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Deriving comprehensive literature 
trends on multi-omics analysis 
studies in autism spectrum 
disorder using literature mining 
pipeline
Dattatray Mongad †, Indhupriya Subramanian † and 
Anamika Krishanpal *

Life Sciences Research, CTO Unit, Persistent Systems, Pune, India

Autism spectrum disorder (ASD) is characterized by highly heterogenous 
abnormalities in functional brain connectivity affecting social behavior. There 
is a significant progress in understanding the molecular and genetic basis of 
ASD in the last decade using multi-omics approach. Mining this large volume 
of biomedical literature for insights requires considerable amount of manual 
intervention for curation. Machine learning and artificial intelligence fields are 
advancing toward simplifying data mining from unstructured text data. Here, 
we  demonstrate our literature mining pipeline to accelerate data to insights. 
Using topic modeling and generative AI techniques, we present a pipeline that 
can classify scientific literature into thematic clusters and can help in a wide 
array of applications such as knowledgebase creation, conversational virtual 
assistant, and summarization. Employing our pipeline, we  explored the ASD 
literature, specifically around multi-omics studies to understand the molecular 
interplay underlying autism brain.
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1 Introduction

Autism spectrum disorder (ASD) refers to a group of complex neurodevelopment 
disorders caused by differences in the brain that affect communication and behavior. ASD is 
often difficult to diagnose due to its complex and heterogenous etiology related to neurological 
development in interrelated systems. Individuals with ASD have an impact in their social, 
developmental, linguistic, and cognitive functions that evolve throughout their lifetime (Hus 
and Segal, 2021). It is crucial to characterize such a disorder and investigate the multiple layers 
of association to get the wholistic picture that can aid in treatment and betterment of affected 
individuals. Although there are standards such as DSM-5 scale and Developmental Diagnostic 
Dimensional Interview (3Di) that help in assessing and identifying the affected levels, there is 
still a lot of scope to further the assessment and treatment options (Kipkemoi et al., 2024). 
More genetic, social, and behavioral studies are in progress to improve early detection and 
intervention for ASD.

Multi-omics studies, integrating data from multiple high-throughput methods such as 
genomics, transcriptomics, proteomics, and epigenomics, have the potential to gain 
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insights into complex molecular and genetic mechanisms that 
contribute to development of ASD (Higdon et al., 2015). Multi-
omics studies have the potential to identify molecular subtypes and 
unravel novel targets and actionable biomolecules that can aid in 
the treatment and care for ASD patients (Higdon et  al., 2015). 
Recent advances in sequencing technologies have enabled the 
identification of copy number variations (CNVs) and rare single 
nucleotide variants (SNVs) associated with ASD (Bacchelli et al., 
2020; Fu et al., 2022; Wang et al., 2022; Zhou et al., 2022). As per 
latest release (release_16_01_2024) of ASD database, Simons 
Foundation Autism Research Initiative (SFARI), SNVs, and CNVs 
from 1,162 genes have been reported as genetic risk factors 
(Abrahams et al., 2013). As a result of increasing in multi-omics 
studies, a vast amount of data and literature has accumulated on 
platforms such as PubMed.

PubMed is the largest repository of published peer-reviewed 
scientific literature and acts as the gateway for directed search with its 
advanced query system. However, for a given query even with 
advanced and special filters, PubMed yields many results that involves 
huge amount of manual curation to identify relevant articles and 
further explore them for insights. Autism spectrum disorder (ASD), 
being an actively researched topic with multiple dimensions such as 
neuroscience, behavioral studies, diagnosis, and molecular 
mechanisms, had approximately 5,000 scientific publications in the 
last 1 year. Extracting meaningful clinical insights and knowledge 
from these large number publications is challenging due to data 
complexity, data volume, heterogeneity of ASD, and interdisciplinary 
nature of research.

