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Music is an archaic form of emotional expression and arousal that can induce 
strong emotional experiences in listeners, which has important research and 
practical value in related fields such as emotion regulation. Among the various 
emotion recognition methods, the music-evoked emotion recognition method 
utilizing EEG signals provides real-time and direct brain response data, playing 
a crucial role in elucidating the neural mechanisms underlying music-induced 
emotions. Artificial intelligence technology has greatly facilitated the research 
on the recognition of music-evoked EEG emotions. AI algorithms have ushered 
in a new era for the extraction of characteristic frequency signals and the 
identification of novel feature signals. The robust computational capabilities 
of AI have provided fresh perspectives for the development of innovative 
quantitative models of emotions, tailored to various emotion recognition 
paradigms. The discourse surrounding AI algorithms in the context of emotional 
classification models is gaining momentum, with their applications in music 
therapy, neuroscience, and social activities increasingly coming under the 
spotlight. Through an in-depth analysis of the complete process of emotion 
recognition induced by music through electroencephalography (EEG) signals, 
we  have systematically elucidated the influence of AI on pertinent research 
issues. This analysis offers a trove of innovative approaches that could pave the 
way for future research endeavors.

KEYWORDS

music-induced, emotion recognition, artificial intelligence, personalization, 
applications

1 Introduction

Music serves as a unique medium for people to express their emotions and also can arouse 
strong emotional responses. Previous studies have shown that the emotional changes induced 
by appropriate music can relieve listeners’ mental stress (Nawaz et al., 2019; Colin et al., 2023), 
promote emotional expression ability (Palazzi et al., 2021; Micallef Grimaud and Eerola, 2022; 
Zhang et al., 2022), improve learning ability (Bergee and Weingarten, 2021; Luo et al., 2023), 
and so on. Moreover, it also can be applied in the regulation of mood-related disorders such 
as autism (Carpente et al., 2022; Geretsegger et al., 2022), depression (Geipel et al., 2022; 
Hartmann et al., 2023), and anxiety (Contreras-Molina et al., 2021; Lu et al., 2021). With the 
extensive applications of music-induced emotions in medical (Liang et al., 2021), neuroscience 
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(Thaut et al., 2021; Fedotchev et al., 2022), and music retrieval fields 
(Gomez-Canon et al., 2021), the study of music-induced emotion 
recognition has received much attention in recent years.

Empirical research on the effects of music on emotions has been 
discussed for more than three millennia (Perlovsky, 2012), while 
modern evidence-based work on the effects of music on emotions has 
its roots in the early 20th century (Humphreys, 1998). Western 
psychologists and musicians primarily conducted pioneering 
empirical research on music-induced emotions. A representative 
example is the experimental research conducted by the American 
psychologist and music educator Carl Emil Seashore on the emotional 
expression of music and the emotional impact of music on the listener, 
combining experiments and psychological tests and proposing the 
“theory of musical expression,” which emphasizes how elements such 
as melodies, rhythms, and harmonies of music affect people’s 
emotional experiences, and lays the foundation for the subsequent 
development of related work (Metfessel, 1950). With the development 
of psychology neuroscience and other fields, people gradually realized 
that the study of music’s induction of emotions also requires an 
understanding of auditory perception, emotion discrimination, and 
neural mechanism, which is an interdisciplinary research work (Cui 
et al., 2022; Ryczkowska, 2022). Musicologists have mainly studied the 
influence of music on emotion induction from the perspective of 
different musical features of music (Panda et al., 2023), including 
analyzing the influence of music on the listener’s emotion from the 
perspective of musical elements (Ruth and Schramm, 2021), 
quantitatively analyzing the emotional features of music to find the 
relationship between the features and emotion (Salakka et al., 2021), 
developing emotion recognition algorithms based on musical features 
(Pandey and Seeja, 2022), and exploring cross-cultural emotional 
understanding of and response to specific musical features (Wang 
et al., 2022). These studies have made it possible to help people get a 
better understanding of the relationship between musical features and 
emotions, and provide theoretical support and practical guidance for 
the fields of music psychology, music therapy, and creativity, but 
researchers have also put forward different viewpoints on the 
individual differences in musical emotional responses and on the 
objective evaluative validity of emotions as in Figure 1.

With the development of brain science and technology, 
researchers have found that signals generated by the central 
nervous system, such as electroencephalography (EEG), 
magnetoencephalography (MEG), and functional magnetic resonance 
imaging (MRI) are more objective and reliable in the field of emotion 
research (Alarcao and Fonseca, 2019; Egger et al., 2019; Saganowski 
et  al., 2023). Among various central nervous system signals, the 
monitoring of emotions using EEG signals is characterized by the 
convenience of noninvasive measurements, real-time measurements, 
and good objectivity. Research on emotion recognition based on EEG 
signals has been widely used in many disciplines in recent years and 
has received extensive attention from researchers as in Figure  1. 
Artificial intelligence (AI) techniques that integrate EEG signals for 
identifying emotions elicited by music leverage AI’s robust capabilities 
in data analytics, pattern recognition, and learning, alongside the 
distinctive benefits of EEG for real-time, non-invasive monitoring of 
brain activity. AI-enabled EEG recognition of music-induced 
emotions can accurately and in real-time identify emotions, which has 
broad applications in many areas including music therapy, education, 
entertainment, and so on.

How to accurately identify music-induced emotions has always 
been a difficult research problem due to the subjectivity, abstractness, 
and individualized differences of music-induced emotions. 
Researchers have explored a variety of physiological signals to carry 
out emotion recognition studies, in which using the signal 
characteristics of facial expressions, researchers have classified 
emotions including fear, sadness, disgust, surprise, and joy, and the 
accuracy of obtaining emotion discrimination can be as high as 81% 
or more, but there are inconsistencies between different cultures in the 
understanding of facial expressions and the way of expression of facial 
expressions, which affect the generalizability of the results of the study 
(Tcherkassof and Dupré, 2021; Witkower et al., 2021). Physiological 
parameters such as galvanic skin response, heart rate, temperature, 
blood pressure, and respiration rate have also been utilized for 
emotion recognition, but these methods are relatively inaccurate for 
emotion discrimination and highly influenced by other factors (Egger 
et al., 2019; Saganowski et al., 2023).

In this study, the research methods, processes, and characteristics 
of EEG in music-induced emotion recognition have been analyzed. 
The potential future development directions of music-induced 
emotion based on EEG also have been discussed, which can promote 
the development of fundamental and application research on music-
induced emotion.

2 EEG signal and emotions

Measurement of EEG signals is capable of non-invasive, 
continuous recording of brain activity with a temporal resolution of a 
few milliseconds. Based on the characteristic waveform signals from 
different brain regions, EEG signals are widely used in cognitive 
neuroscience to research emotion regulation and processing, and the 
results of the related studies provide an important reference for further 
research on music-induced emotion recognition (Apicella et  al., 
2022b; Pandey and Seeja, 2022).

FIGURE 1

Research and applications of music-induced emotion classification 
with EEG.
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2.1 EEG signals and acquisition method

The activity of the central nervous system of the brain is closely 
related to human emotions, mainly realized through electrical 
communication between neurons (Ahmad et  al., 2022). When 
neurons are stimulated, the membrane potential will rise and fall to 
form weak electrical pulse signals and emotional changes can 
be monitored by recording and analyzing EEG signals. EEG signals 
have the characteristics of small amplitude (10–100 μV), many 
interference sources, and high uncertainty. To analyze the feature 
information of EEG, as shown in Table 1, EEG signals are generally 
classified into δ-band (1–4 Hz), θ-band (4–8 Hz), α-band (8–13 Hz), 
β-1-band (13–22 Hz), β-2-band (22–30 Hz) and γ-band (30–64 Hz) 
(Alarcao and Fonseca, 2019), and the frequency bands of the bands 
are divided into slightly different bands by different researchers.

