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Fast multi-compartment
Microstructure Fingerprinting in
brain white matter

Quentin Dessain1,2*, Clément Fuchs1, Benoît Macq1 and

Gaëtan Rensonnet1

1Institute of Information and Communication Technologies, Electronics and Applied Mathematics

(ICTEAM), UCLouvain, Louvain-la-Neuve, Belgium, 2Institute of NeuroScience, UCLouvain, Brussels,
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We proposed two deep neural network based methods to accelerate the

estimation of microstructural features of crossing fascicles in the white matter.

Bothmethods focus on the acceleration of amulti-dictionarymatching problem,

which is at the heart of Microstructure Fingerprinting, an extension of Magnetic

Resonance Fingerprinting to di�usion MRI. The first acceleration method uses

e�cient sparse optimization and a dedicated feed-forward neural network

to circumvent the inherent combinatorial complexity of the fingerprinting

estimation. The second acceleration method relies on a feed-forward neural

network that uses a spherical harmonics representation of the DW-MRI signal as

input. The first method exhibits a high interpretability while the second method

achieves a greater speedup factor. The accuracy of the results and the speedup

factors of several orders of magnitude obtained on in vivo brain data suggest

the potential of our methods for a fast quantitative estimation of microstructural

features in complex white matter configurations.

KEYWORDS

di�usion MRI, deep learning, microstructure, fingerprinting, non-negative linear least-

squares, crossing bundles

1 Introduction

Quantitative MRI (qMRI) aims to supply objective measurable metrics that specifically
depict the morphology, microstructure, and/or chemical composition of tissues in order to
provide a deeper knowledge of the physiology of the brain in vivo (Cercignani et al., 2018).
For instance, Magnetic Resonance Fingerprinting (MRF) (Ma et al., 2013) pioneered an
approach in which MRI data are acquired with time-varying acquisition parameters (e.g.,
flip angle, echo time, time of repetition) and then matched to a dictionary of pre-simulated
fingerprints with identical parameters time course. Such a process determines the T1, T2,
B0, and proton density parameters used to generate the fingerprint. This not only enables a
very fast estimation of T1, T2, B0, and proton density maps, reduced to a simple dictionary
matching, but also allows the use of the Bloch Simulator (Doneva et al., 2010), which is one
of the most accurate ways to model the physics of MRI. The MRF model has then been
extended to account for more complex tissue parameters such as B1+, T2*, perfusion (Su
et al., 2017; Wright et al., 2018), hemodynamic (Christen et al., 2014; Lemasson et al.,
2016), and diffusion (Cao et al., 2024) related properties. However, this requires the use
of ever growing dictionaries which renders the dictionary matching step of MRF very time
consuming due to the considerable amount of fingerprints required.
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Subsequent advancements demonstrated the feasibility of
extracting morphological characteristics of brain tissues using
diffusion-weighted magnetic resonance imaging (DW-MRI)
by matching the observed DW-MRI signal to a simulated
signal counterpart mirroring predefined morphological
features (Rensonnet et al., 2015; Palombo et al., 2016). This
approach inspiredMicrostructure Fingerprinting (MF) (Rensonnet
et al., 2019), which uses a precalculated dictionary to estimate
microstructural properties of the white matter from DW-MRI.
Instead of the Bloch equations, a Monte Carlo simulator solves
the Bloch-Torrey equation to simulate diffusion fingerprints
in a variety of white matter tissue configurations, flexibly
incorporating information about the axonal density, diameter,
principal orientation, their geometries, and sizes. MF was designed
to deal with multi-compartment models from the beginning
because of the nature of the white matter, composed of multiple
populations of axons intersecting throughout the brain. When
the fascicles overlap in a voxel, the model assumes that the total
diffusion-weighted MRI signal is the sum of the signals originating
from each fascicle independently (Rensonnet et al., 2018). This
allows the use of multiple small dictionaries instead of a much
larger one, accounting for all the compartment orientations
and fractions, considerably decreasing the time and memory
requirements by reducing the problem size. However, selecting
the right combination of fingerprints remains combinatorial. The
runtime complexity of MF is therefore affected by the number of
fascicles in a voxel as O

(
K · NK

)
, where N represents the number

of elements in the (single-fascicle) dictionary and K the number of
fascicles in the voxel (Rensonnet et al., 2021). This severely limits
the size and thus the complexity of the precalculated dictionary
compared to the theoretically limitless possibilities of Monte Carlo
simulation tools.

Kiselev et al. (2021) highlighted the importance of physiology-
based models and the potential synergy between microstructure
MRI and magnetic resonance fingerprinting for achieving
specific, target-oriented diagnostic tools. Aligning with these
recommendations, other advanced models similar to MF have
been developed. For instance, Filipiak et al. (2022) employed a
dictionary of presimulated Orientation Distribution Functions
based on a biophysically plausible multicompartment diffusion
model to accurately estimate fiber crossings with shallow angles.

In both MRF (always dictionary-based) and DW-MRI
estimation (either dictionary-based or not), deep neural networks
(DNN) are increasingly used to accelerate estimations of complex
tissue models. Indeed, in order to find hierarchical representations
that can handle challenging tasks with large-scale datasets, DNNs
have proven to be a very effective tool (Najafabadi et al., 2015).
As illustrated in Table 1, a number of studies have proposed deep
learning methods to bypass long non-linear models fitting used in
dMRI and to circumvent lookup in dictionaries of ever-increasing
sizes in MRF.

