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Background: Sleep plays a critical role in human physiological and psychological 
health, and electroencephalography (EEG), an effective sleep-monitoring 
method, is of great importance in revealing sleep characteristics and aiding the 
diagnosis of sleep disorders. Sleep spindles, which are a typical phenomenon in 
EEG, hold importance in sleep science.

Methods: This paper proposes a novel convolutional neural network (CNN) 
model to classify sleep spindles. Transfer learning is employed to apply the 
model trained on the sleep spindles of healthy subjects to those of subjects with 
insomnia for classification. To analyze the effect of transfer learning, we discuss 
the classification results of both partially and fully transferred convolutional 
layers.

Results: The classification accuracy for the healthy and insomnia subjects’ 
spindles were 93.68% and 92.77%, respectively. During transfer learning, when 
transferring all convolutional layers, the classification accuracy for the insomnia 
subjects’ spindles was 91.41% and transferring only the first four convolutional 
layers achieved a classification result of 92.80%. The experimental results 
demonstrate that the proposed CNN model can effectively classify sleep 
spindles. Furthermore, the features learned from the data of the normal subjects 
can be effectively applied to the data for subjects with insomnia, yielding 
desirable outcomes.

Discussion: These outcomes underscore the efficacy of both the collected 
dataset and the proposed CNN model. The proposed model exhibits potential 
as a rapid and effective means to diagnose and treat sleep disorders, thereby 
improving the speed and quality of patient care.
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1 Introduction

Sleep plays a critical role in an individual’s life and work as it 
occupies one-third of the 24 h in a day. Adequate sleep is essential 
to maintain a refreshed state of mind and optimal performance in 
personal and professional aspects. In the short term, insufficient 
sleep can lead to impaired memory and attention, and over longer 
periods, it can induce a range of physical and mental health 
conditions, e.g., hypertension, diabetes, and Alzheimer’s disease. In 
severe cases, insufficient sleep can result in neurological disorders 
or even death. Previous studies have demonstrated that sleep 
disorders are showing an increasing trend and are expected to 
continuously grow (Stranges et al., 2012).

Sleep spindles manifest as bursts of narrow-band activity that 
prominently feature in the electroencephalography (EEG) signals 
acquired across one or multiple scalp regions. Ranging from 11–16 Hz 
in frequency, they serve as a significant marker of nonrapid eye 
movement stage 2 sleep. Sleep spindles are an important marker for 
humans to enter sleep (Iber et al., 2007; LaRocco et al., 2018), and 
they play a crucial role in protecting the sleeping brain from external 
sensory stimuli and serve as a biomarker of sleep integrity (Dang-Vu 
et al., 2010; Saletin and Walker, 2013; Thanh et al., 2015). Studies have 
identified a close relationship between sleep spindles and other sleep-
related EEG rhythms, as well as between spindles and synaptic 
plasticity (Ulrich, 2016). Increasing evidence suggest that neurologic 
and psychiatric disorders, e.g., Parkinson’s disease (Christensen et al., 
2014; Latreille et al., 2015) and schizophrenia (Wamsley et al., 2012), 
are associated with decreased memory function and reduced spindle 
activity during sleep (Ferrarelli et al., 2010; Latreille et al., 2015). 
Similarly, the decline in learning ability in the elderly is related to 
decreased spindle activity in the prefrontal cortical region (Lu and 
Göder, 2012). Thus, by enhancing the study of sleep spindles, a 
deeper understanding of human sleep patterns and physical diseases 
can be  acquired, which is expected to facilitate timely medical 
diagnoses and treatments.