Research has shown that the five bands of EEG signals mentioned 
above are directly or indirectly related to human emotions. While 
early studies suggested that the δ-band was not connected to people’s 
emotions, recent research has found that δ wave is closely associated 
with the emotional state of individuals following emotional regulation 
and holds promise for use in areas such as music therapy for emotion 
regulation (Lapomarda et al., 2022).

The acquisition method of EEG signals is mainly categorized into 
invasive and non-invasive techniques. Invasive measurements require 
surgical implantation of electrodes to obtain clearer EEG signals, but 

this method is traumatized to the human body and difficult to widely 
apply, which is mainly used in clinical medical treatment. Non-invasive 
is to fit the electrodes to the surface of the head to collect brain signals.

Previous research has demonstrated the significance of the limbic 
system (as in Figure 2A) in regulating human emotions, making it a 
pivotal area of interest in the field of emotion research (Rolls, 2015). 
To obtain more comprehensive brain signals, the internationally 
recognized 10/20 system, shown in Figure 2B, is generally used in the 
arrangement of electrodes, i.e., the actual distance of adjacent 
electrodes is 10% or 20% of the distance of the brain skull (Silverman, 
1963). In the field of emotion recognition, multi-channel EEG 
acquisition is commonly utilized, featuring electrode channels ranging 
from 36 to 64, and a sampling frequency of 500 or 1,000 Hz (Wu et al., 
2024). Traditional EEG acquisition system devices are often 
cumbersome and expensive, which hinders their widespread adoption 
and use. With the advancement of open source technologies like 
OpenBCI as in Figure 2C and other EEG acquisition devices, more 
affordable, user-friendly, and portable options have emerged. Recently, 
these devices have become increasingly popular in EEG emotion 
recognition research (Aldridge et  al., 2019). To investigate the 
mechanisms of timely emotional response, both the stimulus source 
and the acquisition system are typically equipped with time-
synchronization devices (Pei et al., 2024).

In music emotion recognition research, non-invasive acquisition 
schemes are commonly employed. In recent years, wireless wearable 

TABLE 1 Bands of EEG signals.

Wave band Frequency range Physiological function Related-emotion Ref.

δ 1–4 Hz Unconsciousness, deep sleep Regulated-emotion Lapomarda et al. (2022)

θ 4–8 Hz
Deep meditation, consciousness & 

inspiration
Joyful, anxiety

Sammler et al. (2007) and 

Tang et al. (2023)

α 8–13 Hz Relaxation state Positive, negative, happy, sad
Sammler et al. (2007) and 

Xu et al. (2024)

β-1 13–22 Hz Creative thinking, focused states Positive, negative Aftanas et al. (2006)

β-2 22–30 Hz Attention Happy, sad Li et al. (2023)

γ 30–64 Hz
Tension state in the brain, high intensity 

information processing
Happy, sad

Guo et al. (2020) and Li 

et al. (2023)

FIGURE 2

(A) The limbic system for emotion, (B) the international 10/20 system with nine cortical regions labeled with different colors, (C) structure of a typical 
EEG system from OpenBCI.
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non-invasive EEG measurement devices have greatly facilitated 
EEG-based emotion recognition research (Apicella et  al., 2022a; 
Saganowski et  al., 2023). The emergence of these novel EEG 
acquisition protocols has significant implications for expanding the 
scope of EEG emotional applications.

2.2 EEG signal bands corresponding to 
different emotions

The brain exhibits diverse EEG response patterns for different 
emotions, and establishing the relationship between EEG signal 
bands and various emotional states is a crucial foundation for 
developing effective classification and recognition models. This 
correspondence serves as one of the key scientific challenges in the 
domain of artificial intelligence-based recognition of music-
induced emotions. Around 1980, researchers found that EEG’s 
characteristic signals correlate with human emotional states 
(Davidson and Fox, 1982), as in Table 1. Subsequently, researchers 
have investigated the relationship between distinct brainwave 
frequency bands and diverse emotional states. In 2001, Louis 
A. Schmidt et  al. presented that emotions within valence can 
be distinguished by evaluating the asymmetry and overall power 
of α-band (8–13 Hz) from frontal brain EEG signals (Schmidt and 
Trainor, 2001). In 2007, Daniela Sammler et  al. conducted a 
systematic analysis of the correlation between various EEG 
frequency bands and emotions. Their findings revealed that θ-band 
(4–8 Hz) power in the prefrontal lobe is more prominent during 
happy music stimulation, indicating its significance in emotional 
processing (Sammler et  al., 2007). With the continuous 
advancement of EEG analysis technology, it has become 
increasingly apparent that the intricate nature of the brain’s 
emotional processes makes it challenging to establish precise 
correlations between different emotions and signals derived from 
a single brain region or waveform. Certainly, in some specific 
scenarios, researchers continue to explore and identify the most 
prominent EEG frequency bands to simplify the challenges 
associated with emotion recognition.

The application of artificial intelligence in the emotional 
recognition of music-induced electroencephalography (EEG) holds 
significant value in two primary aspects. On one hand, the utilization 
of AI algorithms assists researchers in discerning and selecting the 
appropriate frequency bands amidst a multitude of options. On the 
other hand, the deployment of AI algorithms facilitates the exploration 
of additional effective frequency bands, enhancing the depth and 
breadth of research in this domain. With the development of artificial 
intelligence and deep learning technologies, emotion recognition by 
utilizing various frequency band features from different brain regions 
has emerged as a prominent and contemporary approach (Pei et al., 
2024; Xu et  al., 2024). Machine learning based Support Vector 
Machine (SVM) (Bagherzadeh et  al., 2023), Naïve Bayes (NB) 
(Oktavia et al., 2019), and K Nearest Neighbors (KNN) (Sari et al., 
2023) classifier methods have been applied in this field. Deep learning 
based classification methods such as Convolutional Neural Networks 
(CNN) (Yang et al., 2019), Recurrent Neural Networks (RNN) (Zhong 
et al., 2023), Long-Short-Term Memory (LSTM) (Du et al., 2022), and 
other classification methods have also been used in EEG 
recognition studies.

3 Preprocessing and feature 
extraction of EEG signals

Extracting effective emotional state information from raw EEG 
signals is a highly challenging task, given that the signal is a multi-
frequency non-stationary signal. EEG preprocessing and feature 
extraction are essential steps in the recognition algorithms for effective 
analysis and interpretation of the EEG signals. The purpose of 
preprocessing EEG signals is to eliminate human motion interference 
and environmental noise that are unrelated to emotion pattern 
recognition. This is essential for enhancing the accuracy and 
robustness of the recognition algorithm.

3.1 EEG preprocessing

Noise removal is a crucial objective of EEG signal preprocessing. 
EEG signals are often vulnerable to interference from various sources 
such as environmental electromagnetic signals (~50–60 Hz), eye 
movements (~4 Hz), electrocardiogram signals (ECG, ~1.2 Hz), 
and so on.

The removal of these noises can significantly enhance the 
robustness of the EEG model. Usually, these disturbing signals can 
be  filtered out with band-pass filters, wavelet packet filtering, or 
independent component analysis (ICA) methods as in Table 2. 
However, researchers have different opinions regarding the signal 
filtering methods in preprocessing. Some argue that these methods do 
not eliminate interfering noise, while others believe that these 
techniques remove noise at the expense of potentially discarding 
valuable EEG information. To further improve the denoising 
performance, the artifact subspace reconstruction (ASR) method can 
be applied to remove the artificial signals. What’s more, the average 
value of overall electrodes can be  applied to subtract from each 
channel to reduce the system noise (Katsigiannis and Ramzan, 2018). 
Compared to classical machine learning algorithms, deep learning 
classification methods for emotion recognition are less influenced by 
the effects of preprocessing techniques.

