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Neurodegenerative diseases (NDs) are increasingly prevalent in our aging

population, imposing significant social and economic burdens. Currently, most

ND patients receive only symptomatic treatment due to limited understanding

of their underlying causes. Consequently, there is a pressing need for

comprehensive research into the pathological mechanisms of NDs by both

researchers and clinicians. Autophagy, a cellular mechanism responsible for

maintaining cellular equilibrium by removing dysfunctional organelles and

misfolded proteins, plays a vital role in cell health and is implicated in

various diseases. MicroRNAs (miRNAs) exert influence on autophagy and hold

promise for treating these diseases. These small oligonucleotides bind to the

3’-untranslated region (UTR) of target mRNAs, leading to mRNA silencing,

degradation, or translation blockade. This review explores recent findings

on the regulation of autophagy and autophagy-related genes by different

miRNAs in various pathological conditions, including neurodegeneration and

inflammation-related diseases. The recognition of miRNAs as key regulators of

autophagy in human diseases has spurred investigations into pharmacological

compounds and traditional medicines targeting these miRNAs in disease

models. This has catalyzed a new wave of therapeutic interventions aimed at

modulating autophagy.

KEYWORDS
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1 Introduction

The hallmark pathological feature observed in several neurodegenerative disorders,
including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD),
and amyotrophic lateral sclerosis (ALS), is the accumulation of misfolded protein
aggregates (Aguzzi and O’connor, 2010). These protein aggregations, found in diverse
cellular environments and subcellular compartments, are frequently associated with
the pathological manifestations observed in various neurodegenerative diseases. Genetic
mutations, leading to either autosomal recessive or dominant familial forms, can underlie
the development of neurodegenerative diseases. Moreover, disruptions in proteostasis
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mechanisms may also contribute to the buildup of protein
aggregates in these conditions (Guo et al., 2018).

Autophagy has emerged as a pivotal player in neuronal function
and the pathogenesis of neurodegenerative diseases, supported
by multiple lines of evidence demonstrating its ability to clear
protein aggregates (Nah et al., 2015). In various neurodegenerative
disorders, the accumulation of proteins within neurons is typically
targeted for degradation through autophagy (Ravikumar et al.,
2002; Menzies et al., 2015). Dysfunction in autophagy has
been implicated as a contributing factor in the onset of many
neurodegenerative disorders, particularly due to their association
with genetic mutations, further underscored by the roles of
disease-associated genes (Menzies et al., 2015). Autophagy’s role
in safeguarding the nervous system is complex, as evidenced by a
growing body of literature (Puyal et al., 2012). Its primary function
is to mitigate the degeneration of post-mitotic neurons and enhance
their survival (Levine and Kroemer, 2008; Son et al., 2012).
Axonal damage results in the aggregation of autophagosomes and
dystrophic swelling, with synapses being particularly susceptible
to autophagic degradation due to their high energy and protein
demands (Son et al., 2012). Moreover, heightened autophagy has
been linked to increased cellular mortality, with research suggesting
that excessive and prolonged activation of autophagy can culminate
in self-destructive outcomes (Puyal et al., 2012; Martinet et al., 2009;
Renna et al., 2010). Dysregulation of autophagy and impairment in
the protein degradation system lead to the aggregation of damaged
or mutated proteins within neurons, resulting in cellular damage
and ultimately neuronal demise associated with neurodegeneration
(Levine and Kroemer, 2008; Son et al., 2012).

MicroRNAs (miRNAs), intrinsic noncoding RNAs spanning
18 to 25 nucleotides, are extensively distributed across diverse
species and hold pivotal roles in governing cell proliferation,
immune response, and homeostasis (Gunel et al., 2021; D’Adamo
et al., 2017; Shademan et al., 2022). Through specific binding to
sequences within the 3′-untranslated region (3′-UTR) of target
genes, miRNAs can finely tune the expression of nearly 30%
of protein-coding genes. This regulatory mechanism can prompt
mRNA cleavage or translational inhibition, ultimately eliciting
considerable changes in protein levels (Shademan et al., 2023a;
Wang X. et al., 2017; Shademan et al., 2023b). Furthermore, a
solitary miRNA can orchestrate a genetic network by regulating
multiple target genes, thereby imparting significant cumulative
effects on gene networks and influencing a plethora of biological
processes and diseases. The treatment potential for neurological
disorders hinges on the modulation of autophagy by miRNAs. For
instance, miR-144 triggers the inhibition of mTOR and initiates
autophagy in response to hemoglobin in microglial cells from
the hippocampus of rats (Wang Z. et al., 2017). Moreover, the
decrease in mTOR levels via miR-144 exacerbates brain damage
and enhances pro-inflammatory responses in mouse models of
intracerebral hemorrhage, suggesting the miR-144/mTOR pathway
as a promising target for intracerebral hemorrhage (ICH) treatment
(Yu et al., 2017). Beyond the mTOR-dependent pathway, miRNAs
also regulate other pathways relevant to aging-related neurological
disorders. In Alzheimer’s Disease (AD) patients and mouse models,
a non-mTOR pathway has been identified, where miRNA-regulated
autophagy relies on MAPK. In AD models, inhibiting miR-
101a promotes MAPK1-mediated autophagy, potentially playing a
pivotal role in neurodegeneration (Li Q. et al., 2019). The utilization

of miRNA-mediated regulation of autophagy holds potential for
treating AD and other disorders, similar to the therapeutic effects
demonstrated by resveratrol (Kou and Chen, 2017).