Simulated data have been used for training (Nedjati-Gilani
et al., 2017; Cai et al., 2018; de Almeida Martins et al., 2021;
Karimi et al., 2021; Sabidussi et al., 2021) because they allow
any combination of parameter values and facilitate the creation
of substantial datasets. Moreover, simulated data offer a ground
truth which is not available using real data. When generating the

synthetic dataset, de Almeida Martins et al. (2021), Karimi et al.
(2021), and Sabidussi et al. (2021) opted for a closed form model
based on several assumptions, while Cai et al. (2018) used the
Bloch equations to numerically generate simulated data to train
convolutional neural networks (CNN) (LeCun et al., 1998) used for
T1 and T2 mapping. By using a numerical simulator instead of a
closed-form model, an enhanced biophysical accuracy is obtained
at the cost of an increased use of computational resources.

Ye (2017) and Ye et al. (2019) proposed a two-stagesmethod for
the acceleration of the estimation of theNODDI parameters (Zhang
et al., 2012). The first stage is similar to a solution to a dictionary-
based sparse reconstruction problem while the second stage
computes the final NODDImicrostructure estimation. They jointly
learn the weights of the two stages by minimizing the mean
squared error (MSE) of microstructure estimation. The separation
of the problem into multiple steps instead of using an end-to-end
DNN allows them to reduce the complexity of the problem and
accelerate training.

In this paper, we propose two methods aimed at accelerating
DW-MRI microstructure estimation using DNN. The first method,
the “Hybrid Method,” exploits the power of presimulated Monte
Carlo dictionaries by projecting the measured DW-MRI signal
y into an interpretable latent space, representing the signal in
terms of dictionary fingerprints, before providing it to a feed-
forward neural network. This allows for generalization to different
acquisition schemes with little to no additional training. The second
method, the “Fully-Learned Method,” is based on a feed-forward
neural network that uses the spherical harmonics representation
of the DW-MRI signal as input to jointly estimate microstructural
features and fascicles orientations. This method is less interpretable
than the Hybrid Method but is significantly faster since no
minimization step is required.

We evaluated each method in terms of the inference speed and
accuracy of their fittings on synthetic and in vivo datasets. First,
we estimated the accuracy and noise robustness via experiments on
simulated data with varying noise levels. Second, we performed a
second accuracy and noise robustness assessment on the Hybrid
Method with data generated from an unseen acquisition protocol
to evaluate its generalizability. Finally, we tested the quality of each
method to retain small structures within the brain, using 34 in vivo

scans from the MGH-USC Young Adult cohort (Van Essen et al.,
2012).

2 Materials and methods

This section begins with a detailed presentation of the reference
methodology, known as Microstructure Fingerprinting (MF). We
then introduce and elaborate on the two proposed acceleration
techniques: the Hybrid Method and the Fully-Learned Method.
Subsequently, the section delineates the three experiments carried
out to evaluate and compare these three methods, focusing on
assessing their inference speed and mean absolute error (MAE).
This comparative analysis aims to provide a comprehensive
understanding of the performance and potential advantages of each
method within the context of DW-MRI microstructure estimation.
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TABLE 1 Fast estimation of tissue parameters frommagnetic resonance measurements has relied on a variety of machine and deep learning approaches,

usually assuming one main population of axons.

Trained on
synthetic

data

Trained on
real data

Neural
Network
architecture

Type of data
simulator

Type of
acquisition
protocol

# of axonal
populations
per voxel

Cai et al. (2018) ✓ ✗ CNN Bloch equations MRF

Nedjati-Gilani et al.
(2017)

✓ ✗ Random Forest
regression

Monte Carlo
simulator

dMRI 1

de Almeida Martins
et al. (2021)

✓ ✗ MLP Standard model of
diffusion with
relaxation

dMRI 1

Sabidussi et al.
(2021)

✓ ✗ Recurrent inference
machines

Model based
generation
framework with
gaussian noise

CINE 1

Karimi et al. (2021) ✓ ✓ MLP with ReLU Based on a multi
tensor model

dMRI 1

Hill et al. (2018) ✓ ✗ MLP Monte Carlo
simulator

dMRI 1

Ye et al. (2019) ✗ ✓ Two-stage
architecture using a
latent space

Not Applicable dMRI 1

Proposed Hybrid

Method

✓ ✗ Two-stage
architecture using a
latent space

Monte Carlo
simulator

dMRI 2

Proposed

Fully-Learned

Method

✓ ✗ Spherical
harmonics
decomposition +
MLP

Monte Carlo
simulator

dMRI 2

Comparison of state-of-the-art methods.