The most popular open source toolbox for EEG preprocessing is 
EEGLAB running in the MATLAB environment (Martínez-Saez et al., 
2024; Pei et al., 2024; Wu et al., 2024). This interactive toolbox can 
be  applied to process continuous and event-related EEG signals. 
Moreover, the artifacts from eye movements can be removed with the 
run independent component analysis (RunICA) algorithm 
incorporated in EEGLAB based on the independent component 
analysis (ICA) method (Wu et al., 2024). The expansion of artificial 
intelligence has led to the integration of EEG signal preprocessing 
algorithms into a growing array of commercial AI development 
platforms, including Python, Brainstorm, and Curry.

3.2 Time domain feature extraction

Emotional changes in the brain can be  influenced by musical 
stimulation, leading to observable effects on EEG signals. These EEG 
signals exhibit various time-dependent features, which can 
be  analyzed in the time domain. Time-domain features provide 
intuitive insights and are relatively easy to obtain. Some categories of 
time-domain features in EEG analysis include event-related potentials 
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(ERPs), statistical features (such as mean, average, standard deviation, 
skewness, kurtosis, etc.), rise and fall times, and burst suppression 
(Stancin et al., 2021; Li et al., 2022b).

Time domain features can intuitively capture changes in brain 
states following music-induced emotions. The active regions 
corresponding to these emotions can typically be promptly identified 
through intuitive brain area distribution maps, as in Figure 3, offering 
valuable insights for the improvement of recognition algorithms.  
Time domain features are generally preferred in emotion 
recognition research.

Moreover, event-related potentials (ERPs) are specific patterns of 
EEG activity that are time-locked to particular sensory, cognitive, or 
motor events (Martins et al., 2022). They reflect the brain’s response 
to stimuli and provide valuable information about cognitive 
processes, which is very helpful in studying the dynamic processes 
of emotion change with music stimuli. Rise and fall times refer to the 
duration it takes for the EEG signal to rise from its baseline to its 
peak (rise time) or fall back to the baseline (fall time). These 
measures provide insights into the speed of neural activation or 
deactivation. Currently, there is a relatively limited body of research 

on the speed, duration, and recovery time of human emotions 
stimulated by music. It is important to dedicate attention to these 
aspects in future studies to gain a deeper understanding of the 
relevant phenomena with the time domain feature of rise and 
fall times.

By examining these time-domain features of EEG signals, 
researchers can gain a better understanding of the temporal dynamics 
of brain activity related to emotional responses to music. The 
deployment of artificial intelligence algorithms enables the real-time 
identification of emotions induced by music via EEG signals. Making 
well-informed choices and applying time-domain features effectively 
is essential for advancing these studies.

3.3 Frequency domain feature extraction

As crucial parameters in EEG emotion recognition algorithms, 
frequency domain features offer more intricate emotion-related 
information, including the distribution of energy across different 
frequency bands. For instance, the energy distribution in 

FIGURE 3

Topographical maps of EEG signals for different types of music (Xu J. et al., 2023).

TABLE 2 Benefits and drawbacks of EEG preprocessing methods.

Method Pros Cons Ref.

Band-pass filter Easy to use, fast calculation Phase delay induced Er et al. (2021)

Wavelet packet filter
Time-frequency domain information can 

be analyzed simultaneously

Appropriate wavelet basis functions and 

scale parameters needed
Balasubramanian et al. (2018)

ICA
Efficient separation of mixed sources, 

effectively noise remove

Statistical characteristics of the signal 

source required
Li and Zheng (2023)

ASR
Effectively removes interference from 

sources other than the scalp surface

High computational complexity, mistake 

brain signals leading to loss of 

information

Li et al. (2023)
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high-frequency bands (such as β-band and γ-band waves) tends to 
increase during pleasurable and exciting emotional states (Li et al., 
2018). Analyzing the phase synchronization degree of signals can 
provide insights into changes in information θ-band wave patterns 
between brain regions during different emotional states. For example, 
theta synchronization between the frontal and temporal lobes is 
associated with pleasant emotions (Ara and Marco Pallarés, 2020). 
Frequency domain features allow for the analysis of interactions 
between various brain regions. By calculating correlation features 
between different brain regions at different frequencies, changes in 
information exchange patterns between brain regions during different 
emotional states can be observed (Maffei, 2020). Based on the inter-
correlation maps of δ, α and γ-band waves stimulated by six different 
scenarios, the widest topographical distribution is δ-band, while the 
narrowest is α-band (Maffei, 2020).

Various techniques are commonly employed for extracting 
frequency domain features as in Table 3. These include the following 
methods: Fourier transform, wavelet transform, independent 
component analysis, and matrix decomposition (Torres et al., 2020; 
Zhou et  al., 2022; Li et  al., 2023; Mahmoud et  al., 2023). Fourier 
transform is utilized to convert a time domain signal into a frequency 
domain signal, providing spectral information such as frequency 
components and amplitude details (Mahmoud et al., 2023). Frequency 
domain feature extraction techniques based on the Fourier transform 
encompass power spectral density (PSD), average power spectral 
density (APSD), and related features. PSD is usually evaluated within 
a specific frequency band, considered the most commonly applied 
feature for classical emotion classifiers (Xu et al., 2024).

Wavelet transform offers a more versatile and multi-scale 
approach to signal analysis, delivering both frequency and time 
information (Bagherzadeh et al., 2023). Frequency domain feature 
extraction methods associated with wavelet transform involve wavelet 
packet decomposition (WPD), wavelet packet energy features, and 
similar characteristics. Independent component analysis serves as a 
signal decomposition method grounded in independence 
assumptions, yielding independent frequency domain components 
post-decomposition (Shu et  al., 2018). Frequency domain feature 
extraction techniques stemming from independent component 
analysis include frequency band energy distribution, phase 
synchronization degree, and more. Matrix decomposition is an 
algebraic signal decomposition method that disentangles the original 
signal into distinct frequency domain components (Hossain et al., 
2023). These techniques enable the extraction of diverse frequency 

domain features such as spectral characteristics, phase synchronization 
degrees, correlation features, and so forth. In emotion classification 
applications, a tailored selection and adjustment of methods and 
feature combinations can be made based on specific requirements.

The capabilities of artificial intelligence algorithms in mining 
large-scale data sets not only enable the automatic extraction of 
frequency characteristics from EEG signals but also reveal the 
underlying connections between frequency domain signals 
and emotions.

3.4 Time-frequency domain feature 
extraction

Time-frequency feature extraction methods involve analyzing 
EEG signal changes in both time and frequency to extract characteristic 
parameters that capture the dynamic nature of the signal (Bagherzadeh 
et al., 2023). Common techniques of time-frequency domain features 
include wavelet transform (Khare and Bajaj, 2021) and short-time 
Fourier transform (STFT) (Pei et al., 2024). These methods enable the 
extraction of information across various time scales and frequency 
ranges, unveiling how signals evolve and frequency as in Figure 4, 
which also has been applied by our group (Li et al., 2022a).

By extracting time-frequency features, a more comprehensive 
description of the signal’s dynamic characteristics can be achieved, 
laying the groundwork for subsequent signal processing and emotion 
classification analysis.