Deep learning methods are widely used to identify and classify 
sleep spindles. For example, in 2017, Athanasios and Clifford (2015) 
proposed an automatic detection method for sleep spindles based on 
a wavelet algorithm, which was verified on the MASS (Montreal 
Archive of Sleep Studies) and DREAMS (Dreams Sleep Spindle 
Database) datasets. This method achieved sensitivity of 84 and 76% 
and specificity of 90 and 92% on the MASS and DREAMS datasets, 
respectively. In addition, Lachner-Piza et al. (2018) proposed a new 
single-channel spindle classification method that achieved a sensitivity 
of 53% and a precision of 37% on the DREAMS dataset. This method 
also achieved sensitivity and precision values of 77% and of 46% on 
the MASS dataset, respectively. In 2019, Kulkarni et  al. (2019) 
proposed SpindleNet, which achieved the highest F1 score of 0.75 and 
AUC (area under curve) values of 0.9897 on different sleep datasets 
on different species with different ages; however, only a single channel 
was used in this study. In 2020, Kinoshita et al. (2020) employed the 
synchronous squeezed wavelet transform method to detect spindles 
combined with the random under-sampling boosting method and 
achieved a sensitivity of 76.9%. In 2021, Chen et al. (2021) proposed 
an automatic spindle detection algorithm combining EEG features, 
which achieved an F1 score of 0.66. In addition, Chen et al. (2023) 
proposed a fusion algorithm for spindle wave detection that achieved 
accuracy and precision of 90.4 and 91.6%, respectively.

Transfer learning involves transferring parameters of a 
pretrained model to design and train a completely new network, 
which can conserve computational resources and reduce training 
time (Öztürk et al., 2023). The transfer network structure is divided 
into two parts, i.e., the pretrained network and the transfer network. 
In this study, a pretrained network learned rich feature 
representations of spindle data, and the extracted features achieved 
excellent classification performance. The parameters in the network 
only need to be fine-tuned to adapt to new spindle data. Thus, in the 
case of insufficient EEG samples, transfer learning is a very 
convenient and effective method for training deep neural networks 
(Öztürk et al., 2023), which can increase model convergence speed, 
enhance model generalizability, and improve model performance on 
new tasks (Pan and Yang, 2010).

The characteristics of sleep spindles, e.g., power, duration, and 
frequency, vary with age, health conditions, and species (Purcell et al., 
2017); thus, annotating spindles from EEG data across populations is 
costly. Considerable variations in the amplitude, duration, and 
frequency statistics of EEG or spindle data may exist among different 
EEG recordings. Therefore, this study examines the feasibility of 
employing transfer learning techniques in the study of sleep spindles, 
aiming to discern the efficacy of transferring knowledge gleaned from 
the spindle data of healthy subjects to individuals with insomnia. To 
the best of our knowledge, few studies have investigated the use of 
transfer learning in sleep spindle research. Kulkarni et  al. (2019) 
conducted preliminary research on the application of transfer learning 
in studying sleep spindles and demonstrated the robustness of transfer 
learning methods across different subjects, age and health groups, 
and species.

This study proposes an innovative method to analyze spindles, 
which can be  applied to different types and sources of datasets, 
yielding new possibilities for sleep research and clinical applications. 
The proposed method is particularly effective at handling unlabeled 
data and can provide valuable insights for advances in the field of sleep 
neuroscience. In addition, our findings are expected to provide 
support for broader sleep research and medical diagnosis.

This study focuses on the application of transfer learning in sleep 
spindle research. We collected sleep data from 20 healthy subjects and 
10 insomnia subjects and annotated the spindles in the C3 and C4 
channels. A new convolutional neural network (CNN) model is 
proposed to classify the data from the healthy and insomnia subjects, 
achieving satisfactory results. Then, through transfer learning, the 
model trained on the data from healthy subjects was applied to the 
data from the insomnia subjects. Two methods, i.e., partial and full 
transfer of the convolutional layers, were explored during the transfer 
process, and their classification results were compared. The findings 
demonstrate that partial transfer of the convolutional layers realized 
better adaptability to the new task while maintaining high classification 
accuracy. The findings of this study provide an effective approach to 
improve sleep spindle detection performance using transfer learning.