Herein, we  focus on analyzing the peer-reviewed scientific 
literature for identifying the trends and insights on multi-omics 
studies in ASD patients. We have designed a pipeline that can assist in 
mining large textual data such as biomedical literature for expediting 
extraction of relevant information. Leveraging topic modeling 
techniques and large language models (LLMs), the pipeline helps in 
simplifying text data by clustering them into thematic clusters. Topic 
modeling uses unsupervised methods to discover hidden patterns 
from a large collection of textual data (Barde and Bainwad, 2017). This 
machine learning technique analyzes textual data for similarity 
patterns and determines word groups that best represent a set of 
documents to create thematic clusters. We used topic modeling on 
PubMed abstracts to cluster articles with semantically related 
keywords and help in identifying the various keywords (topics) 
associated with the search query. Topic modeling can help in trend 
analysis and market survey and identify gap areas in research studies 
thus providing useful insights. Furthermore, we  leverage LLMs to 
showcase possibilities of building an interactive Q&A and 
summarization model that can be of great value in scientific reporting.

2 Materials and methods

2.1 Data collection

In brief, a search was carried out with the query “(Autism 
Spectrum Disorder AND Homo sapiens) AND ((‘2013/01/01’[Date - 
Completion]: ‘3000’[Date - Completion]))” using esearch. A total of 
28,304 abstracts published in last 10 years (as on 15 November 2023) 
were downloaded from PubMed. The abstracts were downloaded and 

extracted using a Biopython (Cock et al., 2009) implemented in a 
custom python script.

2.2 Topic modeling

Topic modeling using BERT embeddings and class-based Term 
Frequency–Inverse Document Frequency (c-TF-IDF) was performed 
as implemented in BERTopic library (v0.15.0) (Grootendorst, 2022). 
Although there are multiple methods such as LDA, NMF, and 
Top2Vec, BERTopic was chosen for its flexibility and user friendliness. 
Based on the analysis presented by Egger and Yu (2022), BERTopic 
showed the potency to extract useful information from unstructured 
textual data.

The abstract text was subjected to lemmatization and filtration of 
pronouns, determiners, and conjunctions using WordNetLemmatizer 
implemented in NLTK (3.8.1). Filtered abstracts were fitted on 
BERTopic model with different combinations of UMAP and 
HDBSCAN parameters, and seed topics were provided for guided 
modeling (Table 1). Final model was selected based on the model 
evaluation metric, topic coherence (C_v and C_umass) (Mifrah, 
2020). This evaluation method can be  defined as the degree of 
significance between the words inside a topic and its ease of 
interpretation from human perspective. While C_v helps in 
measuring the coherence or similarity of the documents within a 
topic, C_umass considers the document co-occurrence counts. 
Higher C-v and lower C_umass (closer to 0) help in choosing a good 
topic model.

2.3 Named entity recognition

The biological entities within each abstract text were predicted 
using HunFlair model (Weber et al., 2021) implemented in Flair 
NLP framework (v0.13.0). It recognizes five important biomedical 
entity types with high accuracy, namely Cell Lines, Chemicals, 
Diseases, Genes, and Species. The gene names and gene symbols 
predicted by HunFlair were cleaned and compared with gene 
symbols available in org.Hs.eg.db (v3.16.0) (Carlson, 2022) and 
cleaned manually.

2.4 Conversational Q&A and 
summarization using generative AI

We used GPT3.5-turbo model from Azure OpenAI to create 
Retrieval-Augmented Generation (RAG)-based conversational chat 
assistant to perform Q&A on the articles (free full-text articles and 
abstracts). We also used Google’s Gemini model from Google Cloud’s 
VertexAI to generate summarized content for selected topics.

2.5 Code availability

A Jupyter notebook containing all codes for PubMed abstract 
download, processing, topic modeling, and creating a Q&A model 
is submitted to GitHub at https://github.com/pslomics/
ASD_multiomics_analysis.

https://doi.org/10.3389/fnins.2024.1400412
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
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3 Results

3.1 Literature mining pipeline

The pipeline is designed to simplify deriving insights from 
large, voluminous, and unstructured biomedical literature that is 
usually resource and time intensive. The pipeline focuses on 
grouping the articles into thematic clusters based on the 
representative words occurring in the abstracts. This helps in 
providing an overview of the different topics studied for a given 
query, and the representative topics can help in narrowing down the 
search space. Thus, the articles are clustered into different topics, 
and specific topics of interest can be shortlisted for further study. 
Upon selection of topics, a wide array of applications can 
be  automated to achieve meaningful insights from the data. 
We  showcase that named entity recognition (NER) can 
be performed on the abstracts to extract entities such as genes, 
chemicals, drugs, and diseases, to create knowledgebase and 
knowledge graphs. With the advent of generative AI tools, it is 
possible to further this pipeline to enable a conversational virtual 
assistant to interact with the full-text articles to reach out to specific 

and summarized content. Figure  1 shows the schematic 
representation of the pipeline.