Time-frequency plots typically encompass a vast array of data 
points, representing a high-dimensional dataset. The application of 
artificial intelligence algorithms can automatically discern time-
frequency patterns associated with various emotions. This capacity for 
autonomous learning and data mining enhances the efficacy and 
reliability of time-frequency plots in the identification of emotions 
induced by music.

3.5 Other advanced features

The development of new emotion-recognition features has been 
significantly influenced by researchers’ profound insights into the 
brain’s response to emotions.

Prior physiological and psychological studies have demonstrated 
that emotions, being intricate mental states, can be  discerned by 

TABLE 3 Advantages and disadvantages of frequency domain feature extraction methods.

Method Pros Cons Ref.

Fourier transform

Extract the energy characteristics of 

different frequency components, effective 

for spectral analysis of static signals

Unable to capture the time-varying 

characteristics of the signal, less 

effective for spectral analysis of non-

stationary signals

Wu et al. (2024)

WPD

Provides better local characterization in 

the time-frequency domain, suitable for 

the analysis of non-smooth signals, 

capture transient features of signals

Higher computational complexity, 

difficult to get appropriate wavelet basis 

functions and scale parameters

Balasubramanian et al. (2018)

PSD
Intuitive representation of the frequency 

characteristics.

Higher requirements for source signal 

quality
Martínez-Saez et al. (2024)

https://doi.org/10.3389/fnins.2024.1400444
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Su et al. 10.3389/fnins.2024.1400444

Frontiers in Neuroscience 07 frontiersin.org

detecting the status of connections between brain regions. In recent 
years, scholars have advocated for the establishment of a network of 
brain regions using phase-locked values and the extraction of features 
from multiple brain functional connectivity networks through the 
application of the Hilbert transform. These graph features are then 
fused to facilitate emotion recognition (Li et al., 2019). Based on this 
concept, researchers have introduced a novel feature called asPLV 
(averaged sub-frequency phase locking value), which is derived from 
the Morlet transform method. This feature effectively mitigates the 
impact of the brain’s inherent frequency oscillations induced by the 
cognitive processing of emotional fluctuations, thereby enhancing the 
accuracy of recognizing mood changes induced by music. The 
calculation process for asPLV is outlined as in Table 4.

In recent years, scholars have discovered that the spatiotemporal 
characteristics of EEG play a crucial role in emotion recognition. 
Many studies have introduced novel spatiotemporal features based on 
self-attention mechanisms (Zhou and Lian, 2023). As our 
comprehension of the neural mechanisms underlying emotional 
responses deepens, these new features are critical for enhancing the 
accuracy of emotion recognition.

Other than these commonly applied features already discussed, 
artificial intelligence algorithms excel in processing multidimensional 
data, enabling the discovery of innovative feature metrics. These 
algorithms hold great promise in identifying individual-specific traits, 
and crafting features that are sensitive to the distinctive attributes of 
each individual.

4 Emotion data source and modeling

Auto-emotion recognition can be realized by integrating various 
data sources and emotion models. This is important for the 
development of music-induced emotion recognition and its 
application areas. In the realm of music-induced emotion recognition, 

emotional data sources form the foundation for acquiring emotion 
related in sights, while models serve as the essential tools for 
processing and analyzing this valuable information (Saganowski et al., 
2023; Xu J. et al., 2023).

4.1 Data sources for music-evoked 
emotion classification

In recent years, in order to promote research on music-induced 
emotions, a series of databases of music-triggered emotions have been 
established, with emotion labels provided by psychologists. Although 
these databases can be used for music-triggered emotion research, 
they lack a unified criterion. Based on the EEG method of emotion 
discrimination, researchers also have established emotion databases 
containing EEG signals. These open source databases are not only 
important resources for conducting research on music-triggered 
emotions, but can also be used to evaluate the performance of different 
EEG algorithms. Table 5 shows some common open source music 
emotion databases and their characteristics.

The AMG1608 database is a database containing acoustic 
features extracted from 1,608 music clips of 30s as well as emotion 
annotations provided by 665 subjects, consisting of 345 females and 
320 males. The database used a dimensional emotion model with 
validity and arousal (VA) as the coordinates in the emotion 
annotation, and the subjects annotated the emotional state of each 
music clip. The dataset contains two subsets of emotion annotations 
from National Taiwan University and Amazon Turkish Robotics and 
is characterized by a large amount of data capable of being publicly 
accessible and can be used for music emotion recognition research.

The CAL500 database is composed of 500 Western songs’ clips 
written by 500 different artists. For the emotion annotation of the 
music, 174 music-related semantic keywords were used, and at least 
three subjects annotated keywords for each song. These annotated 

FIGURE 4

Time-frequency plots before and after stimulation were used by the authors’ research group.
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words were also post-processed algorithmically to constitute a 
vector of annotated words and weights, ensuring the reliability of 
the annotation labels. The dataset is able to satisfy the fine 
granularity and differentiation required in music emotion 
recognition research.

The DEAM database, which labels musical emotions in terms of 
valence and arousal (VA) coordinates, has 1,802 songs licensed under 
the Creative Commons (CC) license. This music library contains 
categories such as rock, pop, soul, blues, electronic, classical, hip-hop, 
international, experimental, ethnic, jazz, country, and pop. The 
emotion annotations for these songs were made by 21 active teams 
from all over the world, and these annotations were statistically 
processed to form a database that can be  used for music 
emotion research.

The emoMusic database contains 1,000 audio tracks in MP3 
format licensed under the Creative Commons (CC) License in eight 

different genres: blues, electronica, rock, classical, folk, jazz, country, 
and pop, with 125 tracks in each genre. The emotion labeling of the 
music was evaluated using valence and arousal (VA) model, where 
valence indicates positive and negative emotions and arousal indicates 
emotional intensity. The database collects time-varying (per second) 
continuous VA rating data, with each song containing at least 10 
thematic annotations. The database can be utilized for the conduct of 
research related to music emotion annotation and other related studies.

The Emotify database contains 100 pieces of music from each of 
the four genres of classical, rock, pop, and electronic music randomly 
selected from a collection of music containing 241 different albums by 
140 performers. The database used the Geneva Emotional Music Scale 
(GEMS), in which subjects labeled the emotions of the music using a 
Likert scale using a scale of 1–5. The database provides case studies 
and information on the effects of other factors on evoked emotions 
(gender, mood, music preference).

TABLE 5 Open-source music emotion databases for music-induced emotion classification.

Database name Source Number of subjects Features of the 
songs

Emotional classification 
methods

AMG16081 Chen et al. (2015) 665 1,608 music clips VA coordinate dimension modeling

CAL5002 Turnbull et al. (2008) >1,500 502 songs, western pop Key emotional vocabulary

DEAM3 Aljanaki et al. (2017) 21 Teams 1802 songs, over 12 categories
Keywords combined with statistical 

methods

emoMusic4 Soleymani et al. (2013) >10,000 1,000 songs, 8 categories
Time-varying continuous VA 

coordinate dimension models

Emotify5 Zentner et al. (2008) >4,000 400 songs, 4 categories Rating labeling of Likert scales

DEAP6 Koelstra et al. (2012) 32 40 pieces of music
VA models of physiological signal 

binding

IADS7 Yang et al. (2018) 207 935 pieces of digital music Manual multiple mood scale

1http://amg1608.blogspot.com/.
2https://paperswithcode.com/dataset/.
3https://cvml.unige.ch/databases/DEAM/.
4http://www.multimediaeval.org/.
5http://www2.projects.science.uu.nl/memotion/emotifydata/.
6http://www.eecs.qmul.ac.uk/mmv/datasets/deap/.
7https://sites.google.com/view/iads-e/.

TABLE 4 Typical extraction process flow of asPLV.