MicroRNAs, integral components of noncoding RNA,
intricately regulate all phases of autophagy. A notable example
involves the transcription factor c-MYC, which governs diverse
cellular processes such as cell growth, proliferation, and apoptosis.
In a study conducted by Lu et al., patients with Crohn’s disease
displayed elevated levels of c-Myc, leading to heightened expression
of miR106B and miR93. Consequently, this dysregulation resulted
in reduced autophagosome formation and impaired clearance
of intracellular bacteria via targeting ATG16L1 (Lu et al., 2014).
Moreover, miR-376b, miR-17-5p, miR-216a, and miR-30a/b
downregulated the expression of BECLIN1, impeding the initiation
phase of vesicle formation. MiR-204 directly targeted LC3,
hindering the elongation stage, while ATG4 was modulated by
miR-101, miR-34a, miR-24-3p, and miR-376b (Tu et al., 2019).
Notably, macrophages may undergo impaired autophagosome
maturation due to the upregulation of miR-423-5p, which
suppresses the fusion of autophagosomes and lysosomes (Li et al.,
2016). Subsequent sections will delve into the intricate mechanisms
by which microRNAs regulate autophagy across various disease
phenotypes. By targeting specific genes or modulating autophagy-
related signaling pathways, microRNAs have the potential to either
enhance or suppress autophagy. The significance of microRNAs in
autophagy regulation extends to their utility as both diagnostic and
prognostic markers.

2 Autophagy types and process

Autophagy, an essential cellular process, ensures internal
equilibrium by producing autophagosomes, which are double-
membrane vesicles that encapsulate long-lasting proteins
or organelles such as mitochondria. Subsequently, these
autophagosomes ferry the captured material to lysosomes for
degradation (Boland and Nixon, 2006). Despite the presence of
autophagy machinery across various species, the brain possesses
specific mechanisms to regulate its nutrient and energy supply,
leading to the relatively late recognition of basal autophagic flux
in healthy neurons (Boland and Nixon, 2006). The initial evidence
showcasing the significance of autophagy in the brain likely
arose from the discovery of knockout mice lacking autophagy-
related proteins 5 and 7 (Atg5, Atg7) (Hara et al., 2006; Komatsu
et al., 2006). The absence of Atg7 resulted in notable neuronal
depletion in the cerebral and cerebellar cortices, accompanied
by observable behavioral impairments and an accumulation of
polyubiquitinated proteins within neurons (Komatsu et al., 2006).
The acknowledgment of autophagy’s pivotal role in maintaining
brain health is now widespread, fueling a surge in literature
on this topic. Numerous human neurodegenerative diseases
are characterized by autophagy dysfunction, arising from gene
mutations or the accumulation of potentially toxic proteins prone
to aggregation. The clearance of autophagic organelles, particularly
damaged mitochondria (mitophagy), is currently a focal point
of research, given the brain’s distinct reliance on energy and
the suspicion that this process may be compromised in various
pathologies (Van Laar and Berman, 2013).
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Autophagy, the cellular process of component degradation, is
classified into three types based on how cargo reaches lysosomes
in mammals: chaperone-mediated autophagy, microautophagy,
and macroautophagy. Collectively, they are referred to as
autophagy for simplicity (Park et al., 2020). Autophagosomes,
specific double membrane-bound vesicles, envelop unnecessary or
misfolded proteins and damaged subcellular organelles, which are
subsequently transported to lysosomes for breakdown. To maintain
cellular function, mTORC1 restricts autophagy to a minimum level
in most cells (Park et al., 2020). However, under various forms of
cellular stress like nutrient deprivation, growth factor withdrawal,
or oxygen depletion, autophagy is triggered by the release from
mTORC1 inhibition, leading to a significant increase to meet
heightened energy demands.

Autophagy is a multi-step process governed by specific
complexes exclusively dedicated to autophagy, meticulously
controlled by upstream signaling molecules. The activity of
autophagy is regulated in contrasting manners by mTORC1 and
AMP-activated protein kinase (AMPK), the two primary signaling
molecules. This regulation occurs through the phosphorylation
of Unc-51 like autophagy activating kinase 1 (ULK1) at distinct
sites. Autophagy initiation is inhibited by mTORC1 through the
phosphorylation of ULK1 at Ser757, while AMPK stimulates
autophagy initiation by phosphorylating ULK1 at Ser317, Ser555,
and Ser777 (Di Nardo et al., 2014; Jang et al., 2018; Kim et al., 2011).
The autophagy preinitiation complex, ULK1, consists of the ULK1
protein kinase, FIP200/RB1CC1, and regulatory subunits ATG101
and ATG13. These subunits induce conformational changes that
activate ULK1 (Lin and Hurley, 2016; Turco et al., 2020). Upon
activation, the ULK1 complex phosphorylates the VPS34 complex,
a downstream autophagy initiation complex comprising Beclin-
1, VPS34, VPS15, and ATG14L, belonging to the class III
phosphoinositide 3-kinase (PI3K) family (Mercer et al., 2021).
PI3P is generated by the VPS34 complex on specific phospholipid
membranes, including the endoplasmic reticulum (ER), ER-
mitochondria junctions, and ER-plasma membrane connections
(Zhen and Stenmark, 2023). Proteins that bind to PI3P, such
as ZFYVE1/DFCP1 or WD repeat domain-containing proteins
(WIPIs), are recruited to membrane structures rich in PI3P,
termed omegasomes. Subsequently, they recruit autophagy-related
proteins, culminating in the formation of the phagophore structure
(Puri et al., 2018; Dooley et al., 2014).

