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Introduction: Fetal alcohol spectrum disorders include a variety of physical
and neurocognitive disorders caused by prenatal alcohol exposure. Although
their overall prevalence is around 0.77%, FASD remains underdiagnosed and
little known, partly due to the complexity of their diagnosis, which shares
some symptoms with other pathologies such as autism spectrum, depression
or hyperactivity disorders.

Methods: This study included 73 control and 158 patients diagnosed with
FASD. Variables selected were based on IOM classification from 2016, including
sociodemographic, clinical, and psychological characteristics. Statistical analysis
included Kruskal-Wallis test for quantitative factors, Chi-square test for
qualitative variables, and Machine Learning (ML) algorithms for predictions.

Results: This study explores the application ML in diagnosing FASD and its
subtypes: Fetal Alcohol Syndrome (FAS), partial FAS (pFAS), and Alcohol-Related
Neurodevelopmental Disorder (ARND). ML constructed a profile for FASD based
on socio-demographic, clinical, and psychological data from children with FASD
compared to a control group. Random Forest (RF) model was the most e�cient
for predicting FASD, achieving the highest metrics in accuracy (0.92), precision
(0.96), sensitivity (0.92), F1 Score (0.94), specificity (0.92), and AUC (0.92). For FAS,
XGBoost model obtained the highest accuracy (0.94), precision (0.91), sensitivity
(0.91), F1 Score (0.91), specificity (0.96), and AUC (0.93). In the case of pFAS, RF
model showed its e�ectiveness, with high levels of accuracy (0.90), precision
(0.86), sensitivity (0.96), F1 Score (0.91), specificity (0.83), and AUC (0.90). For
ARND, RF model obtained the best levels of accuracy (0.87), precision (0.76),
sensitivity (0.93), F1 Score (0.84), specificity (0.83), and AUC (0.88). Our study
identified key variables for e�cient FASD screening, including traditional clinical
characteristics like maternal alcohol consumption, lip-philtrum, microcephaly,
height and weight impairment, as well as neuropsychological variables such as
the Working Memory Index (WMI), aggressive behavior, IQ, somatic complaints,
and depressive problems.

Discussion: Our findings emphasize the importance of ML analyses for early
diagnoses of FASD, allowing a better understanding of FASD subtypes to
potentially improve clinical practice and avoid misdiagnosis.

KEYWORDS

fetal alcohol spectrum disorders, machine learning, eXtreme Gradient Boosting (XGB),

Random Forest (RF), neurodevelopment, PAE, early diagnosis
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1 Introduction

Fetal alcohol spectrum disorder (FASD) is a range of
neurodevelopmental impairments produced by prenatal alcohol
exposure (PAE) (Hoyme et al., 2005; Popova et al., 2023).
Epidemiological studies estimate a global prevalence of 0.77%
(Lange et al., 2017), with regional variations observed, particularly
in Europe and North America where prevalence ranges from 2.0 to
5.0% (Wozniak et al., 2019). Despite its prevalence, FASD remains
underdiagnosed due to the wide variety of associated symptoms
and the complexity in the diagnosis of some of them specifically
to FASD, which can overlap with alternative diagnoses, such
as attention deficit hyperactivity disorder (ADHD). In addition,
the social stigma can pose significant challenges for affected
individuals, their families and healthcare systems.

Individuals diagnosed with FASD face a wide range of
neurocognitive impairments and social challenges that persist
throughout their lives (Kelly et al., 2000; Champagne et al., 2023).
Primary disabilities associated with FASD include impairments
in adaptive functioning, memory, attention, abstract thinking,
judgement, and cause-effect reasoning (Maya-Enero et al., 2021).
Secondary disabilities, which result from the interaction of primary
disabilities with environmental factors, can adversely affect an
individual’s ability to actively and positively participate in their
lives and can lead to academic failure, low self-esteem, housing
instability, and depression (Pei et al., 2011; Leenaars et al., 2012).
The complex interplay between these cognitive impairments and
social difficulties highlights the need for early comprehensive
diagnostic strategies to adequately support affected individuals.

The diagnostic criteria for FASD are multifaceted and include
four domains: PAE, facial features, growth, and neurodevelopment
(Hoyme et al., 2016). These domains create a spectrum from
the most severe condition of FASD, the fetal alcohol syndrome
(FAS) to alcohol-related brain damage (ARBD), with partial
FAS (pFAS) and alcohol-related neurodevelopmental disorder
(ARND) as intermediate terms. Several guidelines are commonly
used, including those from the Institute of Medicine, Canadian
Guidelines, Centers for Disease Control (CDC), and the University
of Washington’s 4-digit code (Bastons-Compta et al., 2016;
Maya-Enero et al., 2021). The Institute of Medicine (IOM)
criteria, which include craniofacial anomalies, growth retardation,
mental disabilities and developmental disorders, are currently
recommended for diagnosis (Hoyme et al., 2016). However, this
approach has limitations, such as difficult physical assessments,
extensive neuropsychological assessments and underreporting of
alcohol use during pregnancy. Obtaining a confirmed history of
alcohol use during pregnancy is hampered by various factors, such
as change of custody or maternal death. Consequently, a significant
proportion of individuals with FASD remain undiagnosed or
receive delayed diagnoses, exacerbating their difficulties and
limiting their access to early interventions and support services
(Jańczewska et al., 2019).

The search for novel strategies and methodologies for early
diagnosis is one of the most promising fields of research in
FASD. Timely identification of affected individuals is crucial
for implementing personalized interventions and mitigating the
long-term impact of the disorder on cognitive, social, and
behavioral outcomes. In this context, emerging technologies, such

as machine learning, offer promising avenues for improving
diagnostic accuracy and efficiency (Rodrigues et al., 2023).

Machine learning (ML) algorithms have demonstrated
impressive capabilities in analyzing complex datasets and
extracting meaningful patterns in other diseases such as autism
spectrum disorder (ASD) or ADHD (Eslami et al., 2021; Bahathiq
et al., 2022; Ehrig et al., 2023). By harnessing the power of
computational algorithms, researchers can integrate diverse data
sources, including physical and cognitive variables, to develop
predictive models for FASD diagnosis (Blanck-Lubarsch et al.,
2022; Ehrig et al., 2023). Suchmodels have the potential to augment
existing diagnostic frameworks, enabling clinicians to make more
informed decisions and speeding up the diagnostic process.

In the present study, supervised classification ML algorithms
were employed to construct a predictive diagnosis model of FASD
and its subtypes. The model was trained using sociodemographic,
clinical and psychological variables. ML provides a powerful tool
for prediction and feature importance determination, especially
when data patterns may be too complex for conventional
statistical methods. The algorithms investigated include Logistic
Regression (LR), Linear Discriminant Analysis (LDA), Support
Vector Machine (SVM), K-nearest Neighbors (KNN), Random
Forest (RF) and eXtreme Gradient Boosting (XGB).