2 Data collection and feature analysis

2.1 Data collection and preprocessing

In this study, data collection took place at the Tianjin Medical 
University General Hospital and the Xuanwu Hospital of Capital 
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Medical University. A cohort of 20 healthy participants (nine 
males and eleven females; average age of 40.2 years) and 10 
participants with insomnia (six males and four females; average 
age of 38.6 years) were recruited for the EEG data acquisition 
process. Prior to conducting the experiment, the subjects were 
surveyed to acquire basic information, including gender, age, 
insomnia status, and insomnia duration. In addition, all 
participants were evaluated using the Pittsburgh Sleep Quality 
Index (PSQI) questionnaire. Table  1 shows the specific 
information of the 30 subjects. Note that a higher PSQI score 
indicates poorer sleep quality, where a score of 11 or higher 
indicates the insomnia, and lower scores are considered to 
be normal.

Polysomnography was employed to collect the relevant data. 
Figure 1 shows the international 10/20 standard electrode placement 
system (Herwig et  al., 2003), which was used to determine the 
electrode positions of the relevant EEG signals collected in this paper.

The data used in this study were acquired from the C3 and C4 
channels because spindles appear most frequently in these two central 
brain regions. In addition, these two channels are relatively close to 

each other, and the results are similar, which can be used as a reference 
and for further verification of the accuracy of the experimental data.

The EEG technicians annotated spindles in the experimental data, 
along with the channels where the spindles were located, start time of 
spindle, and duration of spindle. Among the used channels, the C3 
and C4 channels contained a higher number of spindles, which were 
relatively easy to identify. Based on the start time and duration marked 
by the technicians, we  found the midpoint of each spindle and 
extended it by 1.5 s to the left and right to obtain a 3 s data segment. 
Then, we obtained negative samples that did not contain spindles 
based on the part of the entire night’s sleep data without annotations. 
Note that variations in the testing room could lead to differences in 
the number of spindles due to differences in the external environment. 
Thus, when obtaining negative samples, it was necessary to obtain 
continuous 3 s segments equal to the number of annotated positive 
samples from the same channel of the same subject. After the above 
operations, we  obtained a balanced set of positive and negative 
samples for subsequent experimentation. The data acquisition process 
was the same for the insomnia subjects. A total of 31,718 spindles were 
obtained in the dataset of the normal subjects. In the dataset of the 
insomnia subjects, there were 13,960 spindles.

The collected data were preprocessed by MNE (Andersen, 2018). 
In the experiment, the sampling frequency was 1,024 Hz. For 
convenience, the data were downsampled to 100 Hz. Then, the FIR 
(Finite Impulse Respond Filter) (Gupta and Kumar, 2021) was applied 
to the collected EEG data using a Hamming window as a sliding 
window with a passband range of 0.3–30 Hz. Finally, the obtained data 
was z-score normalized.

2.2 Feature analysis

We conducted a detailed comparative analysis of the spindle and 
nonspindle data in both the time and frequency domains between the 
healthy subjects and insomnia subjects.

Figures 2A,B show the spindle and nonspindle data of a normal 
subject, respectively. As shown, the amplitude of the spindle ranges 
from −30 to 30 μV, with a distinct spindle segment lasting 
approximately 1 s. In addition, the amplitude fluctuation of the 
nonspindle data differs from the spindle data, and the shape of the 
nonspindle data differs significantly from the spindle data.

TABLE 1 Detailed information of the normal and insomnia subjects.