Input:

Electroencephalogram (EEG) data on N subjects. C = {C1, C2, …, CN} ∈ RN
S

×N
C

×N
E: A set of EEG data C with sample points NS, channels 

NC and epochs NE.

Procedures:

For j = 1, 2, …, NE do

  cj ∈ RN
S

×N
C → a single epoch cj from C

  dj = {csd(cj)}, dj ∈ RN
S

×N
C → After preprocessing, EEG signals are calculated using CSD filter csd (i.e., the surface Laplace transform). dj 

is the filtered signal.

  xj =, xj ∈ Rn × N
C

×N
f ×N

S → The signal of each frequency band after time–frequency decomposition is calculated by wavelet time–

frequency decomposition wavelet, where Nf is the number of decomposed frequencies, and n is the number of frequency segments 

(i.e., theta, alpha, beta, gamma, etc.).

  pj = {asPLV()}, pj ∈ Rn × N
C

×N
f ×N

S → asPLV calculation, where pj is asPLV feature.

End for

Output:

P = {p1, p2, …, pN} ∈ Rn × N
C

×N
f ×N

S → asPLV feature for each frequency band converts from set C.
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The DEAP database is a music emotion recognition database 
based on an EEG emotion recognition method, which was built 
together by a consortium of four universities from the UK, the 
Netherlands, and Sweden, and records EEG and physiological 
information from 32 subjects who watched a series of forty 1-min 
music video clips. The database was selected as a semi-automatic 
stimulus selection method based on emotional labeling is open access 
to academics and can facilitate research related to emotional 
stimulation in modern music.

The IADS database is the International Emotionally Digitized 
Sound Database, which is divided into two distinct phases. The initial 
Phase I database, established in 1999, contains a modest collection of 
data that has seen limited use in contemporary times. In contrast, 
Phase II is an expansive compilation of 167 digitally captured ambient 
sounds that are frequently encountered in everyday life, such as the 
joyful laughter of an infant, the rhythmic sounds of cooking, and the 
dramatic rumble of thunderstorms, with each sound clip precisely 
lasting 6 s. The collection is meticulously annotated, with each piece 
of digital audio being evaluated by participants through a self-
assessment approach that utilizes the affective dimensions of the 
Valence-Arousal (VA) model.

At present, these databases of music emotions are mainly based 
on foreign music libraries, the situation is related to the importance of 
music in the relevant regions, and the establishment of music 
databases based on Chinese musical compositions is yet to be carried 
out. Due to the complexity of the signal measurement and 
classification of EEG in the early stage, there are fewer studies for EEG 
music-induced emotion recognition. Enabled by artificial intelligence, 
EEG-based music emotion recognition can help to expand the 
establishment of databases as soon as possible, and it can help more 
researchers to apply the established databases. Currently, besides the 
above common music-induced emotion databases, many researchers 
also use their own designed libraries to carry out personalized 
research in the study of music-induced emotions with EEG. As 
artificial intelligence technology advances, it facilitates the integration 
of EEG data with other modalities of data, thereby enriching the 
dimensions of information within the database. The application of 
data augmentation techniques helps to enhance the generalization 
capability of models built from the database. With the progression of 

research in EEG-induced emotion recognition, artificial intelligence 
can also assist in the automatic consolidation and updating of 
databases, providing technical support for the construction of more 
comprehensive, accurate, and holistic datasets.

4.2 Emotion classification models

To address the challenge of quantifying the emotions elicited by 
music, researchers have developed a variety of models specifically 
designed to capture the nuances of music-induced emotions. These 
models aim to provide a structured approach to understanding and 
measuring the complex emotional responses that music can evoke. 
The classical music emotion models for analysis are shown in Figure 5, 
including the Hevner model (Hevner, 1936), the Pleasure Arousal 
Dominance (PAD) model (Russell, 1980), and the Thayer model 
(Thayer and McNally, 1992). With the development of artificial 
intelligence technology, some algorithm-based emotion classification 
approaches also have been proposed.

In computerized categorization studies of musical emotions, the 
first psychological Hevner emotion classification model was proposed 
in 1936 (Hevner, 1936). This model classifies music emotion states 
into eight categories: Solemn, Sad, Dreamy, Quiet, Graceful, Happy, 
Excited, and Powerful as in Figure 5A. Each category can be further 
subdivided into more detailed and extensive emotion words, with a 
total of 67. This emotion classification model was set up considering 
musicology and psychology and is more abundant in the selection of 
emotion keywords, which is helpful for the research of emotion 
recognition in musical works. Hevner is a discrete emotion 
classification model that is often used as an emotion label for songs in 
music-induced emotion recognition research. However, due to the 
large number of labeling categories of the model and the relatively low 
variability of physiological properties of some categories, this model 
is seldom applied in EEG-based music emotion recognition studies, 
but it can be considered in relevant studies for featured music.

Among the classification models of musical emotions, PAD is a 
three-dimensional measurement model that was proposed in 1980. As 
in Figure 5B, this model establishes three main dimensions of Pleasure-
Displeasure, Arousal-Nonarousal, and Dominance-Submissiveness, 

FIGURE 5

Schematic diagrams of common emotion recognition models. (A) Hevner’s model, (B) PAD model, (C) Thayer’s model.
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which indicate the direction of the emotion, the degree of 
neurophysiological activation, and the degree of individual feeling, 
respectively. This categorization provides a continuous quantitative 
evaluation method, which has been widely used in psychological and 
emotional brand evaluation (Yang et al., 2020) but has not been used 
much in the actual evaluation of musical emotions. Thayer’s model is a 
two-dimensional model that suggests different emotions are classified 
based on two-dimensional underlying dimensions, i.e., Energy 
awakening and Tension awakening. Using stress as the horizontal 
coordinate and energy as the vertical coordinate, emotions are 
categorized into four zones: vitality, anxiety, contentment, and depression 
as in Figure  5C. This model is proposed based on a psychological 
perspective and describes the music mood according to quantitative 
thinking, which is often used to classify the mood of audiophile music 
in MP3 and WAV formats (Brotzer et al., 2019). Since this model has 
fewer classification dimensions compared with other mentioned models 
and is more visible on the emotional response, they are well suitable to 
be used for EEG recognition of music-induced emotions. Besides the 
above classical emotion classification models, some researchers have also 
used probability distribution (Kim et al., 2022), neural network method 
(Yang, 2021), linear regression (Griffiths et al., 2021), and inverse word 
pairs (Liu et al., 2019) approaches to characterize the emotions of music. 
The probability distribution method describes the emotions 
corresponding to the song in the emotion description space, which gives 
a more comprehensive and intuitive description of the song. The ranking 
is utilized to order the emotion descriptions of songs according to the 
degree of relevance of the emotions expressed, which is convenient to 
provide a quick description method. The antonym pairs can give a 
relatively objective description of the mood of the music. Several 
researchers have currently extended discrete and multidimensional 
models for music emotion description based on these ideas.

These new classification models are related to the development of 
emotion categorization algorithms and have a large potential for 
application in the field of EEG music-induced emotions. Different 
emotion models can be used to describe the classification of emotions 
in different states, meanwhile, there are some intersections between 
these different models. For different practical applications, people need 

to choose the appropriate emotion classification models according to 
the research scenarios and artificial intelligence algorithms.