This study aims to develop ML algorithms that use physical
and neurocognitive data from children with FASD. The algorithms
will identify a distinctive FAS profile in the dataset to enhance
FASD diagnosis compared to the current methods. This research
aims to provide more accurate diagnostic tools for the assessment
of FASDs, which could revolutionize clinical practice, thereby
facilitating the initiation of early therapies and improving the
quality of life of people affected by this silent disease.

2 Material and methods

2.1 Study design and participant
information

This is a multicentre and pilot investigation. The study included
all patients from the Catalan Institute for Fostering and Adoption
(ICAA) database, who agreed to participate. The total study
cohort comprised 231 patients, which includes 73 control patients
and 158 patients diagnosed with FASD. The study, registered at
clinicaltrials.gov (NCT02558933), integrated cohorts from previous
investigations (PI13/01135; OG085818; PI16/00566; PI19/01853)
that included participants enrolled between March 2017 and
November 2023. The study was conducted at the Hospital del Mar
Medical Research Institute of Barcelona and Hospital Clinic of
Barcelona, and all procedures adhered to ethical standards outlined
in the Declaration of Helsinki and Spanish data privacy regulations.
Consent was obtained from the caregiver or legal representative
of patients due to their incapacity to provide informed consent, as
approved by the Comité Ético de Investigación Clínica Parc de Salut
MAR (No. HCB/2021/0459).

The minimum sample size calculation was conducted using
G∗Power software (Faul et al., 2007) with the following parameters:
bilateral contrast, alpha 0.1, beta cut-off of 0.2, corresponding
to a power of 0.8 (Gupta et al., 2016), estimated proportion of
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replacements required (20%), precision 0.1 (90%) and estimate
50% of the population affected. A minimum of 70 samples in two
independent groups (non-FASD and FASD groups or Non-FASD
vs. each FASD subtype) were required to compute the necessary
sample size.

2.2 FASD diagnosis and clinical evaluation

To diagnose FASD, all adopted children in the EEC who
were included in this study, including those with verified prenatal
alcohol exposure (PAE), underwent independent examination
using standardized dysmorphology exams (Hoyme et al., 2016).
The diagnostic category for each child was identified based on
the 1996 IOM standards (reviewed in 2016) (Hoyme et al., 2005,
2016), which consist of five diagnostic characteristics. (1) confirmed
prenatal alcohol exposure; (2) evidence of a characteristic minor
facial abnormalities pattern, typified by having a thin upper
lip, smooth philtrum and short palpebral fissures; (3) growth
retardation, defined as height or weight ≤10th percentile; (4)
evidence of deficient brain growth or subrogated data; and
(5) behavioral or cognitive affected domains (1 or 2) related
to prenatal alcohol exposure. For a diagnosis of complete
FAS, criteria 2, 3, 4, 5 (confirmed or not confirmed prenatal
alcohol exposure) were required. For partial FAS, criteria 1,
2, and at least one of criteria 5 (confirmed prenatal alcohol
exposure) or 2, 5 and 3 or 4 (no confirmed prenatal alcohol
exposure) were required. The diagnosis of alcohol-related birth
defects (ARBD) required the finding of one criterion plus a
minimum of one structural defect involving heart, skeleton,
kidney, eye, ear or minor abnormalities like railway ears, midface
hypoplasia or stick hockey hands. The diagnosis of alcohol-related
neurodevelopmental disorders (ARND) required the finding of 1
and 5 criteria.

The variables selected for our study were based on IOM
classification from 2016 (Hoyme et al., 2016) to FASD diagnosis.
Selected sociodemographic variables are related tomaternal alcohol
consumption during pregnancy (Hoyme et al., 2016), origin
and ethnicity (Oh et al., 2023a). Parent feeling variables were
included in our selection as they may be relevant to determine
if parental perceptions play a role in the diagnosis of FASD
predicted by ML algorithms. For clinical variables were selected
growth deficits (Astley et al., 2016; Hoyme et al., 2016; Treit
et al., 2016), craniofacial dysmorphology (Smith et al., 2014;
Hoyme et al., 2016), birth malformations (Dylag et al., 2023),
neurodevelopmental disorders (Geier and Geier, 2022) and other
physical features and medical history (Brennan and Giles, 2014;
del Campo and Jones, 2017; Ninh et al., 2019). Lastly, related to
neuropsychological domains, we selected variables significant for
FASD diagnosis, including motor cognition (Bakoyiannis et al.,
2014), language (Hendricks et al., 2019), academic achievement
(Glass et al., 2017), memory (Rasmussen, 2005), attention (Young
et al., 2016), executive functioning including impulse control
and hyperactivity (Peadon and Elliott, 2010), affect regulation
(Temple et al., 2019) and adaptive behavior, social skills, or
social communication (Temple et al., 2019; Hammond et al.,
2022).

2.3 Neurocognitive assessment

Cognitive assessment utilized the Wechsler Intelligence Scale
for Children (WISC) series, using the Fifth Edition (WISC-V)
(Weiss et al., 2019). Evaluating full-scale Intelligence Quotient (IQ),
Verbal Comprehension (VCI), Visuospatial Index (VSI), Perceptual
Reasoning (FRI), Working Memory (WMI), and Processing
Speed (PSI).

Adults’ cognitive functioning was evaluated using theWechsler
Adult Intelligence Scale (WAIS), the Fourth Edition (WAIS-IV)
(Wechsler, 2008). Preschoolers’ cognitive abilities were assessed
using the Wechsler Preschool and Primary Scale of Intelligence
(WPPSI-IV) (Raiford and Coalson, 2014). Additionally, the Adult
Self-Report (ASR/18-59) (Achenbach and Rescorla, 2003) collected
self-reported data on behavioral concerns in adults, while the Child
Behavior Checklist (CBCL) (Achenbach, 2004) gathered parental
reports on children aged 6–18. All assessments adhered to unified
criteria and professionals received standardized training, ensuring
consistency and reliability. Data were recorded in a confidential
database, maintaining accuracy and confidentiality throughout the
research process.

2.4 Statistical analysis

Statistical analysis was performed using SPSSv22 and R.
Graphs were performed using Graphpad Prism 8.0 software.
Descriptive analysis was used to characterize the samples.
Categorical variables were presented as counts and percentages,
while continuous variables were presented as means and standard
deviations. Relationships between sociodemographic, clinical and
neuropsychological features were examined for quantitative factors
using Kruskall–Wallis test with Dunn’s correction for multiple
comparisons and for qualitative variables chi-square test. A
significance level of p < 0.05 was applied to all analyses.

In addition to the aforementioned statistical tests, machine
learning (ML) algorithms were also employed to create a predictive
model, using the statistical software R (3.3.0+ version).