FIGURE 1

Our forward signal model exploits Monte Carlo numerical simulations. A voxel of white matter [artistic view borrowed from Ginsburger et al. (2018)],

located here on a T1 anatomical scan of a healthy young adult from the Human Connectome Project (Van Essen et al., 2012), is represented by axon

populations modeled as straight cylinders with signal contributions assumed independent. The DW-MRI signal is obtained by Monte Carlo

simulations in each population (Hall and Alexander, 2009; Rensonnet et al., 2015).
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FIGURE 2

(A) Microstructure Fingerprinting involves solving a large number of small NNLS problems, leading to long computation times as the dictionary size N

increases. (B) In the Hybrid Method, the vector of measurements y is decomposed by NNLS into a sparse representation in the space of

physics-based fingerprints. The weights are given to a multilayer perceptron (MLP) with a split architecture to predict the tissue parameters (relative

volume of axon population νk , fiber volume fraction fvfk and extra-axonal di�usivity Dex,k). (C) The Fully-Learned Method calculates shellwise

spherical harmonics coe�cients of order 12, which are fed into a DNN to predict the tissue parameters and axon populations orientation.

2.1 Microstructure Fingerprinting

The Microstructure Fingerprinting framework first
precomputes a dictionary of DW-MRI fingerprints (Rensonnet
et al., 2015, 2019). Each fingerprint in the dictionary corresponds
to a unique microstructural configuration, obtained by leveraging
the physical accuracy of Monte Carlo simulations (Hall and
Alexander, 2009; Rensonnet et al., 2015). As depicted in Figure 1,

in this work, every axonal configuration was a random 2D packing
of straight cylinders with radii drawn from a gamma distribution
with mean radius of 0.5 µm and a standard deviation of 0.3 µm.
The intra-axonal diffusivity was set to 2.2 µm2 ms−1 (Dhital et al.,
2019). The different configurations present in the dictionary
were obtained by choosing the fiber volume fraction (fvf )
from 38 equally spaced values within the range [0.06, 0.8]
and the extra-axonal diffusivity (Dex) from 10 equally spaced
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values in the [0.6, 2.4] µm2 ms−1 range, totaling N = 380
precomputed fingerprints.

As shown in Figure 2A, at every runtime, MF requires an
estimate of the orientations uk of each fascicle k in every
voxel. For this purpose, we here employed a constrained
spherical deconvolution (CSD) (Jeurissen et al., 2014). Assuming
independent signal contributions from each fascicle (Rensonnet
et al., 2018), the precomputed dictionary was then rotated to create
fascicle-specific sub-dictionaries Ck. The method then searched
for the optimal combination of single-fascicle configurations
(fvf k,Dex,k) and volume fractions νk, for each fascicle k = 1, . . . ,K,
given a vector y ∈ R

M of M noisy DW-MRIs by selecting the
best-fit solution out of NK independent non-negative linear least-
squares (NNLS) sub-problems of K variables.

2.2 The Hybrid Method

The Hybrid Method operates in two distinct stages. In the
first stage (Figure 2B), a relaxed version of the problem present
in MF was used to project the DW-MRI signal into a latent
space. Specifically, the same matrix [C1 . . .CK] was first assembled.
However, instead of tackling the problem with its full multi-
compartment complexity, one single NNLS problem with K ·

N variables was solved without any knowledge about its multi-
compartment structure and without any sparsity constraints on the
weight vector w. This effectively projected the measurements y in
the space of the dictionary fingerprints. NNLS is known to naturally
enforce sparsity (Lawson and Hanson, 1995; Canales-Rodríguez
et al., 2019). Additionally, its empirical runtime is proportional
to the number of matrix columns, which in this case is K · N.
This characteristic of NNLS is a key factor in the efficiency of the
Hybrid Method.

As illustrated in Figure 2B, the second stage consisted in
passing the NNLS weight vector w through a feed-forward neural
network. The network initially had split arms, independently
processing the weights related to each compartment by NNLS
before merging into a common multi-layer perceptron (MLP) for
final parameter inference. The advantage of this architecture is
to reduce the number of free parameters and facilitate training.
The output size of the two initial branches of the MLP, the
learning rate and the number of layers were determined through a
systematic hyperparameter optimization process using grid search.
Our network used a rectified linear unit (ReLU) (Nair and Hinton,
2010) as an activation function for all layers, except for the last layer,
where a sigmoid function was used. Between all layers, dropout
regularization (Hinton et al., 2012) was used with a retention
probability of 0.9. The network included a batch normalization
layer (Ioffe and Szegedy, 2015) between the the split arms and
common multi-layer perceptron. The Adam optimizer (Kingma
and Ba, 2014) was utilized during training. The target output of the
MLP for each fascicle k was the fascicle fraction ν, the fiber volume
fraction fvf and the extra-axonal diffusivityDex. For more in-depth
details onmodels architecture and parameters used during training,
see Supplementary Table S1.

The network was trained on a dataset comprising 20,00,000
synthetic voxels. These voxels were generated using Monte Carlo

simulations based on the microstructural configuration presented
in Figure 1, considering 2 fascicles per voxel. Microstructural
parameters were drawn from uniform distributions: the crossing
angle between the two axon populations û1 and û2 from
U([15◦, 90◦]) and the volume fractions ν from U([0.05, 0.95]). For
each voxel, the pairs (fvf k,Dex,k) were randomly selected from
the N = 380 precomputed fingerprints described above. The
resulting DW-MRI signal s was corrupted with Rician noise using
an i.i.d. Gaussian realization ǫ with standard deviation σ =
snoiseless(b-value = 0)

SNR
by computing s =

√
s2noiseless + ǫ2. The

signal-to-noise ratio (SNR) was drawn from U([10, 100]) .