4.3 Emotional intensity model

Emotional intensity models were applied to quantitatively delineate 
the depth of emotions experienced by individuals in specific 
circumstances, forming the cornerstone for emotion recognition and 
prediction models. The discourse on quantifying emotional intensity 
emerged around 1990, advocating for a shift from solely focusing on 
subjective emotional aspects to incorporating physiological and 
observable behaviors as metrics of intensity (Russell, 1980; Sonnemans 
and Frijda, 1994). In 1994, Frijida introduced a five-dimensional model 
for scrutinizing subjective emotions, encompassing dimensions such as 
the frequency and intensity of re-collected and re-experienced emotions, 
latency and duration of emotions, intensity of actions and propensities, 
as well as actual behaviors, beliefs, and behavioral changes (Sonnemans 
and Frijda, 1994). In recent years, researchers have explored the use of 
emotional intensity modeling to study the instantaneous dynamic 
processes in the brain under external stimuli, as in Figure 6A (Gan et al., 
2024). This innovative approach provides a new approach to the study 
of the neural mechanisms and processes of music-induced emotions.

Despite offering a theoretical framework for objectively describing 
emotional states, the model’s impact was limited due to the scarcity of 
physiological emotion measures at that time.

A prevalent theoretical framework in recent years for elucidating 
emotional intensity is Russell’s, 1980 proposition that emotional 
experiences can be depicted in a two-dimensional space defined by 
emotional valence (positive vs. negative emotions) and arousal levels 
(high vs. low) (Russell, 1980). Building upon this framework, researchers 
have delved into refining each dimension to achieve a nuanced portrayal 
of emotions illustrated in Figure  6B, laying the groundwork for 
leveraging artificial intelligence in digitally characterizing emotions 
(Reisenzein, 1994; Zhang et al., 2023). Physiological emotional intensity 
indices such as EEG, ECG, and MRI are not only valuable for emotion 
recognition but also serve as essential tools for studying the dynamic 

FIGURE 6

(A) The instantaneous emotional intensity of stimulated emotion dynamic process (Gan et al., 2024), (B) schematic of a fine-grained emotional division.
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processes and physiological mechanisms underlying music-induced 
emotional changes (Ueno and Shimada, 2023; Wu et al., 2024).

5 Artificial intelligence algorithms for 
EEG emotion recognition

Music-induced EEG-based emotion classification research can 
be considered an artificial intelligence classification task, where the 
selection of appropriate classification algorithms is a crucial element 
in the current research on EEG-based emotion classification. These 
algorithms are not only the topicality of emotion classification 
research in EEG but also serve as an important foundation for further 
research into music-induced emotions (Khabiri et al., 2023).

5.1 Classical machine learning algorithms

Based on the EEG feature signals of music-induced emotions, 
various classical machine learning classification methods have been 
commonly used to achieve relatively good classification accuracy. 
These methods include classical classifiers such as Bayes classifier (BC) 
(Koelstra et al., 2012), linear regression (LR) (Zheng and Lu, 2015), 
support vector machines (SVM) (Bagherzadeh et al., 2023), K Nearest 
Neighbor (KNN) (Khabiri et al., 2023), and random forests (RF) (Pei 
et al., 2024), as in Table 6.

These algorithms have been extensively employed in the field of 
emotion classification research and have shown promising results in 
accurately classifying mu-sic-induced emotions (Dadebayev et al., 
2022). One of the commonly used supervised classification 
algorithms for music sentiment is the K Nearest Neighbor (KNN) 
algorithm. KNN, as a supervised learning algorithm, is highly 
versatile and easy to understand. It is robust to outliers and has a 
simple principle. However, the computational results of the KNN 
algorithm can be influenced by the training set samples as well as the 
value of K, which represents the number of nearest neighbors 
considered for classification. It is important to carefully select the 
appropriate value of K and ensure the representativeness and quality 
of the training set to achieve accurate classification results in music 
sentiment analysis. Another commonly used classical classifier for 
music sentiment analysis is the Support Vector Machine (SVM). 
When using SVM for classification, the choice of the kernel function 
has a significant impact on its performance. By mapping the features 
nonlinearly to a high-dimensional space using the kernel function, 

SVM improves the robustness of the music emotion recognition 
algorithm (Cai et al., 2022). SVM is particularly effective in handling 
high-dimensional data, making it suitable for achieving better 
classification results in music EEG emotion recognition 
compared to KNN.

Classical machine learning algorithms exhibit strong 
interpretability, high data efficiency, and low computational resource 
requirements in music emotion recognition research. These 
characteristics are highly desirable for studying the neural mechanisms 
of music-induced mood changes. However, in practical applications 
of music emotions, these models often suffer from poor generalization 
performance and require improved accuracy.

5.2 Deep learning algorithms

Although machine learning algorithms have been used for 
emotion recognition and have shown improvements, there are still 
challenges such as feature extraction, stability, and accuracy. However, 
the emergence of deep learning methods in recent years has provided 
a promising approach for EEG-based music emotion recognition 
research. Deep learning algorithms, characterized by their strong 
learning ability, have shown great potential in this field.

One notable deep learning algorithm applied in EEG-based music 
emotion recognition research is Convolutional Neural Networks 
(CNN). CNN extends the network structure of artificial neural 
networks by incorporating convolutional layers and pooling layers 
between the input layer and the fully connected layer. This architecture 
allows CNN to automatically learn and extract relevant features from 
the input data, making it suitable for analyzing complex patterns in 
EEG signals. By leveraging deep learning techniques, researchers can 
enhance the performance of music emotion recognition systems. Deep 
learning algorithms can effectively handle the high-dimensional and 
time-varying nature of EEG signals, leading to improved accuracy and 
stability in emotion recognition tasks. Moreover, with the ability to 
capture hierarchical representations, CNN can capture both local and 
global features in EEG data, enabling a more comprehensive analysis 
of music-induced emotions (Moctezuma et al., 2022; Mahmoud et al., 
2023). With the development of deep learning algorithms, a variety of 
deep learning models have been developed and applied to EEG-based 
music-induced emotion recognition, including recurrent neural 
networks (RNN) (Dar et  al., 2022), long and short-term memory 
networks (LSTM) (Du et al., 2022), gated recurrent neural networks 
(GRNN) (Weerakody et al., 2021) and autoencoder (AE) (Liu et al., 

TABLE 6 Several classical machine learning methods applied in music-induced emotion classification.

Classifier Characteristics Ref.

BC Effective with small sample data, high requirements for filtering features, small number of classifications, 

difficult to handle multi-featured music emotion multi-classification tasks

Koelstra et al. (2012)

LR Simple and strong interpretability, weak fitting for nonlinear models and sensitive to abnormal values Zheng and Lu (2015)

KNN Non-parametric machine learning algorithms, easy to implement, high computational complexity, sensitive to 

outliers, low accuracy

Khabiri et al. (2023)

RF Multi-dimensional data, high accuracy, complex and difficult to interpret Pei et al. (2024)

SVM Excellent performance for classification problems offering good accuracy and generalization, easy to interpret 

and effectively handles high-quality features, difficult to optimize parameters, sensitive to data distribution.

Bagherzadeh et al. (2023)
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2020). The properties and applications of these reported deep learning 
algorithms are summarized in the following Table 7.

The deep learning algorithms employed in EEG recognition of 
music-induced emotions demonstrate excellent generalization 
capabilities and data insensitivity, essential for the practical application 
of such emotions. While deep learning algorithms typically lack 
interpretability, recent advancements like GRNN (Weerakody et al., 
2021) and RNN (Dar et al., 2022) can effectively capture the temporal 
aspects of EEG data, offering a novel approach to investigating the 
transient characteristics of music-induced emotions.

5.3 Model optimization and fusion 
strategies

Previous studies have demonstrated that classical machine 
learning algorithms as well as deep learning algorithms each possess 
their unique strengths and weaknesses in EEG-based music-induced 
emotion recognition research. To address the research and application 
requirements in related domains, researchers have investigated fusion 
strategies involving diverse algorithms.