3.2 Literature cohort for topic model

Direct queries on PubMed such as “Autism Spectrum Disorder 
AND multi-omics” or “Autism Spectrum Disorder AND omics” 
yielded less than 100 articles and did not cover the entire space of 
different omics studies in ASD. We then created a corpus for topic 
model from PubMed using a more generic search query “Autism 
Spectrum Disorder AND Homo sapiens” in the last 10 years and used 
topic modeling to identify articles related to multi-omics studies. The 
resulting 28,304 abstracts were used for training the topic model.

3.3 Choosing the optimal model

Multiple techniques are available to build topic models such as 
unsupervised, guided, supervised, incremental, multi-modal, and 
dynamic. As our repertoire consists of a large literature repository, 

TABLE 1 List of keywords used as seed list for guided topic modeling.

Seed list 1 Multi-omics Pan-omics Omics Integrative omics Multiple omics

Seed list 2 Genomics Mutation SNP SNV Genome

Seed list 3 Transcriptomics RNA Gene expression Mirna Transcriptome

Seed list 4 Epigenomics Methylation Methylome Epigenetics Epigenome

Seed list 5 Copy number alteration Amplification Deletion Loss Gain

Seed list 6 Metabolomics Metabolome Metabolite Lipids Metabolism

Seed list 7 Proteomics Protein Proteome Biomarkers Protein folding

FIGURE 1

Overview of our literature mining pipeline and applications.
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we  chose unsupervised (library driven to identify the different 
research areas covered) and guided (to seed the model to look for 
specific keywords of our interest). Based on the model coherence 
metrics, we  found that the guided model performed better than 
unsupervised (for unsupervised model, c_v: 0.61 and u_mass: −4.77). 
Topic model coherence measures the quality and interpretability of 
topics generated. We calculated two coherence measures: c_v: based 
on combination of word co-occurrence, and u_mass: rely solely on 
document co-occurrence statistics. Furthermore, we fine-tuned the 
guided model using different parameters (UMAP and HDBSCAN) to 
select the most optimal model for this cohort. Table  2 shows the 
performance metrics while fine tuning the guided topic model.

We observed that the guided model with 125 topics with “min_
samples” as 40 showed good coherence (c_v: 0.669 and u_mass: 
−3.82), and hence, we will be using this model for further discussions. 
From the input abstracts of 28,304, 10,903 abstracts had a probability 
score of association to their respective topic greater than 0.8. 
(Supplementary Table S1). The topics are appended with a numerical 
value (serial number) for ease of identification.

3.4 Multi-omics research trends in ASD

As our focus is on multi-omics studies in ASD, we selected topics 
associated with multi-omics based on their representative words. Out 
of the 125 topics, 17 topics were found to be associated with multi-
omics-related representative keywords with 1,283 research articles 
(Table 3). We present our results that show detailed overview of the 
multi-omics research studies studied in the context of ASD. As shown 

in Table 2, the multiple omics such as genomics (SNP, mutations and 
variants, and CNV), transcriptomics (RNA and miRNA), epigenomics 
(methylation), metabolomics, and microbiomics were classified as 
individual topics thus spanning the breadth of multi-omics research 
studies in ASD. Supplementary Figures S1, S2 show the word 
distribution score and probability distribution of association of 
abstracts to their multi-omics topics.

Furthermore, topic modeling helps in analyzing the trend of these 
topics in the last decade. As shown in Figure 2, the trend analysis plot 
shows that the topic “2_synaptic_genes_mice_protein,” that represents 
studies associated with synaptic functions, especially mutation studies 
in mouse models with synaptic genes variants, shows steady increase 
and is most reported in 2022, followed by studies on impact of gut 
microbiome on ASD (“6_gut_microbiota_microbiome_gi”). We also 
observe that studies on de novo mutations (“15_genes_variants_
mutations_novo”) and 16p and 22q deletions (“16_deletion_
duplication_16p11_22q11”) are showing decline in the recent years, 
while studies associating ASD with PTEN mutations and 
macrocephaly (“120_pten_phts_macrocephaly_mutations”) and copy 
number variations (“69_cnvs_cnv_copy_genomic”) are less studied.