Recent research has shed light on the complex regulatory
mechanisms governing the expansion of the phagophore. Key
autophagy proteins, notably ATG9A, a transmembrane protein,
play central roles in this process. Upon autophagy activation,
ATG9A relocates from the trans-Golgi network (TGN) or endocytic
compartments to the omegasomes, a process regulated by either
ULK1 or the retromer complex (Popovic and Dikic, 2014; Zhou
C. et al., 2017; Young et al., 2006). ATG9A-containing vesicles are
crucial for autophagosome formation as they translocate to the
outer membrane, indicating their function as providers of lipid
bilayers in this process (Olivas et al., 2023). The interaction between
the phagophore and ATG2 protein is facilitated by ATG18’s
ability to bind to PI3P (Rogov et al., 2023). Regulation of the
size of initial autophagic structures requires the attachment of
the PI3P-enriched membrane through the ATG2-ATG18 complex
(Chowdhury et al., 2018). Additionally, the yeast Atg2 protein is
reported to play a vital role in autophagy through its lipid transfer

function (Osawa et al., 2019). Although the precise mechanisms of
autophagosome closure remain elusive, there is mounting evidence
implicating ATG2, VPS21, and the endosomal sorting complexes
required for transport (ESCRT) complex in this process (Takahashi
et al., 2018; Lee et al., 2007; Zhou F. et al., 2017).

3 Functional roles of autophagy in
neurodegenerative diseases

Neurodegenerative disorders often manifest with abnormal
protein accumulations, leading to the formation of neurofibrillary
tangles. Examples of these proteins include amyloid precursor
protein (APP) Aβ and C-terminal fragments (CTF) in Alzheimer’s
disease (AD), mutant α-synuclein in Parkinson’s disease (PD),
and polyglutamine (polyQ)-expanded mutant HTT (mHtt) in
Huntington’s disease (HD) (Shademan et al., 2021; Chen
et al., 2024; Deng et al., 2017; Menzies et al., 2017). The
autophagy-lysosome degradation pathway primarily targets protein
aggregates found in neurodegenerative diseases. Genetic mutations
in autophagic receptors such as p62, OPTN, NBR1, and
ALFY/WDFY3 have been frequently linked to neurodegenerative
diseases (Deng et al., 2017; Scrivo et al., 2018). Autophagic
activity declines significantly with aging, which is the most
common risk factor for neurodegeneration (Stavoe et al., 2019).
Impaired autophagy is believed to contribute to the onset of
neurodegenerative disorders.

3.1 Alzheimer’s disease (AD)

Alzheimer’s disease (AD) is the leading cause of
neurodegenerative dementia. Its characteristic features include
the accumulation of Aβ plaques and tau neurofibrillary tangles
in the brain, which are considered central to its pathogenesis.
Aβ, a peptide derived from amyloid precursor protein (APP)
processing, is primarily cleaved by α-, β-, and γ-secretase in the
trans-Golgi network (TGN) and endosomes (Hoseinlar et al.,
2023; Radagdam et al., 2023). Autophagy serves as the primary
mechanism for clearing Aβ and APP-CTF (Lee et al., 2019;
Uddin et al., 2018). Enhanced activity of p62 or transcription
factor EB (TFEB) has been demonstrated to reduce Aβ plaque
formation, thus ameliorating AD pathology in mouse models
(Song et al., 2020). Conversely, elevated Aβ oligomers in animal
models induce impairments in trafficking and lysosome biogenesis,
leading to hindrances in autophagic activity (Tammineni et al.,
2017). Examination of AD patient brains at the ultrastructural
level reveals the accumulation of autolysosomes containing
cathepsin due to defects in lysosomal proteolysis (Nixon and
Yang, 2011; Boland et al., 2008). Moreover, alterations in the
levels of autophagy-related proteins are commonly observed in
samples from AD patients (Lachance et al., 2019; Qian et al., 2022).
Autophagy also participates in the degradation of abnormally
phosphorylated tau (Lee et al., 2019). Post-mortem analysis of
AD patient brains shows protein accumulation in the autophagy-
lysosomal pathway, including p62, LC3, and LAMP1, along with
disruptions in both autophagy and lysosomal processes (Piras
et al., 2016). Hyperphosphorylated tau directly interacts with
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aggrephagy receptors such as p62, NDP52, and OPTN, facilitating
its subsequent removal through autophagic degradation (Xu
et al., 2019; Jo et al., 2014). PICALM is involved in the regulation
of tau’s autophagic degradation. Impaired transportation of the
dynein-dynactin complex, essential for autophagosome movement,
leads to an increase in tau-positive filaments (Butzlaff et al., 2015).
Conversely, activation of autophagy accelerates the breakdown of
phosphorylated tau, preventing its aggregation both in vitro and
in vivo (Krüger et al., 2012; Wang et al., 2009).