Healthy Sex PSQI Age Healthy Sex PSQI Age Insomnia Sex PSQI Age

1 Male 4 27 11 Female 4 36 1 Male 17 39

2 Female 2 27 12 Male 1 59 2 Female 20 42

3 Female 3 27 13 Female 3 35 3 Male 17 27

4 Female 2 47 14 Male 1 41 4 Female 20 24

5 Female 3 40 15 Male 2 32 5 Female 17 26

6 Female 2 39 16 Male 2 47 6 Female 20 60

7 Female 2 52 17 Male 1 26 7 Female 17 54

8 Female 1 26 18 Female 2 31 8 Male 20 40

9 Male 2 46 19 Female 3 46 9 Female 17 52

10 Female 2 60 20 Male 2 60 10 Male 17 46

FIGURE 1

The electrode placement system based on the international 10/20 
standard, A1 and A2 serving as reference electrodes.
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Figures 3A,B show the frequency domain plots of a spindle and a 
nonspindle in a normal subject, respectively, where colors closer to red 
indicate higher energy. Compared with the nonspindle, the spindle is 
clearer and more distinguishable. With increasing energy, the color 
transitions from blue to red, which indicates a significant increase in 
energy concentration in the sigma band of 10–18 Hz. The frequency 
domain of the nonspindle (Figure 3B) shows no obvious increase in 
energy above 10 Hz compared to the frequency domain of the spindle, 
and there is a red display of energy between 0–10 Hz.

Figure 4 shows images of a spindle in an insomniac subject. In 
the time domain image Figure 4A of the spindle in the insomnia 
patient, the waveform fluctuates greatly, from −10 to 40 μV 
(spanning 50 μV) and lasts for approximately 0.5 s. The sleep spindle 
of the insomnia subject is different in appearance, amplitude, 
frequency, and duration compared to those of the normal subjects. 
From the frequency domain plot for the insomniac participant 
shown in Figure 4B, compared with the sleep spindle of the normal 

subject plotted in Figure 3, the energy area is smaller, and the range 
of energy is smaller than that of the normal subject. However, the 
CNN can rapidly identify whether this is a sleep spindle based on 
the presence of the sigma band. Note that manual spindle detection 
in insomnia patients performed exclusively by experienced doctors 
or technicians would incur a huge workload.

3 Methods

3.1 Proposed model

In this section, we  present the proposed CNN model to 
identify sleep spindles. The architecture of the proposed CNN 
model is shown in Figure  5. Here, the preprocessed data 
underwent processing by a CNN model for feature extraction and 
classification purposes. Initially, the EEG data passed through 

FIGURE 2

Spindle and nonspindle data of a normal subject (A) Spindle of a normal subject (B) Nonspindle of a normal subject.

FIGURE 3

Frequency domain plots of the spindle and nonspindle in a normal subject (A) Frequency domain of a spindle (B) Frequency domain of a nonspindle.
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two convolutional layers for feature extraction, followed by an 
average pooling layer to diminish feature dimensions while 
preserving vital information. Then, the data were passed through 
two additional convolutional layers for deeper feature extraction, 
with the extracted features subsequently undergoing compression 
through an average pooling layer. Finally, the data were input to 
a convolutional layer for advanced feature extraction, and the 
resultant features were classified via fully-connected layers to 
obtain the final result. Through this hierarchical feature 
extraction and abstract representation, the proposed model could 
thoroughly explore the intrinsic patterns of input sleep spindles 
and perform classification.

The proposed CNN primarily comprises convolutional layers, 
rectified linear unit (ReLU) layers, batch normalization (BatchNorm) 
layers, average pooling layers, fully-connected layers, and a SoftMax 
layer. For the target EEG data, the convolution operation can 
effectively extract features from the signal. In the convolutional layers, 
the convolution operation relies on a sliding window, which allows the 
model to further extract the abstracted features.

The ReLU layer, is used to enhance the nonlinear expressive 
capability of a network. This function transforms negative input values 
to 0 while preserving positive input values, thereby enhancing the 
expressive capacity of the network. Compared to other activation 
functions, this unit provides better learning performance and faster 
convergence speed. The ReLU function is expressed as Eq. 1:

 ReLU ,x x( ) = ( )max 0  (1)

where x  represents the input value.
The average pooling layer reduces the dimensionality of the EEG 

data, decreases its complexity, reduces the computational requirements, 
and enhances the model’s generalizability. The BatchNorm layer is a 
special normalization layer designed to address internal covariate shift 
and the gradient vanishing problem. It makes network training more 
stable and efficient by normalizing the data of each batch. Following 
feature extraction, the fully-connected layer is implemented to integrate 
these features and prepare them for final classification. Finally, the 

FIGURE 4

Time and frequency domain plots of a spindle in an insomnia subject (A) Time domain of a spindle (B) Frequency domain of a spindle.