We explored the other topics that are closely associated with the 
above listed multi-omics topics using hierarchical clustering 
(Figure 3). This further clustering of topics based on distance helps in 
bringing closely related and studied topics together thus providing 
directions to analyze a group of topics together. The identified 125 
topics are clustered into 21 different clusters out of which four clusters 
contained one or more shortlisted multi-omics topics shown in 
Table 3. Out of the 4 clusters, first cluster had only multi-omics-related 
topics associated with variants, mutations, SNPs, and CNVs. This 

TABLE 2 Performance metrics of different guided topic models.

UMAP param HDBscan param Performance No. of 
topics

N_neighbors N_components Min_dist Min_cluster_
size

Min_samples C_V U_mass

15 2 0.1 100 100 0.438 −5.327 6

15 2 0.1 50 70 0.458 −5.39 6

15 2 0.1 5 50 0.637 −4.47 109

10 2 0.01 100 100 0.652 −3.834 57

10 2 0.01 50 70 0.66 −3.941 93

10 2 0.01 5 50 0.648 −4.328 142

3 2 0.001 100 100 0.6 −4.826 39

3 2 0.001 50 70 0.633 −4.238 89

3 2 0.001 5 50 0.605 −5.043 182

15 5 0 15 None 0.63 −4.57 100

10 2 0.01 5 100 0.61 −4.61 67

10 2 0.01 50 50 0.658 −3.95 112

10 2 0.01 100 50 0.645 −3.87 61

10 2 0.01 50 10 0.64 −4.29 157

10 2 0.01 50 20 0.65 −4.27 134

10 2 0.01 50 30 0.66 −4.2 125

10 2 0.01 50 40 0.669 −3.82 125

https://doi.org/10.3389/fnins.2024.1400412
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TABLE 3 Topics associated with multi-omics that are selected to study the multi-omics research study in ASD.

Name Representative words No. of 
articles

2_synaptic_genes_mice_protein [‘synaptic’, ‘genes’, ‘mice’, ‘protein’, ‘mouse’, ‘gene’, ‘mutations’, ‘cell’, ‘proteins’, ‘expression’] 160

6_gut_microbiota_microbiome_gi [‘gut’, ‘microbiota’, ‘microbiome’, ‘gi’, ‘gastrointestinal’, ‘intestinal’, ‘microbial’, ‘axis’, ‘probiotics’, ‘fecal’] 278

15_genes_variants_mutations_novo [‘genes’, ‘variants’, ‘mutations’, ‘novo’, ‘sequencing’, ‘gene’, ‘genetic’, ‘genome’, ‘rare’, ‘exome’] 53

16_deletion_duplication_16p11_22q11 [‘deletion’, ‘duplication’, ‘16p11’, ‘22q11’, ‘deletions’, ‘syndrome’, ‘region’, ‘microdeletion’, ‘carriers’, 

‘duplications’]

51

17_methylation_epigenetic_dna_genes [‘methylation’, ‘epigenetic’, ‘dna’, ‘genes’, ‘gene’, ‘expression’, ‘chromatin’, ‘serotonin’, ‘histone’, ‘genome’] 103

24_cacna1c_mutation_mutations_timothy [‘cacna1c’, ‘mutation’, ‘mutations’, ‘timothy’, ‘gene’, ‘syndrome’, ‘qt’, ‘variant’, ‘variants’, ‘ts’] 55

31_genetic_psychiatric_schizophrenia_

polygenic

[‘genetic’, ‘psychiatric’, ‘schizophrenia’, ‘polygenic’, ‘adhd’, ‘genome’, ‘disorders’, ‘wide’, ‘bipolar’, ‘major’] 51

38_mirnas_mir_mirna_expression [‘mirnas’, ‘mir’, ‘mirna’, ‘expression’, ‘rna’, ‘genes’, ‘micrornas’, ‘gene’, ‘cell’, ‘cells’] 56

41_variants_sequencing_exome_variant [‘variants’, ‘sequencing’, ‘exome’, ‘variant’, ‘pathogenic’, ‘delay’, ‘intellectual’, ‘patients’, ‘disability’, 

‘features’]