2.5 Machine learning models

This study employed several ML algorithms to predict FASD
and its subtypes (FAS, pFAS and ARND), such as LR, LDA, linear
SVM, polynomial SVM, KNN, RF and XGB (Zhang et al., 2019).
The data underwent a preparation phase, where “mice” function
from VIM package was used for missing values imputation,
employing the predictive mean matching method (pmm) (Kowarik
and Templ, 2016). This process was repeated 5 times, as per default
setting. Just 1% of the data were missing and single imputation
is considered appropriate when <5% of the data are missing
(Graham, 2009). The dataset was subsequently scaled using “scale”
function in base R.

LR is a binary classification algorithm, which uses a logistic
function to predict class probability. Coefficients are obtained
using maximum likelihood estimation (Hosmer et al., 2013). LR
is easy to implement and performs well on linearly separable
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classes. However, it may overfit with many features and struggles
with complex relationships. LDA projects data into a lower-
dimensional space, maximizing class separability and minimizing
variance within a class, finding a linear combination of features
that characterizes a group (Gardner-Lubbe, 2021). SVMmaximizes
the distance between the separating hyperplane of the variables
to classify (Huang et al., 2018). In our study, linear SVM and
polynomial SVM are differentiated. Linear SVM classifies linearly
separable data and is more computationally efficient. Polynomial
SVM classifies non-linearly separable data, transforms input space
into a higher-dimensional space, finds more complex relationships,
and is computationally intense (López et al., 2022). KNN predicts
class by calculating the Euclidean distance to all training points
and selecting K most similar instances (the neighbors). It handles
multiclass classification and learns complex decision boundaries
(Zhang, 2016). However, it performs poorly on high-dimensional
datasets because the distance to all neighbors must be recalculated.
Ensemble methods like RF and XGB are decision tree-based
algorithms. RF combines multiple independently trained decision
trees, uses bagging to create subsets of the original dataset, and then
aggregates the results (Denisko and Hoffman, 2018). On the other
hand, XGB trains decision trees sequentially, with each new tree
correcting errors made by the previous one (Li et al., 2022). TheML
algorithms used in this study has its own strengths and weaknesses,
leading to varied results. The range of ML algorithms compared
spans from traditional predictive models like LR to more complex
ensemble methods like RF and XGB, which are capable of handling
high-dimensional data. By comparing different models, our study
aimed to find the most effective model for predicting FASD and its
subtypes. This diversity in approaches enhances the robustness and
comprehensiveness of the study.

For the analysis, a total of 66 variables were selected,
encompassing five sociodemographic parameters, 35 clinical
features, six intelligence scores and 20 behavioral domains
(Tables 1–4). Prior to model construction, a hold-out method
was applied to split the data into training and test sets
using “createDataPartition” function from caret package
in R (Kuhn, 2008). Sixty-seven percent of the data was
allocated to training set and the remaining 33% to test set.
This function employs a stratified random sampling method,
which minimizes the bias of the data distribution and creates
balanced data.

In addition to the hold-out method, a resampling method
involving four-fold cross-validation and three repeats was adopted.
This was implemented using “trainControl” function from the
caret package (Kuhn, 2008). The models were trained using “train”
function with hyperparameters set to default, which gathers and
simplifies numerous R algorithms for the development of predictive
models (Kuhn, 2008). The models employed included LR, using
“glm” method and binomial family, and LDA, implemented
with “lda” method, which has “moment” as the default mean
and variance estimator. Linear SVM and Polynomial SVM
were performed using “svmLinear” and “svmPoly” methods,
respectively. They have C tuning parameter, which determines
the margin classification, equal to 1 as default settings. KNN was
employed by “knn” method also from caret package, performing
automatic hyperparameter tuning for k depending on instance-
based learning. In addition, RF was employed using “rf” method,

with 500 trees as default. XGB model used “xgbTree” method,
having 100 maximum iterations by default.

The “predict” function from stats package was used to predict
classes with the test group. In order to make comparisons,
the “confusionMatrix” function from caret package was used
to calculate true positive, true negative, false positive and false
negative. These calculations providedmeasures including accuracy,
precision, sensitivity, F1 score and specificity. ROC-AUC was
obtained using “roc” function from pROC package (Robin et al.,
2011). Training and test datasets were consistent across FASD and
its subgroups, ensuring a fair and valid comparison.

Feature importance prediction of the models was determined
by calculating the Root Mean Square Error (RMSE) loss after
permutation. It was obtained with “explain” function from DALEX

package, with “classification” type model in arguments (Law
Biecek, 2018). Plots were generated from the object class formed
by “variable_importance” function from caret package (Kuhn,
2008).

3 Results

3.1 FASD profile

The study initially included 273 patients. However, 42 were
excluded: 28 lacked psychological evaluations and 14 refused
participation. Of the remaining 231 subjects, 73 were diagnosed
as non-FASD (controls), and 158 were diagnosed with FASD,
comprising 33 with FAS, 81 with pFAS, and 44 with ARND. A
database was compiled with sociodemographic and psychological
characteristics of both FASD patients (and their subtypes) and
non-FASD participants (Figure 1).

Sociodemographic characteristics of the population were
collected from FASD and non-FASD patients (Table 1). The chi-
square test revealed no significant differences between groups.
Significant differences were found in physical characteristics
between children diagnosed with FASD and non-FASD (Table 2,
Supplementary Table 1). Prematurity (p-value = 0.011) was higher
in FAS children compared to non-FASD children (p-value= 0.018;
Supplementary Table 1). Growth retardation (p < 0.001) was also
higher in FAS andARND children compared to non-FASD children
(p-value < 0.001; p-value = 0.040). Birth complications (p-value
= 0.047), as perinatal asphyxia or abnormal heart rate, were more
prevalent in ARND children compared to non-FASD children
(p-value = 0.052). As expected, maternal alcohol consumption
confirmation also showed significant differences (p-value < 0.001)
in all groups compared to non-FASD patients.

FASD patients showed lower height (p < 0.0001) by 81%, 16%,
and 25% for FAS, pFAS, and ARND respectively, compared to non-
FASD (Table 2, Supplementary Table 1). Weight alterations (p <

0.0001) increased significantly in FAS and pFAS. Microcephaly (p-
value < 0.0001), shorter palpebral fissures (p-value= 0.01) and lip-
philtrum affectation (p-value < 0.001) were more prevalent in FAS
and pFAS. Facial anomalies (p-value = 0.025) were significantly
higher in pFAS (p-value= 0.009) compared to non-FASD group. In
particular, children with affected eyes (p-value = 0.013) and upper
limbs (p = 0.001) were predominantly from FAS groups compared
to non-FASD (p-value = 0.037 and p-value = 0.001, respectively).
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TABLE 1 Sociodemographic data of children population (n = 231).