FIGURE 5

Architecture of the proposed CNN model.
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SoftMax layer maps the output of the fully-connected layer to a 
probability distribution, providing the final classification result.

3.2 Transfer learning in insomnia subjects

The core elements of transfer learning encompass the source and 
target domains. In this study, the data acquired from the healthy 
individuals served as the source domain and those acquired from the 
insomnia subjects served as the target domain. For the transfer 
learning experiment, we  utilized 13,960 spindles and 13,960 
nonspindles from the insomnia subjects. This experiment was 
performed to apply the knowledge learned from the CNN of normal 
individuals to realize the detection of spindles in the insomnia subjects.

In simple terms, transfer learning (Agarwal et al., 2021) refers to 
the use of methods that have already solved problems to address 
unresolved problems. This approach can significantly reduce time 
costs when solving problems while yielding relatively stable and 
reliable training results. In this experiment, transfer learning involved 
applying the features of spindles learned by the CNN in training to the 
data of the insomnia subjects. Spindles are considered an important 
factor in the study of sleep disorders in insomnia subjects. However, 
their extraction primarily relies on the experience of doctors, which 
is a time-consuming and laborious process. Using transfer learning, 
the detection results can be  obtained rapidly, improving training 
efficiency and establishing a foundation for future clinical applications.

To assess the effectiveness of learning, we  conducted two 
experiments to validate the effectiveness of using a pretrained model 
on the normal subjects. The first experiment involved transferring 
only the first four layers of the model and retraining and testing the 
remaining convolutional and classification layers. In the second 
experiment, the convolutional layers were transferred in full, with only 
the classification layer being trained and tested. Figure 6 shows the 
transfer learning method of fully transferring the convolutional layers 
of the model.

We trained the model using spindles acquired from the 
normal subjects, which were then transferred to the spindles of 
the insomnia subjects. This approach can avoid restarting the 
training process, thereby reducing both training time and 
computational costs. In addition, the model can utilize existing 
knowledge and experience to adapt to the new task quickly, 
which greatly improves learning efficiency and enhances 
generalizability to better adapt to different data distributions 
and scenarios.

3.3 Evaluation metrics

In this paper, the precision, recall, accuracy, F1 score, and the 
AUC are employed to evaluate the model. These metrics provide clear 
assessments of the performance of automated detection algorithms. 
And the equations are shown in Eqs. 2–5.

Accuracy is the ratio of the samples predicted correctly by the 
model to the total number of samples, showcasing the model’s overall 
predictive performance. Accuracy is calculated as follows.

 
Accuracy

TP TN

TP FP TN FN
=

+
+ + +  

(2)

Recall signifies the fraction of spindles detected correctly by the 
model, indicating its capability to identify all genuine instances.

 
Recall

TP

TP FN
=

+  
(3)

The F1 score is the harmonic mean of precision and recall, 
which is used to evaluate the performance of the model more 
comprehensively. If both precision and recall are high, the F1 
score will also be high, indicating that the model’s performance 
is good.

FIGURE 6

Transfer learning by fully transferring convolutional layers.
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F score

Precision Recall

Precision Recall
1 2= ∗

∗
+  

(4)

Precision represents the proportion of samples judged by the 
model to be spindles that are indeed spindles.