2.3 The Fully-Learned Method

As depicted in Figure 2C, the Fully-Learned Method relies on
a traditional MLP architecture and directly outputs estimates of
microstructural parameters without resorting to any intermediate
biophysical representation of the signal. The Fully-LearnedMethod
requires the DW-MRI signal to be acquired in shells (Tuch et al.,
2002) of fixed b-value as it first computes a spherical harmonics
representation of each shell separately to provide the coefficients as
inputs to the network. Compared to the use of raw DW-MRI signal
directly, this approach is more flexible with respect to changes in
the acquisition protocol (e.g., in the number of gradients in some
shells), and robust to missing measurements.

An important difference with the Hybrid Method is that
we do not need to give the orientations ûk because they
are estimated from the data jointly with the other fascicle-
specific properties. Consequently, the approach does not require
external estimates such as those of CSD. Note that, given the
spherical symmetry of the DW-MRI signal, the orientations

were restricted to the unit half-sphere
{[
ûx, ûy, ûz

]T ∣∣ûz ≥ 0
}

during training.
As in the Hybrid Method, a grid search approach

was employed for the optimization of the neural network
hyperparameters. ReLU and dropout were incorporated
into each layer, except for the final layer, which utilized
a sigmoid as the activation function and did not include
dropout. The Adam optimizer was used during training.
As we used real-valued of even-degree spherical harmonics
functions up to degree 12, the input contained 91 coefficients
per shell.

The training of the Fully-LearnedMethod was conducted using
the same set of simulated data as for the Hybrid Method, ensuring
consistency in the evaluation of both methods.

2.4 Di�usion protocol

Unless otherwise specified in the experiments below,
the acquisition protocol used to simulate the DW-MRI
samples was the one from the MGH Human Connectome
Project (HCP) (Setsompop et al., 2013), consisting of 4 PGSE shells
of 64 directions at b = 1,000 (G = 69mTm−1), 64 at b = 3,000
(G = 120mTm−1), 128 at b = 5,000 (G = 155mTm−1) and 256
at b = 10,000µs µm−2 (G = 219mTm−1) with gradient duration
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δ = 12.9ms, diffusion time 1 = 21.8ms, TE/TR=57/8800 ms
and no MultiBand. A non-diffusion weighted image (b = 0) was
collected every 14 volumes, yielding a total of 552 volumes. The
total acquisition time was 89 min.

2.5 Experiment I: performance assessment
on synthetic test set

2.5.1 Two-fascicle configuration
Based on the diffusion protocol used during training, a test

set was created with 2-fascicle voxels having crossing angles
drawn from U([15◦, 90◦]), ν1 values selected in the set [0.5,
0.6, 0.7, 0.8, 0.9], every (fvf k,Dex,k) pair from the N = 380
precomputed fingerprints described above and SNR values in
the set [20, 30, 50], generating a total of 150,000 samples.
All testing samples were never seen by either neural networks
during training.

The experiment focused on assessing four distinct models. The
first two are the proposed accelerated methods, known as the
Hybrid Method and the Fully-Learned Method. Alongside these,
two versions of the Microstructure Fingerprinting (MF) model
were assessed. The True orientations & MF, which utilizes actual,
known fascicle orientations, serving as a benchmark for the ideal
scenario in Microstructure Fingerprinting. In contrast, the CSD
& MF model operates without the advantage of known fascicle
orientations and instead relies on orientations estimated through
constrained spherical deconvolution, depicting a scenario more
representative of typical clinical settings.

For each of these models, the absolute error and mean absolute
error were calculated on the estimated volume fractions ν1 and ν2,
extra-axonal diffusivitiesDex,1 andDex,2, fiber volume fractions fvf 1
and fvf 2. We also reported the mean angular error on û1 and û2,
computed either by CSD or by the Fully-Learned Method directly.

2.5.2 Three-fascicle configuration
To evaluate the performance of our models in more complex

scenarios involving three-way fascicle crossings, the architectures
of both the Hybrid and Fully-Learned neural networks were
modified to process three-fascicle voxels. These models were
retrained on synthetic data employing similar configurations to
those used in the two-fascicle experiments, with an alteration in
the method of volume fraction generation. Given the difficulty of
using an uniform distribution for νk in scenarios involving more
than two fascicles while ensuring

∑
k νk = 1, volume fractions νk

were generated using a Dirichlet distribution with α = 1.
For the test set, the methodology from the two-fascicle

experiment was maintained, but the uniform distribution for
volume fractions was replaced with a Dirichlet distribution.
Following the procedures established in the two-fascicle tests, all
four methods were evaluated.

2.6 Experiment II: generalizability to
unseen acquisition protocols

The objective of this experiment was to evaluate the Hybrid
Method’s ability to generalize to new, previously unseen DW-MRI
acquisition protocols. This was driven by the fact that, unlike the
Fully-Learned Method, the Hybrid Method represents the DW-
MRI signal by an intermediate weight vector w that does not
depend on the number of measurements M but only on the
underlyingmicrostructural model via the dictionary of fingerprints.