Non-FASD FAS pFAS ARND p-value

n = 73 % n = 33 % n = 81 % n = 44 %

Sex 0.105

Male 53 72.6 16 48.48 51 62.96 30 68.18

Female 20 27.4 17 51.52 30 37.04 14 31.82

Age 0.161

<6 2 2.74 0 0.00 4 4.59 0 0.00

7–16 51 69.86 24 72.73 47 58.0 22 50.00

<17 20 27.4 9 27.27 30 37.0 22 50.00

Origin 0.162

Russia 51 69.86 24 72.73 53 65.43 23 52.27

Spain 9 12.33 1 3.03 9 11.11 10 22.73

Ucrania 9 12.33 4 12.12 12 14.81 4 9.09

Colombia 1 1.37 1 3.03 1 1.23 2 4.55

Poland 0 0 1 3.03 2 2.47 1 2.27

Argentina 0 0 1 3.03 0 0.00 1 2.27

Bolivia 0 0 0 0.00 1 1.23 0 0.00

Camboya 0 0 1 3.03 0 0.00 0 0.00

England 0 0 0 0.00 0 0.00 2 4.55

Hungria 0 0 0 0.00 1 1.23 0 0.00

Kazajastan 0 0 0 0.00 2 2.47 0 0.00

Mexico 0 0 0 0.00 0 0.00 1 2.27

Morraco 1 1.37 0 0.00 0 0.00 0 0.00

Rumania 2 2.74 0 0.00 0 0.00 0 0.00

Ethnicity 0.15

Caucasic 71 97.26 30 90.91 77 95.06 40 90.91

Latinamerican 1 1.37 2 6.06 2 2.47 4 9.09

Kazakh 0 0 0 0.00 2 2.47 0 0.00

Arab 1 1.37 0 0.00 0 0.00 0 0.00

Asiatic 0 0 1 3.03 0 0.00 0 0.00

Parents feeling

Aggressive 34 46.58 4 9.09 34 41.98 29 65.91 0.06

Emotion
regulation

42 57.53 13 39.39 59 72.84 25 56.82 0.16

Depression 38 52.05 22 66.67 43 53.09 35 79.55 0.06

Low self-steem 42 57.53 21 63.64 33 40.74 8 18.18 0.09

Motivation 48 65.75 10 30.30 50 61.73 21 47.73 0.20

Chi-square test was used to compare the outcomes of the different groups: non-FASD, FAS, pFAS andARND. Significant differences were considered when p-value< 0.05. ARND, alcohol-related
neurodevelopmental disorder; FASD, fetal alcohol spectrum disorders; FAS, fetal alcohol syndrome; pFAS, partial fetal alcohol syndrome.
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TABLE 2 Clinical and physical features of children population (n = 231).

Non-FASD FAS pFAS ARND p-value

n = 73 % n = 33 % n = 81 % n = 44 %

ADHD 39 53.42 17 51.52 47 58.02 22 50.00 0.825

Autism 4 5.48 3 9.09 3 3.70 0 0.00 0.25

CNS problems 12 16.44 10 30.30 18 22.22 6 13.64 0.246

Corpus Callosum
affectation

1 1.37 2 6.06 2 2.47 0 0.00 0.309

Epilepsy 0 0 1 3.03 1 1.23 0 0.00 0.399

Premature 10 13.7 12 36.36 18 22.22 4 9.09 0.011

Growth retardation 6 8.22 14 42.42 14 17.28 10 22.73 <0.001

Birth diseases 19 26.03 16 48.48 33 40.74 21 47.73 0.047

Maternal alcohol
consumption
confirmation

9 12.33 19 57.58 51 62.96 44 100.00 <0.001

Maternal tobacco
consumption
confirmation

1 1.37 4 12.12 8 9.88 4 9.09 0.117

Maternal illicit drug
use

3 4.11 2 6.06 3 3.70 4 9.09 0.584

Patient licit drug
use

16 21.92 3 9.09 16 19.75 13 29.55 0.179

Patient illicit drug
use

12 16.44 3 9.09 10 12.35 8 18.18 0.615

Height affectation 3 4.11 27 81.82 13 16.05 11 25.00 <0.001

Weight affectation 3 4.11 24 72.73 18 22.22 6 13.64 <0.001

Microcephaly 10 13.7 29 87.88 38 46.91 8 18.18 <0.001

Short palpebral
fissures

21 28.77 23 69.70 44 54.32 11 25.00 <0.001

Lip-philtrum
affectation

31 42.47 33 100.00 80 98.77 10 22.73 <0.001

Face morphology
affectation

3 4.11 5 15.15 15 18.52 3 6.82 0.025

Ears affectation 10 13.7 9 27.27 15 18.52 7 15.91 0.391

Eyes affectation 19 26.03 17 51.52 26 32.10 8 18.18 0.013

Nose affectation 4 5.48 4 12.12 12 14.81 1 2.27 0.066

Mouth
prognathism

6 8.22 4 12.12 5 6.17 2 4.55 0.603

Neck affectation 0 0 0 0.00 0 0.00 1 2.27 0.234

Chest affectation 0 0 0 0.00 1 1.23 0 0.00 0.602

Cardiac affectation 2 2.74 6 18.18 7 8.64 5 11.36 0.06

Abdomen
affectation

0 0 1 3.03 1 1.23 0 0.00 0.399

Back affectation 1 1.37 0 0.00 3 3.70 0 0.00 0.353

Pelvic affectation 1 1.37 2 6.06 4 4.94 0 0.00 0.41

Upper limbs
affectation

1 1.37 7 21.21 6 7.41 1 2.27 0.001

Hands affectation 18 24.66 9 27.27 28 34.57 7 15.91 0.15

Lower limbs
affectation

0 0 0 0.00 1 1.23 3 6.82 0.034

(Continued)
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TABLE 2 (Continued)

Non-FASD FAS pFAS ARND p-value

n = 73 % n = 33 % n = 81 % n = 44 %

Feet affectation 1 1.37 1 3.03 3 3.70 3 6.82 0.481

Renal affectation 2 2.74 1 3.03 0 0.00 1 2.27 0.519

Anemia 2 2.74 1 3.03 6 7.41 4 9.09 0.385

Chi-square test was used to compare the outcomes of the different groups: non-FASD, FAS, pFAS and ARND. Significant differences are bold and were considered when p-value < 0.05.
ARND, alcohol-related neurodevelopmental disorder; ADHD, attention-deficit/hyperactivity disorder; CNS, central nervous system; FASD, fetal alcohol spectrum disorders; FAS, fetal alcohol
syndrome; pFAS, partial fetal alcohol syndrome.

Moreover, significant disparities in lower limbs (p-value = 0.034)
were observed, primarily in ARND compared to non-FASD group.

Among FASD groups (Table 2, Supplementary Table 1),
significant differences included prematurity (p-value= 0.009), eyes
(p-value = 0.011) and upper limbs affectation (p-value = 0.011)
between FAS and ARND. FAS exhibited higher growth retardation
levels compared to pFAS (p-value = 0.014). Maternal alcohol
consumption, short palpebral fissures and lip-philtrum affectation
showed increased levels in FAS (p-value = 0.042, p-value = 0.003
and p-value < 0.001, respectively) and pFAS patients (p-value =

0.023, p-value= 0.018 and p-value< 0.001, respectively) compared
to ARND, confirming that this group does not exhibit physical
characteristics. Microcephaly varied among all FASD groups,
showing 87% of the cases in FAS, 46% in pFAS and 18% in ARND.
No significant differences were noted in other physical or clinical
characteristics, except for a trend toward greater cardiac damage in
FASD (p-value= 0.06).