 
Precision

TP

TP FP
=

+  
(5)

Here, true positive (TP) represents the count of positive 
samples correctly predicted as positive by the model, and true 
negative (TN) represents the count of negative samples correctly 
predicted as negative. False positive (FP) represents the count of 
negative samples predicted incorrectly as positive, and false 
negative (FN) indicates the count of positive samples predicted 
incorrectly as negative. The AUC, which stands for the area under 
the ROC (receiver operating characteristic) curve, assesses the 
model’s ability to discriminate between positive and negative 
samples. A model with an AUC closer to 1 indicates superior 
classification performance.

3.4 Experimental setup

To train and test the CNN, we set the number of epochs to 100 
and the batch size to 128. We employed the AdamW optimizer with 
an initial learning rate of 0.1, which was adjusted to 0.75 times the 
original rate every three epochs. In addition, we conducted five-fold 
cross-validation. For a comprehensive validation of the model’s 
performance, the same five-fold cross-validation approach was 
employed during transfer learning using the same settings.

4 Results

4.1 Results of spindle classification in 
normal subjects

The proposed CNN model was used to classify spindles in the 
normal subjects. Here, five-fold cross-validation was conducted to 
validate model performance, and the results are given in Table 2.

As shown in Table 2, the proposed classification model achieved 
an average accuracy of 93.68% with a standard deviation of 0.42% after 
five-fold cross-validation. The first fold exhibited the highest accuracy 
of 94.14%, which is 0.46% higher than the average. The lowest 

accuracy was observed in the third fold at 93.15%, which is 0.99% 
lower than that in the first fold and 0.53% below the average. The 
average recall from the five-fold cross-validation was 94.53% ± 0.59%, 
with the fifth fold achieving the highest recall at 95.62%, thereby 
exceeding the average by 1.09%. Conversely, the lowest recall was seen 
in the third fold at 94.07%, which is 1.55% lower than that in the first 
fold and 0.46% less than the average. The F1 score from the five-fold 
cross-validation was 93.73% ± 0.42%, with the fifth fold achieving the 
best performance at 94.19%. In addition, the average precision  
for spindle recognition in the five-fold cross-validation was 
92.95% ± 0.52%, with the first fold achieving the best performance at 
93.65% and the third fold obtaining the worst result at 92.36%. The 
average AUC was 0.9818 ± 0.0022.

By training and testing the proposed model, we  achieved 
improved and stable results. The results demonstrated an improvement 
compared to those of similar previous CNN models and were 
relatively stable in the five-fold cross-validation (Table 2), with a small 
fluctuation in standard deviation. This validates the feasibility of the 
experimental results and verifies the usability of the experimental data.

Fine-tuning the parameters of the proposed CNN model, that 
improved the final results and realized high accuracy, providing a solid 
foundation for subsequent transfer learning tasks.

4.2 Classification results for insomnia 
subjects

The spindles of 10 insomnia subjects were classified by the 
proposed model, and the results of the five-fold cross-validation are 
shown in Table 3.

As shown in Table  3, the average accuracy for the insomnia 
subjects reached 92.77%, with the best performance observed in the 
third fold at 93.57%. The worst accuracy was recorded in the fifth fold 
at 91.35%, which is 1.42% lower than the average. The average recall 
was 94.17% ± 0.50%, with the third fold performing the best at 94.73%, 
which is 0.56% higher than the average. The F1 score for the five-fold 
cross-validation was 92.87% ± 0.82%, with the third fold performing 
the best at 93.64%. The average precision of the model reached 
91.61% ± 1.21%. In addition, the average AUC was 0.9791, with a 
standard deviation of 0.0032.

The results shown in Tables 2, 3 indicate that the classification results 
obtained for the normal subjects were generally better than those obtained 
for the insomnia subjects. This finding may be  attributed to several 
factors. First, spindles from the normal subjects may possess more stable 
and consistent features, making them easier to distinguish, whereas 

TABLE 2 Five-fold cross-validation results for normal subjects.