53

50_gut_microbiota_metabolic_diseases [‘gut’, ‘microbiota’, ‘metabolic’, ‘diseases’, ‘metabolites’, ‘metabolism’, ‘disease’, ‘microbiome’, ‘carnitine’, 

‘mitochondrial’]

57

52_metabolic_metabolism_amino_

metabolites

[‘metabolic’, ‘metabolism’, ‘amino’, ‘metabolites’, ‘acid’, ‘acids’, ‘eacute’, ‘aacute’, ‘urine’, ‘plasma’] 51

54_fxs_fragile_fmrp_fmr1 [‘fxs’, ‘fragile’, ‘fmrp’, ‘fmr1’, ‘cgg’, ‘syndrome’, ‘protein’, ‘retardation’, ‘translation’, ‘mrna’] 61

57_snps_association_genetic_

polymorphisms

[‘snps’, ‘association’, ‘genetic’, ‘polymorphisms’, ‘genome’, ‘allele’, ‘gene’, ‘haplotype’, ‘wide’, ‘genes’] 50

69_cnvs_cnv_copy_genomic [‘cnvs’, ‘cnv’, ‘copy’, ‘genomic’, ‘pathogenic’, ‘array’, ‘number’, ‘chromosomal’, ‘variants’, ‘microarray’] 54

96_channel_scn2a_channels_voltage [‘channel’, ‘scn2a’, ‘channels’, ‘voltage’, ‘variants’, ‘gated’, ‘scn8a’, ‘sodium’, ‘calcium’, ‘mutation’] 50

117_biomarker_biomarkers_asd_mcnvs [‘biomarker’, ‘biomarkers’, ‘asd’, ‘mcnvs’, ‘therapeutic’, ‘new’, ‘vgcc’, ‘hypothesis’, ‘potential’, ‘nachr’] 50

120_pten_phts_macrocephaly_mutations [‘pten’, ‘phts’, ‘macrocephaly’, ‘mutations’, ‘hamartoma’, ‘tumor’, ‘germline’, ‘cancer’, ‘mutation’, 

‘phosphatase’]

50

FIGURE 2

Research trends of different multi-omics topics over time. Timestamps are grouped by year.
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FIGURE 3

Hierarchical clustering: All topics identified by the topic model are 
clustered on the basis of distance (Ward’s linkage) to identify the 
association among the topics. The 125 topics were grouped into 21 
clusters out of which 4 clusters contained the multi-omics 
associated topics. The clusters containing multi-omics topics are 
highlighted.

cluster represents the variant analysis studies in ASD. Furthermore, 
the second cluster showed 4 multi-omics topics, namely, “50_gut_
microbiota_metabolic_diseases,” “6_gut_microbiota_microbiome_gi,” 
“117_biomarker_biomarkers_asd_mcnvs,” and “52_metabolic_
metabolism_amino_metabolites” clustered along with mitochondrial 
dysfunction, oxidative stress, cytokine-driven immune responses, and 
metal toxicity related topics. Interestingly, there are publications that 
are exploring the relationship between gastrointestinal tract (GIT) 
microbiota and mitochondrial dysfunction in ASD (Hu et al., 2020). 
This validates the association picked up in hierarchical clustering 
between multiple topics. The third cluster focuses on synaptic gene 
studies in mouse models (“2_synaptic_genes_mice_protein”), 
methylation, and miRNA-associated topics 

(“17_methylation_epigenetic_dna_genes,” “38_mirnas_mir_mirna_
expression”) that are clustered with ubiquitin proteins and stem cell 
pluripotency topics, highlighting that the mouse models and 
pluripotent stem cell studies are widely used in studying genetic 
modifications in ASD (Acab and Muotri, 2015; St. Clair and Johnstone, 
2018; Silverman et al., 2022). The fourth cluster is a small, concentrated 
cluster on fragile X syndrome (FXS) caused due to modifications in 
the FMRP gene (“54_fxs_fragile_fmrp_fmr1”). Thus, clustering of 
topics can help in deciphering all the related topics in a single view and 
is useful for screening and selection of studies for further research.