Significant differences were observed in psychological
intelligence parameters between FASD and non-FASD patients.
Evaluating cognitive performance with WISC V, children
diagnosed with FASD, specifically FAS and pFAS groups (Table 3,
Supplementary Table 2), exhibited lower scores on VCI (p-value
= 0.001), VSI (p-value = 0.005), FRI (p-value = 0.001), WMI
(p-value < 0.001), PSI (p-value = 0.003) and IQ (p-value <

0.001). No significant differences were found for the WAIS-IV and
WPPSI-IV tests.

Related to behavioral parameters, CBCL 6–18 test
showed impairments in several cognitive domains in FASD
patients compared to their non-FASD counterparts (Table 4,
Supplementary Table 3). Increased levels of thought problems
(p-value = 0.035), rule breaking behavior (p-value = 0.002),
externalizing problems (p-value = 0.045), total problems (p-
value = 0.008), anxiety problems (p-value = 0.009), obsessive
compulsive problems (OCP; p-value = 0.049) and stress problems
(p-value = 0.001) domains were observed in ARND compared
to non-FASD. Significantly increased levels of attention problems
were observed in FAS (p-value = 0.021) and ARND (p-value
= 0.020) compared to non-FASD. Within the FASD group
found significant differences in thought problems (p-value =

0.007), anxiety problems (p-value = 0.006) and OCP (p-value
= 0.003), with significantly increased levels in the ARND group
compared to pFAS. Furthermore, ARND showed high levels of
rule-breaking behavior compared to FAS and pFAS subgroups
(p-value = 0.002 and p-value = 0.002), externalizing problems
(p-value = 0.003 and p-value = 0.002), total problems (p-value
= 0.006 and p-value = 0.021), oppositional defiant problems

(p-value = 0.002 and p-value = 0.018), conduct problems
(p-value = 0.016 and p-value = 0.009) and stress problems
(p-value < 0.001 and p-value = 0.015), respectively. Moreover,
the results display significantly increased levels of aggressive
behavior (p-value = 0.01) in the ARND group compared
to FAS.

Finally, in the adult behavioral test ASR 18–59 (Table 4,
Supplementary Table 3), significant differences related to attention
problems (p-value = 0.032) were observed, showing ARND higher
levels compared to the pFAS subgroup (p-value= 0.003).

3.2 Machine learning predictive modeling

Predictive models for FASD diagnosis were developed using
ML, considering the sociodemographic, clinical, and psychological
variables previously discussed. The dataset consisted of 231
samples, with 155 samples used for model training and the
remaining 76 samples saved for testing and final model evaluation.
A variety of ML algorithms were employed, including XGB, LR,
LSVML, LDA, SVMP, kNN, RF and XGB. These models were
trained using four-fold cross-validation on the training dataset.

Figure 2 shows the key performance metrics associated with the
predictive power of each model. Among the models, the ensemble
algorithms (RF and XGB) outperformed the others. Notably, the
RF model achieved the highest accuracy (0.92), precision (0.96),
sensitivity (0.92), F1 score (0.94), specificity (0.92), and AUC (0.92),
establishing it as the most effective model for predicting FASD
diagnosis. Other models such as LR, LDA, SVMP, and kNN showed
lower performance on these metrics (Figure 2). Consequently, we
selected the RF model for our prediction tasks due to its superior
discriminative ability.

To understand the decision-making mechanism of the RF
model, we examined the significance of the variables within this
algorithm. The features were ranked according to their importance,
with maternal alcohol consumption being the most significant
(0.48), followed by lip-philtrum (0.27), microcephaly (0.19), height
affectation (0.17), Working Memory Index (0.16), aggressive
behavior (0.16), Intelligence Quotient (0.15), somatic complaints
(0.15), weight affectation (0.15), and depressive problems (0.15;
Figure 3). These findings offer crucial insights into the primary
attributes associated with FASD conditions and their respective
significance in the predictive model.

Another aim of our study is to construct individualized
models for each category of FASD. This methodology
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TABLE 3 Intelligence scale data of children population (n = 231).

Non-FASD FAS pFAS ARND p-value

Mean SD Mean SD Mean SD Mean SD

WAIS-IV

Verbal
Comprehension
Index (VCI)

36.17 14.53 38.25 7.54 39.67 7.40 37.91 11.81 0.748

Perceptual
Reasoning Index
(PRI)

32.11 10.15 36.50 8.70 34.56 7.52 38.00 12.39 0.698

Working Memory
Index (WMI)

34.43 7.04 27.50 8.10 32.90 10.47 40.00 12.69 0.264

Processing Speed
Index (PSI)

33.44 9.42 30.50 9.33 34.22 10.54 35.89 9.33 0.839

Intelligence
Quotient (IQ)

68.79 8.08 72.33 14.73 64.58 10.27 66.68 6.63 0.453

WISC-V

Verbal
Comprehension
Index (VCI)

82.05 13.67 69.67 11.52 76.34 11.32 80.40 12.29 0.001

Visuospatial Index
(VSI)

94.28 17.30 83.77 13.93 84.77 14.37 94.32 15.13 0.005

Fluid Reasoning
Index (FRI)

89.96 13.60 81.44 14.60 82.47 14.21 93.12 12.83 0.001

Working Memory
Index (WMI)

91.16 15.94 74.92 11.94 78.64 14.08 88.08 14.33 0.000

Processing Speed
Index (PSI)

91.19 16.75 80.48 12.81 82.49 16.39 90.16 12.45 0.003

Intelligence
Quotient (IQ)

84.91 14.31 70.04 10.27 73.68 11.69 80.74 9.81 0.000

WPPSI-IV

Intelligence
Quotient (IQ)

76.50 12.02 0.00 0.00 83.50 2.12 0.00 0.00 0.741

Verbal
Comprehension
Index (VCI)

82.00 9.90 0.00 0.00 91.00 8.49 0.00 0.00 0.15

Visuospatial Index
(VSI)

79.00 0.00 0.00 0.00 104.50 2.12 0.00 0.00 0.191

Fluid Reasoning
Index (FRI)

97.00 4.24 0.00 0.00 102.00 33.94 0.00 0.00 0.223

Working Memory
Index (WMI)

62.00 15.56 0.00 0.00 94.00 12.73 0.00 0.00 0.819

Processing Speed
Index (PSI)

79.50 24.75 0.00 0.00 88.50 13.44 0.00 0.00 0.819

Kruskal-Wallis test was used to compare the outcomes of the different groups: non-FASD, FAS, pFAS and ARND. Significant differences are bold and were considered when p-value < 0.05.
ARND, alcohol-related neurodevelopmental disorder; FASD, fetal alcohol spectrum disorders; FAS, fetal alcohol syndrome; pFAS, partial fetal alcohol syndrome; SD, standard deviation.

will allow us to uncover distinct attributes and trends
that might remain concealed when all FASD types are
examined collectively.