Accuracy (%) Recall (%) F1 score (%) Precision (%) AUC

1 94.14 94.70 94.17 93.65 0.9843

2 93.76 94.12 93.78 93.45 0.9817

3 93.15 94.07 93.21 92.36 0.9786

4 93.23 94.13 93.29 92.47 0.9803

5 94.10 95.62 94.19 92.80 0.9839

Average (standard 

deviation)

93.68 (0.42) 94.53 (0.59) 93.73 (0.42) 92.95 (0.52) 0.9818 (0.0022)

Bolded text indicates the best result in this column.
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spindles from the insomnia subjects may exhibit certain variations or 
abnormalities, making them more challenging to differentiate. In 
addition, the poor performance for the insomnia subjects could also 
be influenced by the relatively smaller number of spindles.

4.3 Classification results of transfer 
learning

The model trained on the data from the normal subjects was 
applied to the data of insomnia subjects and then fine-tuned. To 
determine the most suitable parameter transfer scheme to establish 
the spindle recognition model, we conducted different experiments 
focusing on the extent of model parameter transfer. These experiments 
included full transfer of the convolutional layers and transfer of only 
the first four convolutional layers. The results were then analyzed.

We transferred all convolutional layers, retrained the classification 
layer, and conducted five-fold cross-validation. The results are shown 
in Table 4.

After transferring all convolutional layers, the average accuracy was 
91.41% with a standard deviation of 0.24%. The best result was obtained 
in the fifth fold, reaching 91.60%, which is 0.19% higher than the 
average. The worst result was observed in the third fold at 91.00%, 
which is 0.60% lower than that in the fifth fold and 0.41% lower than 
the average. In terms of recall, the average value was 91.70% ± 0.46%. 
The highest recall value was obtained in the first fold at 92.31%, being 
0.61% higher than the average. The lowest recall value was obtained in 
the fifth fold at 91.10%. In addition, the average F1 score for the five-fold 
cross-validation was 91.45% with a standard deviation of 0.21%. Note 
that the highest F1 score was observed in the second and fifth folds, 
reaching 91.57%, and the lowest F1 score was obtained in the third fold 

at 91.08%. The average precision was 91.20% ± 0.64%. The AUC 
obtained from the five-fold cross-validation reached an average of 
0.9701 ± 0.0014. The highest AUC value was obtained in the first fold at 
0.9717, being 0.0016 higher than the average, and the lowest AUC value 
was obtained in the third fold at 0.9678, which is 0.0039 lower than that 
in the first fold and 0.0023 lower than the average.

To further investigate the application of transfer learning in 
spindle detection, we transferred only the parameters of the first four 
layers and retrained the remaining convolutional layers and the 
classification layer. The results of the corresponding five-fold cross-
validation are shown in Table 5.

When transferring only the first four layers, the average accuracy 
was 92.18% with a standard deviation of 0.43%. The highest accuracy 
was achieved in the first fold at 92.80%, which is 0.62% higher than 
the average. The average recall was 92.98% ± 0.92%. The highest recall 
was obtained in the first fold at 94.28%, exceeding the average by 1.3%. 
In contrast, the lowest recall was observed in the fourth fold at 91.92%, 
which is 1.06% lower than the average. The average F1 score for the 
five-fold cross-validation was 92.25% with a standard deviation of 
0.43%. The highest F1 score was observed in the first fold at 92.92%, 
and the lowest was observed in the third fold at 91.78%. The average 
precision was 91.55% ± 0.81%. In addition, the AUC obtained from 
the five-fold cross-validation had an average value of 0.9745 ± 0.0024. 
Here, the best result was achieved in the first fold, reaching 0.9782, 
which was 0.0037 higher than the average, and the lowest AUC was 
observed in the third fold at 0.9713, which was 0.0069 lower than that 
in the first fold and 0.0032 lower than the average.