3.2 Parkinson’s disease (PD)

Parkinson’s disease (PD) is a progressive movement disorder
affecting the nervous system, characterized by the presence of Lewy
bodies in dopaminergic neurons of the substantia nigra, which are
abnormal aggregations of α-synuclein protein. Additionally, there
is an elevation in the expression of α-synuclein genes (Singleton
et al., 2003). Knockout of ATG7 led to an increase in the formation
of α-synuclein inclusion bodies containing p62 in dopaminergic
neurons, along with age-related motor function impairments in
mice (Sato et al., 2018). Several studies indicate that the autophagy-
lysosome system is responsible for degrading α-synuclein with
pathogenic mutations (Yan Yuan et al., 2018; Vogiatzi et al., 2008).
Conversely, α-synuclein inclusions impair the autophagic pathway
at multiple stages. For instance, α-synuclein inclusions disrupt the
formation of omegasomes by misplacing ATG9A (Winslow et al.,
2010; Tanik et al., 2013). Moreover, α-synuclein clustering hampers
the retrograde movement of autophagosomes, although it does
not inhibit autophagosome-lysosome fusion (Tanik et al., 2013).
Ultimately, α-synuclein interferes with autophagic degradation
and the activity of the lysosomal protease cathepsin D (CTSD)
(Hoffmann et al., 2019; Moors et al., 2019). Research suggests
that LRRK2 deficiency inhibits the autophagy-lysosome pathway,
leading to cell death (Tong et al., 2010). Notably, many pathogenic
LRRK2 mutations are considered gain-of-function mutations,
such as G2019S and R1441C (Kett and Dauer, 2012). These
mutations enhance LRRK2 kinase activity but impair autophagic
degradation, resembling the effects of LRRK2 deficiency (Plowey
Cherra et al., 2008; Ramonet et al., 2011). Studies have shown
that the LRRK2-G2019S mutation disrupts endocytic vesicular
trafficking by reducing small GTPase activity, while the LRRK2-
R1441C variant compromises lysosomal functions due to impaired
interaction with the lysosomal v-ATPase (Wallings et al., 2019).
Mutations in VPS35, a key component of the retromer complex,
have been associated with impaired autophagy in PD. VPS35 is
crucial for regulating the transport of lysosomal proteases (Miura
et al., 2014). Reduced mRNA levels of VPS35 were observed in the
substantia nigra of PD patients (MacLeod et al., 2013). The presence
of a PD-related VPS35 mutation (D620N) within a family hindered
the recruitment of the WASH complex to endosomes, leading
to malfunction in ATG9A positioning and impaired autophagy
(Zavodszky et al., 2014).

3.3 Huntington’s disease (HD)

Huntington’s disease (HD) is an autosomal-dominant
progressive neurodegenerative disorder characterized by neuronal

degeneration, leading to motor, behavioral, and cognitive
impairments. The striatum and cortex are affected by cytotoxicity
caused by an abnormal expansion of a polyQ repeat in exon
1, resulting in the formation of mutant huntingtin (mHtt)
proteins that form β-sheet-rich structures and ubiquitin-positive
aggregates (Takeuchi and Nagai, 2017; Maat-Schieman et al., 1999).
Overexpression of mHtt leads to progressive motor deficits and
accumulation of autophagosomes (Pircs et al., 2018), with an
observed increase in autophagic vacuoles in HD patients (Oh et al.,
2022). Autophagy plays a crucial role in clearing proteins prone
to aggregation with polyQ expansion, both in vitro and in vivo
(Wu et al., 2012; Proenca et al., 2013). Inhibition of autophagy,
either through autophagy inhibitors like 3-MA or Baf.A1 or genetic
manipulation, increases mHtt aggregation, while administration of
autophagy activators like rapamycin or trehalose reduces inclusion
body count. The turnover rate of mHtt is influenced by its
interaction with aggrephagy receptors such as p62 and OPTN (Fu
et al., 2017; Tsvetkov et al., 2013). Genome-wide analysis focused
on the striatum has identified numerous autophagy-related genes,
including Atg4b, Tfeb, and Atlastin 3, which seem to mitigate
mHtt toxicity (Wertz et al., 2020). Huntingtin typically acts as a
scaffold protein for various autophagy proteins, aiding in cargo
identification and protecting against Beclin-1 ubiquitination
(Ashkenazi et al., 2017). However, mHtt fails to recognize cytosolic
cargoes present in autophagosomes (Martinez-Vicente et al., 2010).
Additionally, huntingtin knockdown or mHtt overexpression in
neurons may impair autophagosomal retrograde transport (Wong
and Holzbaur, 2014).