For this experiment, a new simulated protocol was designed
to mimic current clinical capabilities in DW-MRI with gradient
duration δ = 22.9ms, diffusion time 1 = 35.7ms,
TE/TR=77.4/4842 ms, 64 gradient directions at b = 1,000 (G =

31mTm−1) and b = 2,000 (G = 44mTm−1), and 128 directions
at b = 5,000 µs µm−2 (G = 69mTm−1), along with 4 b =

0 acquisitions, for a total of 260 measurements. The simulated
protocols excluded gradient directions at b = 10,000 µs µm−2

TABLE 2 Large speed-up factors were observed for our proposed methods, with theoretical projections suggesting even larger gains with increasing

dictionary size (N) and number of compartments (K).

Microstructure Fingerprinting Hybrid Method Fully-Learned Method

Precomputation time ≈ 2 d ≈ 2 d Not applicable

Case with K = 2 fascicles

Model Training Not applicable 7min 21min

Total inference time/voxel 9.18× 10−1 s 2.36× 10−2 s 8.61× 10−4 s

Acceleration factor 1 38.9 2090

Case with K = 3 fascicles

Model Training Not applicable 10min 22min

Total inference time/voxel 248 s 2.97× 10−2 s 8.82× 10−4 s

Acceleration factor 1 8350 281179

Inference complexity O
(
NKK

)
O (NK) O (1)

Theoretical acceleration factor O (1) O
(
NK−1

)
O

(
NKK

)

Efficiency of the three methods when inference is performed on synthetic data using the MGHAdult Diffusion protocol. The test set was processed on a Skylake Xeon 4116 CPU cluster, without

GPU acceleration. During the training phase, a Nvidia RTX 3090 GPU was used to train both proposed methods. The bold values are used to emphasize the key information, specifically the

acceleration factor.
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since high b-values are typically impractical in clinical settings.
Furthermore, to create a clear distinction from the reference
protocol used during training, gradient directions at b = 3,000
µs µm−2 were also omitted.

The test set for this experiment was generated following
the same methodology as in Experiment I, but adapted to the
new protocol. In this experiment, four distinct methods were
put to the test: The MF model with true fascicle orientations

(True orientations & MF) and without true fascicle orientations
(CSD & MF) as in Experiment I, and the Hybrid Method
under two different conditions. The first condition involved
applying the Hybrid Method without any retraining, directly to
the new protocol. This gauges the method’s inherent ability to
adapt to different acquisition parameters based on its original
training. The second condition involved fully retraining the Hybrid
Method specifically for the new protocol, aiming to determine the

FIGURE 3

The Fully-Learned Method has better estimation accuracy than the Hybrid Method, the CSD & MF and the MF algorithm with true orientations. MAE

on structured test.
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TABLE 3 Proposed acceleration methods outperform reference approaches.

SNR = 20 SNR = 30 SNR = 50

ν Dex fvf ν Dex fvf ν Dex fvf

True orientations & MF 0.149 6.77e−10 0.123 0.125 5.65e−10 0.114 0.100 4.37e−10 0.098

CSD &MF 0.152 7.02e−10 0.129 0.131 5.82e−10 0.119 0.111 4.82e−10 0.109

Hybrid Method 0.107 3.21e−10 0.094 0.092 2.84e−10 0.083 0.071 2.24e−10 0.064

Fully-Learned Method 0.095 2.92e−10 0.088 0.084 2.55e−10 0.076 0.068 2.06e−10 0.061

MAEs of all methods on the test set from Experiment 1. For each metric and SNR, the method with the lowest MAE is highlighted in bold.

advantages of tailoring the model to the unique characteristics of a
new protocol.

2.7 Experiment III: in vivo population

Experiment III focuses on estimating the microstructural
properties of white matter on in vivo data for the CSD & MF,
Hybrid Method, and Fully-Learned Method. This assessment was
performed on all 34 subjects from the MGH-USC Young Adult
cohort (Van Essen et al., 2012), whose ages ranged from 20
to 59 years old and scanned using a customized Siemens 3T
Connectome scanner, providing a consistent and high-quality
dataset for analysis. The computation time required by each model
to process the MRI data from all 34 subjects was recorded to
assess inference speed. The white matter maps generated by the
two accelerated methods were compared with those produced by
the reference MF method across all subjects and a visual inspection
was performed. Given the lack of ground truth on in vivo data,
the experiment also aimed to discern the effects of transitioning
from synthetic to real-world data. To achieve this, the differences
in the estimated fiber volume fraction (fvf 1) between the reference
MF and the two proposed methods were calculated for each voxel.
These calculations were performed on both the simulated test set
from Experiment I and the in vivo data from the 34 subjects in
the cohort. The results were presented as histograms of the signed
differences, providing a statistical perspective on the variance
between each method’s estimations when applied to synthetic and
real-world data.

3 Results

3.1 Experiment I: performance assessment
on synthetic test set

3.1.1 Two-fascicle configuration
Experiment I evaluated the accuracy and efficiency of our

proposed methods, the Hybrid Method and the Fully-Learned
Method, against conventional Microstructure Fingerprinting (MF)
approaches, using a synthetic test set designed to simulate diverse
white matter microstructures.

As visible in Table 2, both methods yielded the expected
gain in computation time with the Hybrid Method reaching an
acceleration factor of 38.9 and the Fully-Learned Method reaching

an even higher acceleration factor of 2, 090. A more detailed view
of computation time is available in Supplementary Table S2.