Focusing our analysis on FAS prediction in comparison
to non-FASD, we employed the previous ML algorithms. The
XGB model outperformed the others (Figure 4), achieving
the highest accuracy (0.94), precision (0.91), sensitivity
(0.91), F1 Score (0.91), specificity (0.96), and AUC (0.93),

thereby proving to be the most effective model for FAS
diagnosis prediction.

In Figure 5 the features were ranked based on their importance,
with Height (0.32) and Weight (0.28) being the most influential,
followed by Fluid Reasoning Index (0.11), Internalizing Problems
(0.08), Total Problems (0.1), and Processing Speed Index (0.1)
(Figure 5). This highlights FAS prediction is mainly determined by
failure to thrive.
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TABLE 4 Behavior data of children population (n = 231).

NOFAS FAS pFAS ARND p-value

Mean SD Mean SD Mean SD Mean SD

CBCL

Anxious or depressed 64.85 10.73 65.25 9.65 63.84 10.68 69.35 10.12 0.084

Withdrawn depressed 61.99 11.23 64.36 12.09 60.49 9.93 65.23 12.00 0.192

Somatic complaints 58.99 9.10 57.43 7.38 59.00 7.86 62.74 9.33 0.083

Social problems 66.91 11.74 69.18 8.95 67.87 8.70 70.94 8.77 0.118

Thought problems 65.18 10.27 66.86 9.23 63.83 9.18 69.39 7.13 0.048

Attention problems 69.27 12.24 73.82 9.88 70.76 8.60 73.58 11.58 0.042

Rule breaking behavior 62.82 9.93 60.07 8.30 61.06 8.59 67.10 7.94 0.007

Aggressive behavior 67.97 13.04 63.61 11.42 64.02 11.28 70.68 10.76 0.015

Internalizing problems 62.81 10.02 63.64 9.48 61.21 12.40 67.73 9.09 0.052

Externalizing problems 64.95 11.84 61.32 10.35 62.54 10.18 68.97 8.30 0.007

Total problems 67.37 10.07 67.68 6.96 67.25 7.71 71.87 7.12 0.027

Depressive problems 64.54 10.80 63.43 9.72 64.11 9.28 67.26 8.72 0.262

Anxiety problems 66.07 11.30 67.18 10.13 65.44 10.40 71.87 10.56 0.033

Somatic problems 57.25 7.93 54.96 7.08 56.81 6.92 59.35 9.48 0.246

Attention deficit 65.96 8.43 67.43 6.73 65.95 7.07 68.26 8.00 0.435

Oppositional defiant
problems

64.72 9.94 62.39 9.08 61.75 9.16 67.94 8.94 0.014

Conduct problems 63.72 10.80 61.04 9.67 62.21 9.44 66.77 8.32 0.045

Sluggish cognitive tempo 60.98 8.26 63.07 8.57 62.66 7.55 65.70 8.81 0.129

Obsessive compulsive
problems

62.63 11.48 62.71 10.34 60.30 10.61 67.37 11.42 0.034

Stress problems 67.39 10.73 67.71 7.89 65.25 9.48 74.53 10.27 0.001

ASR/18-59

Anxious or depressed 72.67 9.14 69.60 14.67 65.11 11.06 65.23 6.61 0.414

Withdrawn depressed 69.00 9.21 62.20 4.27 65.89 10.75 71.85 9.54 0.16

Somatic complaints 65.50 13.94 54.60 3.71 62.06 8.11 62.31 9.57 0.274

Thought problems 71.67 9.61 65.40 6.19 63.00 9.11 63.85 9.09 0.351

Attention problems 72.00 9.47 68.40 13.26 66.28 8.76 76.62 8.47 0.032

Rule breaking behavior 73.67 9.27 63.20 9.98 64.67 8.30 70.62 10.86 0.108

Aggressive behavior 70.33 12.11 61.40 6.80 64.94 9.95 65.62 10.05 0.564

Internalizing problems 72.17 9.20 65.40 6.50 65.63 12.18 67.85 5.68 0.508

Externalizing problems 71.83 8.98 62.00 7.71 64.88 10.47 68.46 9.83 0.328

Total problems 75.00 7.59 66.00 7.31 66.69 10.91 74.62 13.47 0.137

Depressive problems 74.17 12.70 63.80 8.53 67.78 11.00 71.38 7.43 0.171

Anxiety problems 71.50 5.32 69.40 15.08 61.94 7.15 62.31 8.16 0.053

Somatic problems 64.00 13.40 53.40 4.45 61.17 8.15 60.38 11.42 0.366

Sluggish cognitive tempo 67.17 11.69 63.00 7.11 64.19 9.71 67.46 5.49 0.627

Obsessive Compulsive
problems

76.17 8.18 65.20 13.42 61.88 11.09 61.77 9.35 0.07

Kruskal–Wallis test was used to compare the outcomes of the different groups: non-FASD, FAS, pFAS and ARND. Significant differences are bold and were considered when p-value < 0.05.
ARND, alcohol-related neurodevelopmental disorder; FASD, fetal alcohol spectrum disorders; FAS, fetal alcohol syndrome; pFAS, partial fetal alcohol syndrome; SD, standard deviation.
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FIGURE 1

Study flowchart. Flowchart of FASD and non-FASD diagnosis and machine learning prediction.

In the subsequent stage of the research, the focus
shifted to the prediction of pFAS compared to non-
FASD. Upon evaluating all ML models (Figure 6), the
RF model emerged as the most proficient, achieving
the highest metrics in accuracy (0.90), precision (0.86),
sensitivity (0.96), F1 Score (0.91), specificity (0.83), and
AUC (0.90). This underscores its effectiveness in predicting
pFAS diagnosis.

Lip-philtrum (0.36) and Maternal Alcohol Consumption (0.27)
were the most impactful features for pFAS prediction, followed by
Intelligence Quotient (0.21), Microcephaly (0.18), and Processing
Speed Index (0.16), Verbal comprehension index (0.15), attention
problems (0.15) and thought problems (0.15; Figure 7).

The final phase of the study involved the analysis of ARND
prediction. As previously observed, the RF model demonstrated
superior performance for ARND prediction (Figure 8), obtaining
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FIGURE 2

Model performance of machine learning algorithms for FASD prediction. LR, Logistic Regression; SVML, Support Vector Machine Linear Kernel; LDA,
Linear Discriminant Analysis; SVMP, Support Vector Machine Polynomial Kernel; KNN, k-Nearest Neighbor; RF, Random Forest; XGB,
Gradient-Boosted Trees.

FIGURE 3

Mean variable-importance of RF model for FASD prediction. Mean variable importance was calculated by using 50 permutations and the
root-mean-squared-error-loss-function for the RF model. RF, Random Forest.