To enhance the precision of emotion recognition, researchers have 
delved into a hybrid deep learning framework combining gated 
recurrent unit (GRU) and CNN to leverage the strengths of both 
methodologies. The conventional GRU model is excellent in handling 
time series data, while the CNN model is adept at capturing spatial 
features within the data. During the implementation phase, 
researchers opted to retain all feature information outputted by the 
GRU and extract spatial information from the temporal features using 
the CNN model. Ultimately, they achieved a recognition average 
accuracy of 87.04% (Xu G. et al., 2023). Based on the brain’s functional 
network of emotional activity, researchers proposed a multi-feature 
fusion method combining energy activation, spatial distribution, and 
brain functional connectivity network features. In the study, the SVM 
model-based fusion of power activation features of differential entropy 
(DE), spatial features of common spatial patterns (CSP), five frequency 
features, and phase synchronization features of EEG phase-locked 
values (PLV) achieved classification results with an average accuracy 
around 85% (Pan et al., 2022).

To realize the fusion between different machine learning 
algorithms, it can be achieved by combining multiple basic classifiers 
for better performance, fusing different algorithmic training models 
for model fusion of multiple ones, and also by joint training of 
multiple neural network models for fusion of different algorithms, etc. 

In addition to these fusion approaches mentioned above, some 
researchers have also considered about the optimization method from 
a music-induced emotions perspective. A pentameter-based EEG 
music model was proposed. The model constructs a multi-channel 
EEG sensor network and records the EEG of individuals in various 
emotional states to establish a mapping library of EEG and emotions. 
Subsequently, the music pentameter model is employed to adaptively 
segment the time-domain EEG signal, transforming the EEG signal. 
The time-frequency features of the EEG signal, such as amplitude, 
contour, and signal frequency, are quantitatively represented in a 
normalized musical space (Li and Zheng, 2023). The arithmetic 
modeling process is described as in Figure 7.

5.4 Algorithm comparison and evaluation

Evaluating these various algorithms used for music-induced 
emotion EEG is very difficult. There is no clear consensus on an 
optimal algorithm, and several metrics can be employed to evaluate 
the selected algorithmic model to satisfy the requirements for various 
applications. The accuracy of emotion recognition is a fundamental 
evaluation metric, reflecting the model’s performance in correctly 
predicting samples compared to the total number of samples and 
overall classifying emotions. Precision and recall, as evaluation metrics 
for binary classification problems, aid in assessing the model’s 
performance across different categories. With the expansion of 
applications and the development of algorithms, developing new 
criteria is also an important part of future research.

6 Application examples and analysis

EEG-based music emotion recognition has emerged as a 
multidisciplinary research area at the intersection of medicine, 
psychology, and computer science. This field explores the use of EEG 
signals to detect and classify the emotional responses evoked by 
music. The insights gained from EEG-based music emotion 
recognition have profound implications across various domains.

6.1 Music therapy

Music therapy is a therapeutic approach that harnesses the power 
of music and musical activities to promote both physical and mental 

TABLE 7 Properties of typical deep learning methods applied in music-induced emotion classification.

Algorithm Properties and applications Ref.

CNN Extract key temporal and spatial features, fail to extract sufficient temporal dynamic information Mahmoud et al. (2023)

RNN Captures temporal correlation of signals, complex training process, prone to gradient loss, difficult to deal with 

long-term dependencies

Dar et al. (2022)

LSTM A gating control mechanism included, captures long-term dependencies, many parameters needed and long 

training time

Du et al. (2022)

GRNN Convenient to deal with time-series data, effective in dealing with long-term dependencies, highly 

interpretable, high training complexity, difficult to adjust parameters, high requirements on data quality

Weerakody et al. (2021)

AE Deal with complex features, less requirements of EEG dataset, easy to overfitting, difficult to tune parameters Liu et al. (2020)
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well-being. The use of music for healing purposes has a long history, 
dating back to ancient civilizations like Greece, Rome, Egypt, and 
China. In more recent times, the formal recognition of music as a 
legitimate form of therapy began with the establishment of the 
American Music Therapy Association in 1944 (Taylor, 1981). This 
marked a significant milestone in acknowledging music therapy as a 
valid and effective treatment modality within modern society. To 
broaden the scope of music therapy, the American Music Therapy 
Association took a significant step in 2005 by introducing the Research 
Strategic Priority (RSP) program. The primary objective of this 
initiative is to delve into the physiological evidence supporting the 
effectiveness of music therapy in both practical and theoretical 
contexts. In 2013, a team of researchers from Finland conducted a 
study to investigate the impact of music on the activity of 
frontotemporal areas during resting state in individuals with 
depression. The study utilized EEG-based recognition of music-
induced emotions as a methodological approach (Fachner et  al., 
2013). In 2018, a team of Spanish researchers conducted a study to 
evaluate the emotional response to music in patients with advanced 
cancer using EEG signals. The study aimed to demonstrate the positive 
emotional impact of music therapy on these patients (Ramirez et al., 
2018). In 2020, a team of Canadian researchers conducted a study to 
explore the potential of music-induced emotions in alleviating 
psycho-cognitive symptoms of Alzheimer’s disease. The study involved 
combining EEG analysis methods to investigate how music activates 
the brain system, reduces negative emotions, and increases positive 
emotions. By analyzing EEG signals, the researchers were able to 
assess the emotional states induced by music. They found that music 
had a significant impact on the participants’ emotional well-being, 
with the potential to reduce negative emotions and increase positive 
emotions (Byrns et al., 2020).

6.2 Neuroscience

Brain science is a rapidly growing field of research that offers 
valuable insights into human thinking, behavior, and consciousness. 
One area of study within brain science is the investigation of how 

music stimulates the brain, which has been recognized as a notable 
example of this research. In 1992, French and German scientists 
conducted a groundbreaking EEG analysis study to examine the 
effects of music stimulation on the brain. The study revealed a 
fascinating phenomenon: different types of music had varying impacts 
on the intensity of EEG signals across different frequency bands 
(Steinberg et  al., 1992). In 2016, a team of Indian researchers 
conducted a study using EEG to investigate the effects of Hindustani 
music on brain activity in a relaxed state. The results of the study 
revealed that Hindustani music had a significant effect on the listeners’ 
arousal levels in all activities stimulated by the music. The EEG 
analysis indicated an increase in brain activity in response to the 
music, suggesting that it had a stimulating effect on the listeners 
(Banerjee et al., 2016). In 2019, a group of Indian scholars delved into 
research on the reverse inversion of brain sounds by utilizing 
Hindustani classical music. They recognized the profound emotional 
impact of this music and sought to explore the correlation between 
EEG signals and musical stimuli. By leveraging the real-time recording 
capability of EEG, researchers from the fields of psychology and 
neurology conducted studies to analyze the neural mechanisms 
underlying the stimulation of music, both in positive and negative 
contexts. These investigations have significantly contributed to the 
advancement of brain science research (Sanyal et al., 2019).

In the early stages, EEG, as a direct signal of brain activity, was 
employed by neuroscientists to conduct exploratory studies on functional 
brain regions associated with impaired musical ability caused by brain 
dysfunction. This utilization of EEG monitoring technology has played 
a pivotal role in advancing our understanding of the brain’s mechanisms 
involved in music processing (Vuust et al., 2022). These initial findings 
laid the technical groundwork for subsequent research on EEG-based 
music emotion recognition. With a focus on music-induced emotions, 
researchers have endeavored to further investigate the realm of music-
induced emotions using EEG technology (Gomez-Canon et al., 2021). 
From the perspective of music therapy, the utilization of EEG signals 
offers direct evidence regarding the process of music-induced emotions. 
By analyzing EEG signals from various brain regions corresponding to 
different emotions, researchers can obtain more detailed physiological 
information that aids in the interpretation of the brain mechanisms 

FIGURE 7

EEG musical staff model process flow chart.
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involved in music therapy. This application of EEG signals provides 
valuable insights into understanding the effects of music on emotional 
states and enhances our knowledge of the therapeutic potential of music 
(Byrns et al., 2020; Fedotchev et al., 2022).