4 Review on MicroRNAs

MicroRNAs (miRNAs) are essential small non-coding RNA
molecules that play a pivotal role in regulating gene expression.
Their production encompasses several steps. Initially, miRNA
genes undergo transcription by either RNA polymerase II or
RNA polymerase III, resulting in primary miRNA (pri-miRNA),
a lengthy transcript (Gunel et al., 2021). Pri-miRNA adopts a
stem-loop structure with a 5′ cap and a poly-A tail. Ribonuclease
enzyme Drosha, aided by DGCR8, cleaves pri-miRNA to generate
pre-miRNA, a hairpin-like structure of approximately 60-100
nucleotides (Shademan et al., 2022; Ma et al., 2018). Ran GTP
and exportin-5 facilitate the transportation of pre-miRNAs from
the nucleus to the cytoplasm. Upon entering the cytoplasm,
hydroxylation of Ran GTP transforms it into Ran GDP, releasing
pre-miRNA from exportin 5 (Ohtsuka et al., 2015). In the
cytoplasm, Dicer, along with a protein partner, cleaves pre-miRNA
to produce mature miRNA, a double-stranded molecule of about
22 nucleotides without a hairpin structure (Ohtsuka et al., 2015; Fu
et al., 2019). The miRNA/miRNA∗ duplex may contain unpaired
bases and incomplete bonding. Subsequently, one strand of the
duplex, either miRNA or miRNA∗, integrates into the RNA-
induced silencing complex (RISC), guiding mature miRNA to its
target transcript, thereby inhibiting translation and suppressing
protein synthesis (Krol et al., 2004; Shademan et al., 2023a).

The discovery of miRNAs has illuminated their involvement
in regulating up to 200 mRNAs, representing approximately
1% of the human genome (Chen et al., 2012). Understanding
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miRNA function and biogenesis is vital for comprehending
their roles in various biological processes such as development,
cell differentiation, and disease. Investigating miRNA functions
involves identifying their target genes and the biological pathways
they partake in, utilizing methodologies like microarray analysis
and RNA sequencing (Gon et al., 2020).

MiRNAs play a crucial role in regulating cell growth,
proliferation, and homeostasis in the human brain, with their
expression exhibiting variability. Specific miRNAs modulate genes
associated with neurodegenerative disorders (NDs) (Chen et al.,
2018; Adlakha and Saini, 2014). Animal models have demonstrated
that Dicer, an essential RNase, triggers the production of adult
miRNAs crucial for neuronal survival in the cerebral cortex.
Dicer deficiency leads to impaired neurogenesis and significant
neuronal loss (Adlakha and Saini, 2014; Hollins and Cairns, 2016).
The absence of Dicer results in compromised neurogenesis and
widespread neuronal loss. Notably, neuronal cell counts decrease
in the hippocampus, tau proteins undergo hyperphosphorylation,
and neurodegenerative symptoms emerge in the adult brain in
the absence of Dicer (Sharma and Lu, 2018). Understanding
the role of miRNAs in normal cellular processes and their
dysregulation leading to neurological disorders is pivotal for
developing innovative treatments for NDs.

Numerous miRNAs play a crucial role in regulating cognitive
functions and preventing memory loss in Alzheimer’s disease (AD)
by maintaining protein-mediated activity at the synaptic level
(Kou et al., 2020). Research indicates that miRNAs modulate the
expression of genes involved in amyloid beta (Aβ) formation,
tau phosphorylation, and neuroinflammation in AD. MiRNAs
such as miR-29a/b, miR-135a, miR-124, and miR-195 target β-
secretase (BACE1) and regulate Aβ production (Gentile et al.,
2022). Individuals with Parkinson’s disease (PD) exhibit reduced
expression of MiR-150. Overexpression of MiR-150 in BV2 cells
treated with LPS inhibits the release of TNF-α, IL-1β, and IL-
6 (Li et al., 2020). MiRNAs including Let7, miR-10a/b, miR-181,
miR-182, and miR-212 regulate the expression of alpha-synuclein,
implicated in PD onset (Recasens et al., 2016). Furthermore,
decreased levels of miRNA 9 in the high-definition brain amplify
REST transcription, resulting in enhanced repression of BDNF in
neurons. Various miRNAs, such as miRNA 29a/b, miRNA 124a
1/2/3, miRNA 132, miRNA 135b, miRNA 139, miRNA 212, and
miRNA 346, target REST (Gupta et al., 2015). Understanding the
biogenesis process and function of miRNAs is crucial to grasp
their impact on gene regulation and various biological processes.
This understanding could have significant implications for disease
detection, treatment, and prevention.

5 Autophagy regulation by miRNAs
in human neurodegenerative
diseases

MiRNAs play a significant role in modulating autophagy-
related genes and signaling pathways. Changes in the expression
patterns of these miRNAs can influence the pathological
progression of neurodegenerative diseases like Alzheimer’s disease
(AD), Parkinson’s disease (PD), and Huntington’s disease (HD) by
affecting autophagy. Hence, our research focuses on understanding

how miRNAs impact autophagy in these conditions. Table 1
provides a list of miRNAs known to regulate autophagy in
neurodegenerative diseases.