FIGURE 4

Model performance of machine learning algorithms for FAS prediction. LR, Logistic Regression; SVML, Support Vector Machine Linear Kernel; LDA,
Linear Discriminant Analysis; SVMP, Support Vector Machine Polynomial Kernel; KNN, k-Nearest Neighbor; RF, Random Forest; XGB,
Gradient-Boosted Trees.
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FIGURE 5

Mean variable-importance of XGB model for FAS prediction. Mean variable importance was calculated by using 50 permutations and the
root-mean-squared-error-loss-function for the XGB model. XGB, eXtreme Gradient Boosting.

FIGURE 6

Model performance of machine learning algorithms for pFAS prediction. LR; Logistic Regression; SVML, Support Vector Machine Linear Kernel; LDA,
Linear Discriminant Analysis; SVMP, Support Vector Machine Polynomial Kernel; KNN, k-Nearest Neighbor; RF, Random Forest; XGB,
Gradient-Boosted Trees.

FIGURE 7

Mean variable-importance of RF model for pFAS prediction. Mean variable importance was calculated by using 50 permutations and the
root-mean-squared-error-loss-function for the RF model. RF, Random Forest.
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FIGURE 8

Model performance of machine learning algorithms for ARND prediction. LR, Logistic Regression; SVML, Support Vector Machine linear kernel; LDA,
Linear Discriminant Analysis; SVMP, Support Vector Machine polynomial kernel; KNN, k-nearest neighbor; RF, Random Forest; XGB, gradient-boosted
trees.

FIGURE 9

Mean variable-importance of RF model for ARND prediction. Mean variable importance was calculated by using 50 permutations and the
root-mean-squared-error-loss-function for the RF model.

the best levels of accuracy (0.87), precision (0.76), sensitivity (0.93),
F1 Score (0.84), specificity (0.83), and AUC (0.88).

Figure 8 displays Maternal Alcohol Consumption (0.64) as the
most influential feature for ARND prediction, followed by Total
Problems (0.11) and Attention Problems (0.10) (Figure 9). These
results confirm the importance of PAE confirmation for diagnosis.

4 Discussion

The comprehensive analysis of sociodemographic, clinical,
physical, and psychological characteristics in our study provides
invaluable insights into the complex nature of FASD and
underscores the importance of these features in diagnostic
assessment and intervention planning. The variables have been
selected based on IOM criteria (Hoyme et al., 2016).

Our study showed that FASD patients share a common
profile of maternal alcohol consumption, low height and lip-
philtrum affectation (Hoyme et al., 2016). FAS profile shows
impaired intelligence domains observed in WISC V test, as

previously reported (Bastons-Compta et al., 2016). Prematurity,
growth retardation, weight affectation, short palpebral fissures,
eyes and upper limbs affectation and attention problems are
highlighted in FAS profile compared to non-FASD, being part of
the specific diagnosis (Hoyme et al., 2016; Wang et al., 2020).
These findings also confirm previous studies from Maschke et al.
(2021) that observed facial abnormalities correlate with child’s
cognitive performance in FRI and WMI in FASD patients. pFAS
profile exhibits distinctions from full FAS, particularly in growth
problems and physical traits like microcephaly and upper limb
impairment, since pFAS does not meet all the requirements of full
FAS (Hoyme et al., 2016). ARND profile showed birth diseases,
such as perinatal asphyxia or abnormal heart rate and lower
limbs affectation. Furthermore, behavioral affectations included
thought problems, attention problems, rule-breaking behavior,
externalizing, anxiety, obsessive-compulsive and stress problems.
ARND lacks certain physical impairments such as weight and
height, microcephaly, short philtrum, and eye and upper limb
impairments observed in FAS and pFAS (Hoyme et al., 2016).
Therefore, these results highlight that FAS and pFAS may need
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therapies for educational support and intervention for growth
retardation. However, ARND group may need a combination of
cognitive behavioral therapy, attention training, and psychotherapy
for the range of psychological and behavioral problems.

FASD, shares similarities with others neurocognitive disorders
as Autism and ADHD, but is distinguished by its association
with PAE, causing a distinct pattern of neurodevelopmental
impairments (Rommelse et al., 2010; May and Gossage, 2011).
Autism is characterized by elevated FRI and VSI, while ADHD is
linked to deficiencies in FRI (Tamm and Juranek, 2012; Happé,
2021). Studies of ASD observed that VCI correlated negatively
with communication symptoms, and WMI correlated positively
with social symptoms (Rabiee et al., 2019). Similarly, individuals
with ADHD exhibit deficits in attention domains, including PSI,
WMI, and social cognition (Onandia-Hinchado et al., 2021), which
is consistent with observations in FASD. Understanding these
differences is crucial for accurate identification, intervention, and
support for individuals affected by FASD.

ML has been effectively applied in the medical field to diagnose
neurological disorders, including ASD (Vakadkar et al., 2021;
Bahathiq et al., 2022; Briguglio et al., 2023) and ADHD (Slobodin
et al., 2020; Mikolas et al., 2022; Briguglio et al., 2023; Kim et al.,
2023). These studies have demonstrated the potential of ML to
increase diagnostic accuracy, reduce time to diagnosis and improve
reproducibility. For ASD, ML models have been used to identify
key traits using sociodemographic, behavioral characteristics, or
magnetic resonance imaging (MRI) results, thereby improving and
automating the diagnostic process (Vakadkar et al., 2021; Bahathiq
et al., 2022; Briguglio et al., 2023). Similarly, ML classifiers for
ADHD have been developed based on clinical and psychological
data (i.e. attention, impulsiveness, sleep, and emotional disorders)
(Slobodin et al., 2020; Mikolas et al., 2022; Kim et al., 2023).

The implementation of ML in FASD diagnosis is crucial
due to the complexity and heterogeneity of the disorder.
Previous ML studies predicted FAS risk in pregnant drinkers
using questionnaires (Oh et al., 2023b) assessing drinking
timing, race, ethnicity, alcoholic beverage, prenatal care and
pregnancy complications. However, inherent limitations arise
due to potential maternal misrepresentation and impracticality
when assessing biological mothers’ post-adoption. Traditional
diagnostic methods for FASD are often challenging, due to multiple
factors, like unknown maternal alcohol confirmation, lack of facial
dysmorphology or growth impairments, leading to misdiagnosis
or delayed diagnosis (Chasnoff et al., 2015). In recent years,
research exploring the potential use of ML algorithms for early
diagnosing FASD has shown promising results (Suttie et al., 2024).
Ehrig et al. used physical characteristics (such as body length and
head circumference at birth) and neuropsychological parameters
(IQ, behavior, memory) as predictable variables, achieving good
levels of accuracy (0.85), precision (0.87), sensitivity (0.91) and
AUC (0.93) (Ehrig et al., 2023). Goh et al. (2016) trained their
model using CBCL scales, IQ and physical examination, obtaining
a sensitivity of 64%−81% and specificity of 78%−80%. Zhang
et al. (2019) developed a comprehensive ML framework using eye
movements, psychometric tests and brain imaging to predict FASD.
Rodriguez et al. (2021) used magnetic resonance imaging to detect
PAE. Duarte et al. (2021) trained with NEPSY-II test, saccade eye

movement, and diffusion tensor imaging. Furthermore, Lussier
et al. (2018) used methylation signatures for FASD classification.
Fu et al. (2022) devised a transfer learning approach leveraging
extensive facial recognition datasets. Using similar inputs, Blanck-
Lubarsch et al. (2022) formulated an automated classification
algorithm with 3D facial scans. Our ML model has achieved
better accuracy (0.92), precision (0.96), sensitivity (0.92), F1 score
(0.94), specificity (0.92), and AUC (0.92) than previous ML
algorithms for FASD diagnosis, helping to avoid misdiagnosis in
the clinical setting.