3.5 Genes playing key role in ASD

We performed named entity recognition (NER) on all the 
abstracts falling under the 17 multi-omics topics, to identify the key 
molecular players in ASD (Supplementary Table S2). Of the 17 topics, 
10 covered the gene mutations and variants in ASD. We grouped these 
into a broader category called variants, identified the genes mentioned 
in these abstracts, and found 1,310 unique gene mentions. For 
validation, this list of genes was compared with widely used ASD 
variant databases such as autism spectrum consortia, SFARI, and 
VariCarta (Abrahams et al., 2013; Belmadani et al., 2019; Satterstrom 
et al., 2019). Figure 4 shows the common genes across these databases 
and our gene list from NER. We observe that 11 genes are reported 
additionally in our list. Upon further manual curation of these 11 
genes, we found out that 9 of these genes being explored for their role 
in ASD and other neurological disorders (Table 4). For instance, one 
of the genes, GPRASP2, variations in this gene are implicated to have 
a role in autism in females (Butler et al., 2015). There is another study 
reported in mouse models, to analyze the impact of GPRASP2 
mutations in neurological disorders through knockout experiment 
(Edfawy et al., 2019). Thus, we showcase that NER method can help 
in identifying biological entities and their relations and can accelerate 
the creation of knowledgebase and knowledge graphs. Furthermore, 
this can highlight research trends and potential gaps to direct future 
experiments and validate their potential role in ASD.

We also present the list of genes that have undergone methylation, 
genes that are reported in microbiome studies and metabolome data 
in Supplementary Table S2. These genes can potentially be useful in 
analyzing the molecular patterns in ASD for therapeutic targets and 
can help in advancing the knowledgebase of ASD.

3.6 Generative AI powered summarization

One of the wider used applications of generative AI is its ability to 
summarize large textual information. In this section, we showcase the 
ability of generative AI to help in generating concise and collated 
summaries of topics of interest. We chose topics related to fragile X 
syndrome (FXS) in autism and found two topics (“54_fxs_fragile_
fmrp_fmr1,” “59_fxs_fragile_syndrome_boys”) associated with this 
syndrome with 116 articles. Using Google cloud services, we used the 
abstracts to generate summarized content on this topic. 
Supplementary Table S3 shows the summary of the topics associated 
with fragile X syndrome reported in the context of ASD. As there are 
multiple aspects studied in the context of this syndrome, we observe 
that the summary is divided into behavioral and social aspects in 
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FIGURE 4

Venn diagram showing the common genes across ASC, SFARI, VariCarta, and our NER list.

TABLE 4 Genes identified using NER module of our pipeline that are not reported in ASD variant databases.

Gene Symbol Gene name PubMed link Reported observations in ASD 
literature

UBE2A Ubiquitin conjugating enzyme E2 A https://pubmed.ncbi.nlm.nih.gov/23471985/ 

(Jahanshad et al., 2013)

This gene is related to other neurological disorder

GPRASP2 G protein-coupled receptor associated 

sorting protein 2

https://pubmed.ncbi.nlm.nih.gov/25574603/ 

(Butler et al., 2015)

The role of this gene is being explored in ASD

MSNP1 Moesin pseudogene 1 https://pubmed.ncbi.nlm.nih.gov/27417655/ 

(Torrico et al., 2017)

This gene has a previously reported GWAS risk 

variant (could not be replicated)

AMELY Amelogenin Y-linked https://pubmed.ncbi.nlm.nih.gov/31852540/ 

(Maxeiner et al., 2019)

This gene is not related to autism

NAT8B N-acetyltransferase 8B https://pubmed.ncbi.nlm.nih.gov/31945187/ 

(Rigby et al., 2020)

This gene might play a role dysfunctional ER 

acetylation which is associated with ASD

FOXA2 Forkhead box A2 https://pubmed.ncbi.nlm.nih.gov/32277595/ 

(Mohammed et al., 2020)

The deletion of this gene might be related to ASD

TCEAL3 Transcription elongation factor a like 3 https://pubmed.ncbi.nlm.nih.gov/36368327/ 

(Hijazi et al., 2022)

This gene is related to other neurological disorder

MORF4L2 Mortality factor 4 like 2 https://pubmed.ncbi.nlm.nih.gov/36368327/ 

(Hijazi et al., 2022)

This gene is related to other neurological disorder

PEG13 Paternally expressed 13 https://pubmed.ncbi.nlm.nih.gov/24980697/ 

(Delgado et al., 2014)

This gene is not yet proven to be associated with 

ASD

MTCO2P12 MT-CO2 pseudogene 12 https://pubmed.ncbi.nlm.nih.gov/25464930/ 

(Shen et al., 2015)

This gene is reported to play a role in the 

pathogenesis of autism
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different groups, genetics, psychiatric, etc. Thus, this module helps in 
generating succinct summaries that can be  highly beneficial for 
report generation.