5.1 Alzheimer’s disease (AD)

During protein translation, miRNAs play a significant role
in regulating autophagy-related genes, as illustrated in Figure 1.
Aberrant miRNA regulation can worsen the onset and progression
of Alzheimer’s disease (AD) by affecting autophagy-related
proteins. Research indicates that inhibiting miR-140, which
activates PINK1-mediated mitophagy, can notably reduce the
incidence of AD (Liang et al., 2021). Conversely, overexpression
of miR-101a indirectly induces autophagy in AD by modulating
mitogen-activated protein kinase (MAPK), suggesting the
regulatory function of miRNA-controlled autophagy in this
disorder. Timely clearance of Aβ and tau proteins in AD models
is crucial for alleviating AD symptoms. Studies suggest that
up-regulating miR-9-5p can target ubiquitination factor E4B
(UBE4B) and stress-induced phosphoprotein 1 (STIP1) homology
and U-box containing protein 1 (STUB1), enhancing autophagy
and facilitating tau protein degradation, thus providing relief from
AD symptoms (Subramanian et al., 2021). In the early stages of
AD, miR-331-3p and miR-9-5p exhibit a significant decrease in
the APP/PS1 mouse model, while in later stages, both miRNAs
sequentially increase, accompanied by abnormal functional
changes in autophagy. Downregulating miR-331-3p and miR-9-5p,
which target SQSTM1/p62 and OPTN, critical autophagy-related
proteins, may accelerate Aβ clearance and enhance cognitive
capacity (Chen et al., 2021).

Mitochondrial function is also implicated in AD pathogenesis.
Elevated levels of miR-204 in AD models exacerbate reactive
oxygen species generation and inhibit mitophagy by suppressing
transient receptor potential mucolipin 1 (TRPML1) activity.
Conversely, reducing miR-204 expression can reverse this effect
(Zhang et al., 2021b). Additionally, the study results demonstrated
that miR-140 was up-regulated and PINK1 was down-regulated
in AD model rats and neurons. It was confirmed that PINK1 is
a direct target of miR-140. Silencing miR-140 in these models
mitigated mitochondrial dysfunction and enhanced autophagy.
This was evidenced by decreased levels of mTOR expression and
phosphorylation, β-amyloid, phosphorylated Tau at Ser396 and
Thr231, total Tau, and reactive oxygen species, as well as increased
mitochondrial membrane potential, Beclin 1 expression, and the
LC3-II/LC3-I ratio. Thus, inhibiting miR-140 promoted autophagy
and prevented mitochondrial dysfunction by upregulating PINK1
(Liang et al., 2021). MiRNAs play a conserved role in regulating
autophagy across neurodegenerative diseases. In Alzheimer’s
disease, miR-140 and miR-101a are notable for their effects on
mitochondrial function and protein clearance, respectively. These
miRNAs modulate key autophagic pathways, such as PINK1-
mediated mitophagy and MAPK signaling, pointing to a potential
unifying mechanism where miRNAs maintain cellular homeostasis
via autophagy across different stages of neurodegeneration.

Neuroinflammation is closely associated with AD pathogenesis,
highlighting the importance of targeting neuroinflammation as
a therapeutic strategy. MiR-223 can mitigate neuroinflammation
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TABLE 1 Some studies that investigated miRNAs involved in autophagy in neurological diseases.

miRNAs Experimental
model

miRNA status
in ND

Results on autophagy Target Disease Clearance
mechanism

References

miR-34a SH-SY5Y cells Upregulated Down-regulation of miR-34a inhibits
autophagy

DRP1, MFN2 AD Abnormal mitochondrial
dynamics

Kou et al., 2017

miR-130a SH-SY5Y cells Downregulated Upregulation of miR-130a Induced
autophagy

LC3, Ac-p53, p21 and
p62

AD Up-regulating autophagy Shen et al., 2021

miR-34c-5p SH-SY5Y cells Downregulated Upregulation of miR-34c-5p suppresses
autophagy

ATG4B, LC3-II AD Suppresses autophagy Dai et al., 2018

miR-34a Model rats with
D-gal-induced brain

Upregulated The inhibition of miR-34a triggers
autophagy via the SIRT1 and mTOR
signaling pathways.

LC3, p62 and Atg7 AD Rescued defective autophagy Kou et al., 2016

miRNA-101a APPswe/PS1DE9
transgenic mice

Downregulated Elevated levels of miRNA-101a can
modulate the process of autophagy
formation.

65 genes are associated
with AD

AD Autophagy phenomenon
regulated

Li Q. et al., 2019

miR-135a-5p SH-SY5Y and CHP 212
cells

Downregulated Overexpression of miR-135a-5p can
inhibition of autophagy

mTOR/ULK1/S6K1 PD Silencing suppressed
autophagy

Qin et al., 2022

miR-106b mice and mouse primary Downregulated Increased expression of miR-106b can
activate autophagy.

CDKN2B, LC3-II PD Enhance neuronal autophagy Bai et al., 2021

miR-199a PC12 cells Downregulated Elevated levels of miR-199a can inhibit
autophagy.

PTEN/AKT/mTOR,
LC3-II, Beclin-1

PD Autophagy-regulating Ba et al., 2020

miR-326 mice Downregulated Increased expression of miR-326 can
activate autophagy.