This ML prediction aims to be specifically for FASD, thereby
distinguishing it from other developmental disorders. Unique
FASD indicators like PAE confirmation, distinctive facial features
andmicrocephaly, together with psychometric data, enhance FASD
detection. Models have been developed in other pathologies,
incorporating clinical and neuropsychological variables, such as
ADHD and ASD (Lange et al., 2019; Ehrig et al., 2023). These
models have successfully identified these specific pathologies based
on a combination of specific variables. Studies from Lange et al.
(2019) and Ehrig et al. (2023) used specific parameters that predict
FASD compared to ADHD or ASD. These parameters include
gestational age, length, weight and head circumference affectation
at birth, together with low IQ, socially intrusive behavior, rule-
breaking behavior and attention problems. These studies further
validate the accuracy of ML in predicting FASD, thereby mitigating
the risk of misdiagnosis other neuropathologies.

Based on socio-demographic, clinical, and psychological data
from children with FASD the present study has elaborated a
common diagnostic model for FASD, obtaining RF algorithm as
the best model predictor. We identified important variables for
efficient FASD screening, including classic clinical characteristics
for diagnosis like maternal alcohol consumption, lip-philtrum,
microcephaly, and height and weight impairment. Other significant
variables include the WMI, aggressive behavior, IQ, somatic
complaints, and depressive problems. WMI, IQ and aggressive
behavior are often observed in FASD patients and are considered
a significant factor for the diagnostic process (Maya-Enero et al.,
2021). However, our study establishes the domains related to
somatic complaints and depressive problems, often reported in
FASD patients (Mattson et al., 2011), as key diagnostic indicators.

ML models have also been performed for each FASD subtype,
identifying specific patterns and enhancing the important variables
for precise prediction. Our finding provides a detailed analysis
for each specific type of FASD, offering clinicians more precise
information for diagnosis and treatment planning.

The ML algorithm that best predicted FAS was XGB and the
most important features were traditional physical traits, such as
height and weight affectations. Additionally, neuropsychological
variables, including FRI, internalizing problems and total problems,
play a crucial role in the prediction of FAS, and have
previously mentioned its association with FASD (Fagerlund
et al., 2011; Popova et al., 2019; Maschke et al., 2021).
Furthermore, studies with autism and ADHD found that
internalizing problems are also increased, leading to long-term
anxiety behavior in adulthood (So et al., 2021; Andersen et al.,
2023). These findings suggest that patients primarily affected in
these domains may be more likely to exhibit FAS. Interestingly,
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maternal alcohol consumption, while a significant predictor for
pFAS and ARND, does not appear to be a determinant for
FAS prediction.

On the other hand, RF model was the best at predicting
pFAS, with classical FASD characteristics such as lip-philtrum
affectation, confirmed maternal alcohol consumption, IQ, and
microcephaly being the most important variables. However,
our study showed that neuropsychological variables like PSI,
VCI scores, attention problems and thought problems had
also impact on pFAS prediction. Therefore, these results
suggest that these neuropsychological variables, previously
used to diagnose ADHD (Mikolas et al., 2022), together
with classical FASD characteristics, may be relevant in
predicting pFAS.

Lastly, ARND prediction was best performed by RF
algorithm, with maternal alcohol consumption being the
most predictable variable. Nevertheless, total problems
and attention problems also had some impact on ARND
prediction. Previous ML studies also determined that these
neurological domains, along with other impairments in CBCL
are key factors for bipolar disorder prediction (Uchida et al.,
2022).

Conducting a separate machine learning analysis for each type
of FASD, once confirmed prenatal alcohol exposure, is potentially
beneficial for clinical practice. It allows for a better understanding
of FASD subtypes and can contribute to more accurate diagnosis
and targeted treatment strategies.

5 Conclusions

Our study has carried out significant progress in applying
ML to the diagnosis of FASD. ML algorithms effectively diagnose
FASD and its subtypes: FAS, pFAS, and ARND. Key variables for
efficient FASD screening include classical clinical characteristics
(maternal alcohol consumption, lip-philtrum,microcephaly, height
and weight impairment) and neuropsychological variables (WMI,
aggressive behavior, IQ, somatic complaints, and depressive
problems). The best ML algorithm for predicting FAS was XGB,
with height, weight affectations, and neuropsychological variables
like IQ, internalizing problems, and total problems being the most
important features. For pFAS, RF model was the best predictor,
considering lip-philtrum affectation, confirmed maternal alcohol
consumption, IQ, microcephaly, PSI, VCI, attention problems,
and thought problems being the most significant variables. For
ARND, the RF algorithm was the best performer, with maternal
alcohol consumption, total problems, and attention problems
being the most predictable variables. ML improves diagnostic
accuracy and enhances understanding of FASD subtypes, leading
to early intervention strategies, targeted therapeutic approaches,
and ultimately mitigating the secondary disabilities of FASD. This
could help the social and health systems for affected individuals and
their families, supporting the consensus of the diagnostic criteria.
All of this emphasizes the need for public policies to invest in ML
integration into diagnostic strategies in order to improve clinical
outcomes for FASD individuals. ML models will contribute to the
development of more informed public health policies focused on
this vulnerable population.

6 Limitations

The absence of an ARBD subgroup in our dataset restricts
the comprehensiveness of our findings about this FASD subtype.
Moreover, self-reported data could introduce bias in variables
associated to personal perceptions. External validation on
independent datasets is also needed to ensure the robustness of
our ML models. Other limitation is related to the confirmation
of maternal alcohol consumption, due to incomplete medical
records in some adoptees. Additionally, the stress from diagnostic
assessments could potentially affect children’s performance in
neuropsychological tests. Future work could enhance our model
by integrating additional data such as magnetic resonance imaging
(Rodriguez et al., 2021), NEPSY-II neuropsychological test (Duarte
et al., 2021) and eye movement (Zhang et al., 2019) for a more
refined FASD diagnosis.

Despite these limitations, our study advances the application
of ML in FASD diagnosis, providing a foundation for future
research and contributing to the development of more accurate
diagnostic tools.
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