3.7 Generative AI powered conversational 
chat assistant

In this section, we highlight the ability to leverage generative AI 
techniques to build a virtual assistant to quickly mine scientific 
literature for better insights. We had downloaded all 1,283 multi-
omics topic-associated research articles (493 free full-text articles), to 
enable a chat application that can create an interface to search the 

articles based on simple linguistic queries. Figure  5 shows the 
conversation with virtual assistant to reach to specific answers to a 
given query. The answers are further supported with references for 
validation, thus, containing the hallucinations of generative AI 
models. We show that our pipeline significantly reduces the manual 
efforts required in curating specific information related to a topic.

4 Discussion

Literature mining plays a vital role in generating new hypothesis, 
validation of research, knowledge-gap analysis, and/or to study the 
market trends. Scientific literature-based evidence gathering has wide 
applications in pharmaceutical, clinical, and research communities. 
Tremendous amount of time and manpower is spent to curate and 
validate valuable information from these studies. We propose a pipeline 
that can expedite the scoping of data for actionable insights from 
clinical and biomedical literature. Though we have demonstrated the 
application using scientific literature, the pipeline can be extended to 
mine voluminous textual data such as clinical reports and health records.

ASD is a complex disorder which poses difficulty in diagnosis and 
treatment owing to its heterogenous symptoms. Although there are a few 
studies that have used multi-omics approaches for studying this disorder 
(Troisi et al., 2020; Nomura et al., 2021), there is a lack of holistic view of 
the research studies carried for different omic-profiles of ASD.

Leveraging our pipeline, we provide a bird’s eye view to worm’s eye 
view of the multi-omics studies in autism in the last 10 years. We have 
used topic modeling to provide an overview of the different research 
arenas in ASD. The guided modeling yielded 125 topics or thematic 
clusters that summarizes the different aspects of ASD studies. 
We narrowed down the topics by identifying omics-related representative 
keywords and identified 1,283 research articles that are associated with 17 
different multi-omics topics. Gathering these articles directly from search 
engines would require multiple searches or multiple combinations of 
keywords. The topics identified showcased high probability of association, 
thus highlighting the efficiency of the model to mine, identify, and cluster 
similar articles into a thematic cluster. The identified topic encompassed 
the genomics, transcriptomics, epigenomics, and microbiomics thus 
spanning the length and breadth of multi-omics research in 
ASD. However, topic modeling may not be able to tag all the abstracts into 
a particular theme, and such abstracts are grouped under “miscellaneous.” 
These abstracts are not available for further applications of the pipeline. 
Fine-tuning the modeling with different set of parameters can help in 
reducing the articles tagged as “miscellaneous.”

Visualizing the results of topic modeling can aid in assessing 
closely associated topics based on distance, well represented topics, 
and topic trends over time. This helps in identifying specific topics of 
interest and their counterparts for downstream actions.

We have highlighted three possible applications in our pipeline. 
We have used NER to find the genes that have significant genetic 
modifications such as SNVs, CNVs, and epigenetic changes, which are 
reported to play a key role in ASD. The identified genes are validated 
by comparing with public databases on ASD variants, thus emphasizing 
that our pipeline can facilitate creation of curated knowledge bases.

We have employed the latest generative AI tools and techniques for 
faster data to insights in the form of a conversational virtual assistant 
(Q&A) and summarization. Our virtual assistant supports the results 
with appropriate references thus reducing the hallucinations in the 
answers and establishes a robust method to validate the answers.

FIGURE 5

Interactive virtual assistant application to create answers supported 
with references from scientific literature.
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Our literature mining pipeline significantly improves the efforts 
required in extracting meaningful details from literature. The semi-
automated pipeline saves time, cost, and manual efforts required for curation 
and provides a perfect balance between speed and accuracy. The pipeline is 
agnostic to domain and can be extended to large cohorts of textual data such 
as reports, blogs, or any articles. It can address a wide range of applications 
such as market research, gap analysis, and trend analysis.
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