Figure 3 presents the mean absolute errors (MAEs) by fascicle
fraction ν for each microstructural feature estimated by the
four evaluated models. Furthermore, Table 3 complements this by
providing a detailed breakdown of the MAEs for each of the three
signal-to-noise ratio (SNR) levels within the synthetic test set,
thus offering insights into each method’s accuracy under different
noise conditions. The Hybrid Method yielded MAEs of 0.0899
for ν, 0.0805 for fvf , and 2.76e−10 for Dex. The Fully-Learned
Method demonstrated marginally better performance, with MAEs
of 0.0819 for ν, 0.0751 for fvf , and 2.51e−10 for Dex. In contrast,
the True Orientations & MF method, despite utilizing accurate
fascicle orientations, reported higher MAEs of 0.124 for ν, 0.112
for fvf , and 5.59e−10 for Dex. The CSD & MF method marked
the highest MAEs, with 0.131 for ν, 0.118 for fvf , and 5.88e−10
for Dex. These results underscore the superior accuracy of both
proposed methods over the traditional MF approach in estimating
key microstructural features.

Further insight into the models’ performance is provided by
Figure 4, which includes correlation-accuracy plots for the fvf 1
and Dex,1 properties. This figure also reveals the coefficient of
determination (R2), showcasing superior predictive accuracy for
the Hybrid (0.88 for fvf 1 and 0.76 for Dex,1) and Fully-Learned
Methods (0.90 for fvf 1 and 0.82 for Dex,1), in stark contrast to the
lower R2 values observed for the CSD & MF (0.58 for fvf 1 and
−0.45 for Dex,1) and True Orientations & MF methods (0.60 for
fvf 1 and−0.29 for Dex,1).

As shown in Figure 5, the angular errors on the estimated
orientations obtained by the Fully-Learned Method were smaller
(mean = 5.06◦) than those of CSD (mean = 7.41◦), highlighting
the capacity of the method to successfully estimate orientations.

3.1.2 Three-fascicle configuration
To further assess the performance and scalability of the

proposed methods, the second part of Experiment I evaluated
all methods on voxels with a three-fascicle configuration. This
extension aimed to test the robustness and efficiency of themethods
under more complex scenarios.

As illustrated in Table 2, the acceleration factors achieved
with the three-fascicle configuration are significantly higher than
those observed with the two-fascicle configuration. Specifically, the
Hybrid Method achieved an acceleration factor of 8,350, while the
Fully-Learned Method reached 281,179.
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FIGURE 4

Both accelerated method obtain estimates closer to the groundtruth for the fvf and Dex metrics than the reference MF methods.

Correlation-accuracy plots comparing the predicted values and the ground truth parameters for the four models on the test set.

The correlation-accuracy plots in Figure 6 reveal the same

trends as in the two-fascicle configuration, with acceleration

methods obtaining estimates closer to the groundtruth

than the reference MF methods. The errors are slightly

higher overall in the three-fascicle configuration for all
tested approaches.

3.2 Experiment II: generalizability to
unseen acquisition protocols

The results from Experiment II, as depicted in Figure 7,
demonstrate the ability of the Hybrid Method to transfer across
different protocols. Without retraining, the Hybrid Method
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achieved MAEs of 0.102 for ν, 0.0923 for fvf and 3.79e−10 for
Dex, consistently outperforming the CSD & MF method in all
scenarios which had MAEs of 0.122 for ν, 0.114 for fvf and
5.68e−10 for Dex along with the True orientations & MF approach

FIGURE 5

The orientations obtained with the Fully-Learned Method

outperform results from constrained spherical deconvolution in the

synthetic test set. Angular Error: CSD vs. the Fully-Learned Method.

which had MAEs of 0.112 for ν, 0.102 for fvf and 5.42e−10
for Dex.

Upon retraining with the new protocol, the Hybrid Method’s
accuracy improved further, yielding even lower MAEs of 0.0942 for
ν, 0.0843 for fvf and 2.86e−10 for Dex, exhibiting an improvement
in performance compared to own version trained on the source
protocol. This enhanced performance was consistent across all
metrics, further outstripping both reference methods.

3.3 Experiment III: in vivo population

Table 4 presents the acceleration factors achieved by these
methods. The results were in line with the theoretical predictions
regarding inference complexity.

Figure 8 presents a comparative analysis between the CSD &
MF method and each accelerated method, utilizing histograms to
depict differences in fvf 1 estimates across synthetic and in vivo

datasets. Although the distribution of these differences changes
slightly, the mean difference for both proposed methods maintains
consistency as we transition from synthetic to in vivo data.
Notably, the in vivo dataset shows a more tightly clustered
signed difference between CSD & MF and the Hybrid Method
around zero, indicating a closer alignment in real-world settings as
opposed to synthetic environments. Meanwhile, the Fully-Learned

FIGURE 6

The accelerations methods generalize to three-way crossings, outperforming the reference MF methods in estimation accuracy for the metrics fvf

and Dex. Correlation-accuracy plots comparing the predicted values against the ground truth parameters for the four models on the test set with a

three-fiber configuration. The di�erence between actual and estimated values are shown for the first fascicle in the two left-most columns, for the

second fascicle in the two middle columns, and for the third fascicle in the two right-most columns.
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FIGURE 7

The Hybrid Method is able to generalize to data acquired with a di�erent experimental protocol with minimal retraining. MAE on structured test with

the clinical protocol.

