to acknowledge the limitations of
the present work. The use of a normative structural connectome
has potential practical limitations. During preprocessing, the
creation of manually drawn lesion masks (gold standard) is time-
consuming, and the normalization of the masked T1 image and
the application of the LST might fail, e.g., due to insufficient
lesion segmentation or unsatisfactory lesion filling. It remains
to be investigated whether these procedures can be seamlessly
integrated into routine clinical practice. Additionally, the objective
of our study was not to achieve maximum predictive precision
but to explore the feasibility of the probabilistic connectome
approach. While we focused on predicting the patient’s current
clinical state rather than long-term outcomes, it is worthwhile
to discuss the implications of this choice. Predicting the current
state is one of the first steps in developing methods to predict
future outcomes and can prove valuable in specific scenarios,
such as when direct clinical information is unavailable (e.g.,
due to sedation). However, predicting long-term outcomes is
arguably more clinically valuable, requiring an understanding of
how acute cerebral disconnections reflect the current state and
might forecast future outcomes. Another limitation of our study
pertains to the inclusion criteria, focussing on motor-impaired
patients, potentially influencing the interpretation of results. By
concentrating on this patient group, the precision of lesion size
correlation with clinical status might be artificially enhanced
compared to a more diverse patient cohort. This specificity in
patient selection might also exaggerate the correlation between
lesion size and clinical status, as evidenced by discussions regarding
the limitations of lesion size as a predictor (Price et al., 2017).
It is generally recognised that clinical impairment does not solely
stem from the structural lesion but arises from disruptions in
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the intricate network of brain functions. The conceptualization
of brain function as a network operation has propelled multiple
studies to utilize network information for outcome prediction. This
approach has significantly outperformed models based solely on
lesion size and location (Koch et al., 2016, 2021; Kuceyeski et al.,
2016). The efficacy of existing acute stroke treatments has also
been corroborated through these studies. For instance, systemic
thrombolysis has been associated with reduced global network
disruption and preserved structural connectivity (Schlemm et al.,
2022). It is important to note that our study did not delve into
the comprehensive analysis of the entire complex network. This
broader exploration, encompassing network measures (Sporns and
Zwi, 2004; Bassett and Sporns, 2017; Caliandro et al., 2017) and
other techniques like network-based statistics (Zalesky et al., 2010),
was not the primary focus of our research. Furthermore, our
method was tested on a homogeneous subpopulation comprising
single subcortical ischemic stroke lesions. This is in contrast to the
great heterogeneity of the overall population of stroke patients to
be examined. Consequently, questions arise regarding the extent
to which our approach can be extrapolated to cortical lesions and
how these can be compared with subcortical lesions. An additional
limitation concerns the mirroring of lesion projections in the
processing of MRI scans. While this ensures uniform analysis of
effects, it disregards the interhemispheric variability inherent in the
human brain.

The limitations can be overcome by combining this structural
connectome-based approach with longitudinal clinical data. It is
also advisable to compare our results with functional connectivity
data obtained from stroke patients. Further studies with larger
sample sizes should aim to encompass more diverse cohorts,
encompassing both cortical and subcortical ischemic strokes.
This enhancement of previous knowledge can provide a way for
clinicians to apply and intuitively understand additional potential
predictors, such as disconnection metrics, in stroke diagnostics and
prediction models.

5 Conclusion

Our study demonstrates the viability of leveraging probabilistic
connectome data to forecast the clinical status of stroke patients
effectively. The key advantage of this methodology is its reliance
on data that are already routinely gathered in acute stroke care
settings. This enables the generation of predictions during the
critical phase when initial decisions about reperfusion strategies are
being made. As a result, our approach holds the potential to identify
patients at a heightened risk for adverse outcomes early on, thereby
facilitating timely interventions aimed at enhancing their recovery
prospects. Moreover, our method offers the possibility of refining
rehabilitation strategies by pinpointing the specific brain regions
affected by stroke. Consequently, our findings have important
implications for the clinical management of stroke patients.

Further research endeavours should prioritize the validation
of our method in larger and more diverse datasets. In addition,
exploring the utility of this approach in predicting various
dimensions of stroke outcomes, including functional independence
and quality of life, is warranted. In future, integrating this
information with clinical features and biomarkers in a machine

learning approach could lead to the breakthrough of predictive
outcome modeling into the realm of clinical decision making.
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