6.3 Others

Emotions play a crucial role in human experiences, behaviors, 
health, and social interactions. Music, a language of the human mind, 
has the power to vividly and imaginatively express various emotions 
such as happiness, sadness, and more, and can greatly influence 
listeners’ emotional state. In recent years, there has been significant 
progress in understanding music-induced emotions and their 
psychological and neurological mechanisms.

In clinical medicine, this research can contribute to the 
development of personalized music therapy interventions for mental 
health disorders, neurorehabilitation, and stress management. It can 
also aid in diagnosing and monitoring emotional disorders such as 
depression and anxiety. In the realm of brain science, EEG-based 
music emotion recognition provides valuable insights into the neural 
mechanisms underlying emotional processing and music perception. 
These findings can enhance our understanding of how the brain 
responds to music and its impact on emotional well-being. Moreover, 
in the field of music information, this research can improve music 
recommendation systems, enhance user experiences, and facilitate 
music healing approaches. By tailoring music selections based on an 
individual’s emotional responses, music platforms can offer 
personalized and therapeutic listening experiences. Overall, 
EEG-based music emotion recognition holds immense potential for 
diverse applications in fields like clinical medicine, brain science, and 
music information. It represents a promising avenue for advancing 
our understanding of the complex relationship between music and 
emotions and harnessing music’s therapeutic benefits.

Furthermore, for some long-term music healing processes, the real-
time sensitivity of EEG to emotional signals induced by music 
stimulation can provide evidence for the effectiveness of certain 
therapeutic methods. This evidence can facilitate the development, 
correction, and smooth dissemination of related therapeutic techniques. 
By monitoring changes in EEG signals throughout the music therapy 
process, researchers can evaluate the effectiveness of different therapeutic 
methods and fine-tune them accordingly. This approach enhances the 
precision and efficacy of music therapy, allowing for optimized treatment 
plans that cater to individual needs (Byrns et  al., 2020). For music 
researchers, the individual variability in EEG emotion detection allows 
for personalized categorization and annotation of musical emotions. This 
capability is crucial not only for music composition and information 
retrieval but also for guiding the development of more immersive 
multimedia environments. By leveraging EEG data to understand how 
individuals uniquely experience and respond to musical emotions, 
researchers can enhance the creation of tailored musical experiences and 
enrich the design of multimedia environments that resonate with diverse 
emotional responses (Yu et al., 2022).

7 Discussion and conclusions

Based on the mentioned model, researchers were able to carry out 
systematic research on the study of the emotional impacts of the same 

music on different listeners, the study of the emotional impact of 
various types of music on the same listener, and the key parameters of 
music-stimulated emotions. Previous researchers have conducted 
various studies in terms of music-induced emotion classification 
models, music-induced datasets, training and classification of emotion 
models, and so on.

As an interdisciplinary challenge, research on EEG-based music-
induced emotion recognition has emerged as a valuable approach for 
real-time and effective assessment of emotional responses to music. This 
innovative research not only offers new technical tools for studying 
music-related emotions but also provides a controllable research 
paradigm applicable to brain science and other fields. In recent years, 
researchers from various disciplines have made significant progress in 
addressing this complex issue. By approaching the problem from 
different perspectives, they have achieved notable results. However, 
during these investigations, several limitations have also been identified.

Compared to other signals commonly used for music emotion 
recognition, such as audio signals, facial expressions, heart rate, and 
respiration, EEG signals have distinct advantages. EEG signals belong 
to physiological signals of the central nervous system, which are 
typically not under conscious control. Consequently, they can provide 
information about the current emotional state of an individual that 
cannot be  deliberately concealed. Furthermore, EEG signals offer 
several benefits when compared to other methods of detecting 
physiological signals of the central nervous system. EEG is a relatively 
mature technology that has been extensively studied and validated. It 
is also portable, non-invasive, and cost-effective, making it practical 
for use in various research and real-world settings.

As EEG monitoring hardware and recognition algorithm 
software technology continue to evolve, the advantages of 
personalization, real-time analysis, and the convenience of using 
EEG to recognize music-induced emotions will be further explored 
in various application fields. The growing sophistication of EEG 
technology opens up new possibilities for research and practical 
implementation of music-based therapies, multimedia 
environments, and personalized music experiences. As such, the 
continued development and refinement of EEG-based music 
emotion recognition has the potential to revolutionize our 
understanding of the impact of music on human emotions and 
behavior. Advancements in EEG monitoring hardware and 
recognition algorithm software technology have opened up new 
avenues for exploring the potential applications of EEG-based 
music-induced emotion recognition. With these technological 
improvements, the advantages of personalization, real-time, and 
convenience in recognizing music-induced emotions through EEG 
can be further explored in various fields.

At present, the labeling basis of the training set in EEG emotion 
recognition algorithms largely relies on psychological scales and 
emotion labels from databases. However, these conventional 
labeling methods are inherently subjective and discrete. Therefore, 
there is a pressing need for extensive research to establish a 
standardized library of emotions based on EEG signals themselves. 
To address this challenge, musicologists from diverse cultural 
backgrounds have embarked on initial research into the emotional 
labeling of music within their respective cultures. As the accuracy 
of EEG signals for emotion recognition continues to improve, there 
has been increasing mention of establishing direct EEG signal 
discrimination for personalized emotion recognition. This 
advancement holds promise for enhancing our understanding of 
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how individuals from different cultural backgrounds experience 
and interpret emotions in music, paving the way for more nuanced 
and culturally sensitive approaches to music emotion recognition 
(Du et al., 2023).

Improving the accuracy of music-induced emotion recognition 
can be a challenging problem that demands long-term research, and 
the advent of deep learning algorithms in recent years has provided 
a more effective means of addressing this challenge compared to 
traditional machine learning approaches. With deep learning 
algorithms, researchers can leverage large amounts of data to train 
neural networks that can learn to recognize complex patterns and 
relationships in music-induced emotions. This approach has shown 
great promise in improving the accuracy of music emotion 
recognition, allowing researchers to gain deeper insights into how 
music affects human emotions and behavior. However, ongoing 
research and development are still required to further refine and 
optimize these algorithms for use in practical applications (Pandey 
and Seeja, 2022). As artificial intelligence algorithms continue to 
undergo continuous optimization and enhancement, new concepts, 
approaches, and research findings will undoubtedly emerge, offering 
fresh perspectives and advancing the field of music-induced 
emotion recognition.

The research and development of music-induced emotion 
recognition based on EEG relies on the continuous expansion of the 
application field for such technology. Currently, there are some 
notable examples of music-induced emotion applications in clinical 
treatment (Byrns et al., 2020), neuroscience (Luo et al., 2023), and 
music information retrieval (Li et al., 2023). However, there is still a 
need for further development of related technical products that can 
be scaled up and made accessible to the general public, allowing them 
to better understand and benefit from this technology. This requires 
ongoing efforts to bridge the gap between research and practical 
implementation, fostering the creation of user-friendly tools and 
platforms that can effectively harness the potential of music-induced 
emotion recognition for broader applications and public engagement. 
In the realm of consumer applications, there is still much to 
be  explored regarding the potential combination of EEG and 
personalized music to develop emotional regulation technology and 
products for users.
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