XBP1/JNK, LC3-II PD Promotes autophagy of
dopaminergic neurons

Zhao et al., 2019

miR-212-5p mice and SH-SY5Y cells Downregulated Elevated levels of miR-212-5p can activate
autophagy.

SIRT2, p53 LC3-II, p62, PD Promoted autophagy in PD
model

Sun et al., 2018

miR-181a SK-N-SH cells Downregulated Elevated levels of miR-181a result in the
suppression of autophagy.

p38 MAPK/JNK,
Beclin-1, LC3-II

PD Regulates autophagy in PD Liu et al., 2017

ND, Neurodegenerative diseases; DRP1, dynamin-related protein 1; MFN2, mitofusin 2; D-gal, D-galactose; SIRT1, silent information regulation 1.
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FIGURE 1

In Alzheimer’s disease, molecular mechanisms govern the role of miRNA in regulating autophagy.

by regulating Atg16L1, emphasizing Atg16l1’s role in controlling
autophagy and inflammation in AD individuals (Li Y. et al., 2019).
The progression of AD is also influenced by neuronal function
in the hippocampus. Reversing decreased levels of miR-16-5p
in hippocampal tissues of AD mice inhibits neuronal apoptosis,
increases neuronal viability, and improves neurological function
and deficits (Dong et al., 2021). Similarly, suppressing miR-299-5p
leads to increased autophagic activation, decreased apoptosis, and
improved cognitive function in AD mice (Zhang et al., 2016).

Prolonged exposure to Aβ has been shown to disrupt autophagy
in microglia; however, the underlying cellular changes in response
to Aβ that lead to this disruption remain unknown (Pomilio
et al., 2020). Members of the Mirc1/Mir17-92 cluster are known
to target essential autophagy molecules (Tazi et al., 2016). The
diminished expression of an individual autophagy protein targeted
by elevated miRs can halt autophagic function, which cannot be
compensated for by the expression of other autophagy proteins
(Tazi et al., 2016). The Mirc1/Mir17-92 cluster, which includes
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miR-17-5p, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a-
1, is conserved among vertebrates and is associated with roles
in the cell cycle, tumorigenesis, and aging (Dellago et al., 2016).
Inhibiting elevated miR-17 in 5xFAD mouse microglia improves Aβ

degradation, autophagy, and NBR1 puncta formation in vitro and
improves NBR1 expression in vivo (Estfanous et al., 2021). Thus, by
regulating the expression of autophagy-related proteins, miRNAs
can potentially modulate processes such as Aβ and tau protein
clearance, mitochondrial function, neuroinflammation, neuronal
damage, apoptosis, and neuronal viability in AD.

5.2 Parkinson’s disease (PD)

Research has underscored the role of miRNAs in the
pathological processes of Parkinson’s disease (PD) by activating
autophagy (Figure 2). For instance, the decrease in miR-326
expression levels, associated with the PD-related gene PINK1,
contributes to PD progression (Choi et al., 2016). Administering
a miR-326 mimic in MPTP-treated mice reduces α-synuclein
and inducible nitric oxide synthase levels, improving locomotor
function by enhancing autophagy in dopaminergic neurons
through JNK signaling pathway activation (Zhao et al., 2019).
MiR-4813-3p facilitates the clearance of clustered α-synuclein,
potentially preventing neuronal oxidative damage in a transgenic
Caenorhabditis elegans model of PD (Sarkar et al., 2022).

Low expression levels of miR-212-5p are observed in both
SH-SY5Y cells and PD animal models. Introducing miR-212-5p
mimics mitigates dopaminergic neuron loss by inhibiting sirtuin2,
fostering autophagy, and reducing cytoplasmic p53 expression (Sun
et al., 2018). Reduced miR-124 levels in MPP+-treated SH-SY5Y
cells and MPTP-treated mice lead to autophagosome accumulation
and lysosome depletion. Restoring miR-124 with agonists and
mimics reduces dopaminergic neuron loss and increases striatal
dopamine levels by restoring impaired autophagy and suppressing
BIM expression (Wang et al., 2016). The results indicated that co-
culturing injured HT22 neurons with miR-124-3p overexpressing
BV2 microglia exerted a protective effect by inhibiting autophagy
in the scratch-injured neurons (Li D. et al., 2019). The unique role
of miR-124 in mediating the microglial inflammatory response by
targeting p62 and p38 has been highlighted in PD. In the microglial
culture supernatant transfer model, knockdown of p62 in BV2
cells prevented apoptosis and death of human neuroblastoma cell
lines (SH-SY5Y) following microglial activation. The study results
suggest that miR-124 can inhibit neuroinflammation during PD
development by targeting p62, p38, and autophagy, indicating that
miR-124 could be a potential therapeutic target for regulating the
inflammatory response in PD (Yao et al., 2019).