Method consistently estimates higher fiber volume fraction values
compared to the CSD &MF method.

In Figure 9A, the voxel-wise values of the fiber volume fraction
for the larger compartment are displayed. Here, the Fully-Learned
Method generally estimated higher fvf values compared to the
other models, indicating a tendency to estimate higher values than
the CSD &MF method.

Figure 9B highlights the differences between the fully
analytical CSD & MF model and the two Deep Learning
models. The Hybrid Method showed results that were aligned

with the CSD & MF model, suggesting its effectiveness in
mirroring more traditional analytical approaches. On the
other hand, the Fully-Learned Method exhibited a nearly
constant bias, diverging from the CSD & MF model to a certain
extent.

Overall, these findings from in vivo data analysis underscore
the practical applicability of the proposed methods, particularly
highlighting the nuances in their performance when applied
to real-world clinical data as opposed to a controlled
synthetic environments.
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TABLE 4 The acceleration factor obtained on in vivo data is of the same order of magnitude as the one obtained on synthetic data.

CSD & MF Hybrid Method Fully-Learned Method

Computation of SH coefficients/cohort Not applicable Not applicable 47min

Constrained spherical deconvolution 9.3 h 9.3 h Not applicable

Dictionary rotation time/cohort 14.2 h 14.2 h Not applicable

Exhaustive fingerprinting time/cohort 1690.5 h Not applicable Not applicable

Solving NNLS time/cohort Not applicable 26.5 h Not applicable

NN forward pass time/cohort Not applicable 26min 9min

Total inference time/cohort 1714 h 50.4 h 56min

Total inference time/subject 50.4 h 1.5 h 96 s

Acceleration factor 1 34 1836

Efficiency of the three methods when inference is performed on 34 subjects from the MGH Adult Diffusion dataset, processed on a Skylake Xeon 4116 CPU cluster with single-thread allocation

per subject, without GPU acceleration. The bold values are used to emphasize the key information, specifically the acceleration factor.

FIGURE 8

The mean di�erences between the reference and the accelerated Microstructure Fingerprinting follow similar trends on simulated and on in vivo

data. Histogram (normalized to integrate to 1) of the signed di�erences between CSD & MF and the Hybrid (left) and Fully-Learned (right) Methods

for fvf1 on synthetic (top) and in vivo (bottom) data. The vertical dotted lines represent the mean of the signed di�erence.
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FIGURE 9

Structural integrity between all methods seems to be maintained. Several voxels are estimated to a higher fiber volume fraction by the Fully-Learned

Method. Detailed visualization on subject MGH 1001 of voxel-wise maps of fvf1 and voxel-wise maps of the di�erences in fiber volume fraction for

the first compartment (fvf1) between the reference method and the Hybrid Method and the Fully-Learned Method. Constrained spherical

deconvolution (CSD) was used to estimate the number of fascicles and their orientations. The analysis specifically targets voxels identified by CSD as

containing two or more fascicles. (A) Voxel-wise maps of fvf1. (B) Di�erences between voxel-wise fvf1 maps.

4 Discussion

4.1 Performance

Both accelerated methods successfully improved the inference

speed of microstructural parameters on both the test set and in in-

vivo data. This achievement is further highlighted when dealing

with voxels containing three fascicles. The acceleration factors
become even more impressive due to the inference complexity
of the reference method, which increases from O

(
2N2

)
for two-

fiber configurations to O
(
3N3

)
for three-fiber configurations.

This highlights the potential of the two accelerated methods
to handle multiple-fascicles configurations and large dictionary
sizes efficiently.
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4.2 Accuracy

The results from our experiments demonstrate that both
the Hybrid Method and the Fully-Learned Method significantly
outperform the referenceMicrostructure Fingerprinting estimation
across a variety of simulated scenarios. This superior performance
can be attributed to the neural networks’ ability to learn and model
the complex relationship between the DW-MRI signal and the
underlying tissue properties, even in noisy environments. A key
factor in this success is the original MF’s vulnerability to errors
in fascicle orientation estimation, as evidenced in Experiments
I and II. The Hybrid Method, which relies on these estimates
only in its initial stage, appears to correct for any residual biases
in the subsequent stage. In contrast, the Fully-Learned Method,
which independently estimates orientations, outperformed CSD
in orientation accuracy (as shown in Experiment I, Figure 5)
suggesting the potential benefits of benchmarking neural network
approaches against established methods in the literature (Canales-
Rodríguez et al., 2019; Ye et al., 2019; Karimi et al., 2021).

4.3 Interpretability

One notable advantage of the Hybrid Method is its
interpretability. The method’s design allows it to learn useful
signal representations more rapidly and with fewer layers. A
t-SNE visualization of intermediate outputs through the networks’
layers (Supplementary Figure S1) demonstrates that the Hybrid
Method effectively captures the fvf and Dex properties after
just the first layer, unlike the Fully-Learned Method, which
requires more layers to achieve similar structure in its data
representations. This rapid learning is likely due to the reliance
on the dictionary of fingerprints, which grounds the method in
physics-based properties.

4.4 Generalizability to di�usion protocol
changes

Experiment II focused on the generalizability of the Hybrid
Method, revealing that the model trained with the source protocol
performed almost as well as the fully retrained model. This
finding indicates that the Hybrid Method possesses robust protocol
transfer capabilities, suggesting the feasibility of using a single
DNN for multiple acquisition protocols. These findings illustrate
the HybridMethod’s robust generalization capabilities. Themethod
not only maintains strong performance across different protocols
but also shows that a small, yet significant, marginal gain can
be achieved by retraining the model on the new protocol. This
adaptability is crucial for practical applications, suggesting that
the Hybrid Method can be effectively applied in various clinical
and research settings with different DW-MRI protocols, and can
benefit from fine-tuning to specific acquisition parameters. For the
Fully-Learned Method, theoretically, changes in the number or
values of shells would necessitate retraining the entire network.
However, the use of spherical harmonics implies that changes

in gradient directions within a shell should not significantly
impact performance.

4.5 Generalizability to other
microstructural models

The trained models and estimated microstructural parameters
in this study were based on a dictionary of presimulated
fingerprints obtained with Monte Carlo simulations. This
flexible methodology can inherently accommodate other fiber
configurations by updating the single-fascicle dictionary, e.g.,
sampling an undulation, an intra-axonal diffusivity or a dispersion
parameter to reflect different brain regions, age, or diseased tissue.

Incorporating more complex fiber configurations at the single-
fascicle level such as fanning fibers (Sotiropoulos et al., 2012; Tariq
et al., 2016), undulation (Nilsson et al., 2012; Brabec et al., 2020;
Rafael-Patino et al., 2020), or glial cells (Taquet et al., 2019) does
however require slight modifications of the neural networks. The
last layer must match the number of microstructural parameters to
estimate and training must be specific to each single-fascicle model.

4.6 In vivo application

The proposed methods led to massive acceleration of the
dMRI data processing, with the Fully-Learned Method performing
the estimation of the entire HCP-MGH cohort in 56 minutes,
compared to 1714 hours (of single-core equivalent) for the original
MF (Table 4). The in vivo experiments showed differences between
the original MF maps and our proposed methods, with CSD
& MF and the Hybrid Method aligning and the Fully-Learned
Method predicting higher fvf values in specific white matter areas
(Figures 8, 9). The stronger similarity between CSD & MF and
the Hybrid Method can be explained by the use, in the Hybrid
Method, of a signal decomposition in fingerprint space close to the
analytical approach of MF. This contributes to the Hybrid Method
interpretability, since it is closely aligned with the dictionary
approach and its architecture reflects the biophysical organization
of axons in whitematter (Rensonnet et al., 2021). Additionally, both
methods also share a reliance on the same orientation estimation
technique. As for the Fully-Learned Method, the consistency of the
differences with CSD &MF observed between synthetic and in vivo
data (Figure 8), combined with its smaller MAEs over CSD & MF
in most simulated experiments (Experiments I, II), gives ground
to argue for superior accuracy. This suggestion, while promising,
deserves further investigation and validation in a broader range
of scenarios to fully substantiate its potential advantages over
established techniques.

5 Conclusion

In this work, we proposed two novel deep learning-based
approaches for estimating microstructural features of crossing
fascicles in white matter from DW-MRI measurements. The
Hybrid Method relies on two stages and uses all diffusion
measurements in a voxel along with external estimates of
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TABLE 5 The Hybrid Method is capable of protocol transfer. However, the Hybrid Method is less accurate and depends on the accuracy of an external

routine used for orientation estimation.

Hybrid Method Fully-Learned Method

Learning Speed Fast learning: Requires a small volume of training data. Slow learning: Requires a large volume of training data.

Inference Speed Slow inference: The NNLS and the external estimation
of fiber orientation reduce the inference time.

Fast inference: The computations of SH coefficients and
the inference of the MLP are extremely efficient.

Robustness to missing data Robust: NNLS can be performed with missing data. Robust: Missing measurements are interpolated using
spherical harmonics.

Protocol transfer capabilities Capable: No fine-tuning is needed for protocol transfer. Not capable.

Sensitive to external routine used for
orientation estimation

Very sensitive. Not sensitive since no external routine is used.

Advantages and disadvantages of both fast approaches.

fascicle orientations to determine the properties of each fascicle.
In contrast, the Fully-Learned Method leverages a spherical
harmonics representation of shells derived from raw diffusion
measurements within a voxel. A key distinction between these
methods lies in the Hybrid Method’s use of a latent space
representation through non-negative least squares (NNLS), which
allows a high interpretability and protocol transfer. On the other
hand, the Fully-Learned Method’s employment of a single deep
neural network (DNN) contributes to its enhanced accuracy and
speedup factor.

Our results demonstrate that both the Hybrid and Fully-
Learned Methods yield massive acceleration factors compared
to the reference Microstructure Fingerprinting method while
outperforming the reference method in estimation accuracy, in
various simulated settings. Each method presents its unique
advantages and limitations (as summarized in Table 5),
highlighting the potential of deep learning in accelerating
multi-dictionary matching problems in DW-MRI analysis.
Notably, our findings reveal that both proposed methods surpass
the reference method in most volume fraction estimations, even
when the reference method utilizes ground truth values for
fascicle orientations. This underscores the efficacy of deep learning
approaches in providing more accurate and efficient solutions for
complex interpretation of DW-MRI data, paving the way for their
increased application in the field.
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