Elevated miR-204-5p levels disrupt ATG7-regulated autophagy,
promoting cell death and triggering JNK-mediated apoptosis in
dopaminergic cells (Chiu et al., 2019). The miR-30c-5p/ATG5
relationship exacerbates PD progression by reducing antioxidants
and dopamine levels, leading to neural cell apoptosis and worsening
MPTP-induced motor deficits in mice (Zhang et al., 2021a).
Conversely, increased miR-497-5p levels protect MPP+-treated
SH-SY5Y cells from apoptosis by triggering autophagy through
fibroblast growth factor-2, which regulates p62 via the AKT
pathway (Zhu et al., 2021; Zhang et al., 2013). However, elevated

miR-3473b levels in MPTP-treated mice stimulate microglial
secretion of inflammatory substances by hindering autophagy,
exacerbating the inflammatory response in PD (Lv et al., 2021).
Beyond regulating autophagy, miRNAs hold promise as diagnostic
biomarkers due to their disease-specific expression profiles.
MiRNAs like miR-140 in Alzheimer’s and miR-326 in Parkinson’s
are prime candidates for therapeutic targeting. By restoring their
normal expression levels, it may be possible to halt disease
progression by enhancing autophagic clearance of toxic proteins,
offering a tailored therapeutic approach. These findings suggest
that decreased miRNA expression in PD models is associated with
α-synuclein accumulation, oxidative stress, neuronal cell death,
and inflammation in the brain. Conversely, increasing miRNA
levels stimulates autophagy, counteracting these harmful effects.
Controlling autophagy through miRNAs holds promise as an
effective therapeutic strategy for PD.

5.3 Huntington’s disease (HD)

Autophagy, along with other pathways for protein degradation,
undergoes tight regulation by various miRNAs, underscoring
their pivotal role in modulating autophagic processes within
the neuronal system. Essential autophagy-related proteins like
Sequestosome 1, Optineurin, BACE1, and ATG5 are directly
influenced by miRNAs, thereby affecting autophagic activity (Chen
et al., 2021; Zhou et al., 2021). Elevated levels of Argonaute-
2 (AGO2), a crucial component of the RNA-induced silencing
complex responsible for executing miRNA functions, lead to
changes in miRNA abundance and effectiveness. In neurons
expressing mutant huntingtin (mHtt), the presence of mature
miRNAs coincides with AGO2 accumulation. However, AGO2
relocation to stress granules (SGs) induced by mHtt expression
diminishes miRNA activity globally. This disparity in AGO2
accumulation has distinct effects on neurons compared to dividing
cells, possibly due to neurons’ incapacity to renew their protein
composition during cell division or the emergence of SGs in
mHtt-expressing neurons (Pircs et al., 2018). These findings
underscore the crucial involvement of miRNAs in cellular processes
related to protein degradation, suggesting the potential therapeutic
utility of miRNAs for various neurological disorders. Despite
the promising outlook, research investigating miRNAs’ role in
regulating autophagy as a treatment strategy for individuals with
Huntington’s disease (HD) remains limited.

While significant strides have been made in understanding
miRNA-autophagy interactions, gaps remain. Many miRNAs,
such as miR-204 and miR-497-5p, have been explored primarily
in animal models, with limited translation to clinical settings.
Future research should aim to validate these findings in human
studies and assess the long-term effects of miRNA-based therapies.
Additionally, there is a need to explore the combinatorial effects
of miRNA modulators with conventional treatments to optimize
therapeutic outcomes. In summary, miRNA-regulated autophagy
presents a multifaceted opportunity for both the diagnosis
and treatment of neurodegenerative diseases. By targeting key
autophagic pathways, miRNAs offer a promising route to not only
slowing disease progression but also improving patient outcomes
through more personalized therapeutic approaches. By integrating
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FIGURE 2

In Parkinson’s disease, molecular mechanisms govern the role of miRNA in regulating autophagy.

these changes, you can address the feedback more effectively,
showing a deeper synthesis of current research, highlighting
the therapeutic potential of miRNAs, and pointing out areas
for future study.

6 Conclusion

The intersection of miRNA research and autophagy presents
a promising frontier in the treatment of NDs. Given the rising

prevalence of NDs and the substantial burden they place on society,
there is an urgent need for novel therapeutic approaches that
go beyond symptomatic relief and address the underlying disease
mechanisms. Autophagy, crucial for cellular health through the
removal of dysfunctional organelles and proteins, is increasingly
recognized as a pivotal process in the pathophysiology of NDs.
Autophagy-regulating miRNAs perform a dual function in the
progression of ND. By targeting autophagy-related signaling
pathways, downregulated miRNA Autophagy-controlling miRNAs
serve a two-fold purpose in the development of ND. MiRNAs have
a neuroprotective effect by stimulating protective autophagy or
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reducing autophagic cell death in neurons. Conversely, neurotoxic
miRNAs increase to hinder autophagy processes. In light of this,
targeting miRNA-mediated autophagy may present a promising
therapeutic approach in the treatment of ND. The therapeutic
potential of miRNAs in modulating autophagy opens up new
avenues for treating NDs. Pharmacological compounds and
traditional medicines targeting specific miRNAs have shown
promise in preclinical models, offering hope for the development
of effective treatments. This line of research not only enhances
our understanding of the molecular mechanisms underpinning
NDs but also paves the way for innovative therapeutic strategies.
Continued research into miRNA-mediated autophagy regulation
is essential for advancing our understanding of NDs and for the
development of targeted therapies that could potentially alter the
course of these debilitating diseases. The integration of miRNA
research into clinical practice holds the promise of transforming
ND treatment paradigms and improving patient outcomes.
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