Compared to fully transferring convolutional layers, the model with 
only the first four layers transferred demonstrated improvements in all 
evaluation metrics. This mode realized a 0.77% increase in accuracy, 
1.28% increase in recall, 0.8% increase in F1 score, 0.35% increase in 

TABLE 4 Results of transferring all convolutional layers.

Accuracy (%) Recall (%) F1 score (%) Precision (%) AUC

1 91.48 92.31 91.56 90.82 0.9717

2 91.53 91.88 91.57 91.26 0.9703

3 91.00 91.78 91.08 90.39 0.9678

4 91.44 91.42 91.45 91.48 0.9702

5 91.60 91.10 91.57 92.05 0.9706

Average (standard 

deviation)

91.41 (0.24) 91.70 (0.46) 91.45 (0.21) 91.20 (0.64) 0.9701 (0.0014)

Bolded text indicates the best result in this column.

TABLE 3 Five-fold cross-validation results for insomnia subjects.

Accuracy (%) Recall (%) F1 score (%) Precision (%) AUC

1 92.68 94.13 92.78 91.47 0.9789

2 92.87 94.48 92.99 91.53 0.9775

3 93.57 94.73 93.64 92.58 0.9833

4 93.36 94.09 93.40 92.73 0.9810

5 91.35 93.41 91.52 89.71 0.9749

Average (standard 

deviation)

92.77 (0.87) 94.17 (0.50) 92.87 (0.82) 91.61 (1.21) 0.9791 (0.0032)

Bolded text indicates the best result in this column.
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precision, and 0.0044 increase in AUC. These results suggest to some 
extent that the basic features extracted by the first four layers of the 
neural network are common to the spindles of the normal and insomnia 
subjects. Transferring only the first four layers may yield better results, 
and the latter layers of the neural network may focus more on extracting 
specific features unique to the spindles of the normal and 
insomnia subjects.

From the results given in Tables 2, 4, 5, it can be observed that 
whether conducting comprehensive transfer of convolutional layers or 
only transferring the first four convolutional layers, the overall values of 
the evaluation metrics for spindles of the insomniac subjects are 
reduced compared to those of the normal subjects. This is because the 
spindles of the normal subjects are relatively standardized and easy to 
distinguish in terms of amplitude and frequency. However, the spindles 
of the insomnia subjects may not be  recognized due to significant 
changes in amplitude or failure to reach corresponding frequency 
indexes. Nevertheless, the results are still satisfactory.

From the results shown in Tables 3–5, it can be observed that the 
model trained and tested directly on the data from the insomniac 
subjects yielded slightly better performance compared to using transfer 
learning because there are certain differences in the feature distributions 
of the data from the insomnia and normal subjects. Transfer learning 
can partially compensate for the differences between different datasets; 
however, it cannot completely eliminate such differences. In addition, 
the data from the insomnia subjects may contain some features that are 
specific to insomnia, and the model trained directly on this dataset may 
better capture these features, achieving slightly better performance in 
the classification of the insomnia subjects.

From the results shown in Tables 4, 5, it can be observed that the 
results obtained by transferring only the first four convolutional layers 
are better than those obtained by transferring all convolutional layers. 
This may be due to the fact that the first four convolutional layers 
extract the basic features of the spindles, which are consistent across 
the spindle data from the normal and insomnia subjects. As the 
number of layers increases, higher-level features become more specific 
and may be more closely related to the subjects’ state (either normal 
or insomnia subjects). The neural network may be able to extract 
unique features of the spindles from the normal and insomniac 
subjects; thus, full transfer may not perform effectively.

5 Discussion

In this study, we collected EEG data from 30 subjects, including 20 
normal and 10 insomniac subjects, with spindles annotated for the C3 

and C4 channels of all subjects. Separate analyses were conducted on 
the spindles of normal and insomniac subjects. In addition, a CNN 
model is proposed, and cross-subject training and testing were 
conducted using data from the normal subjects. The results of five-fold 
cross-validation demonstrated an accuracy of 93.68%, average recall of 
94.53%, F1 score of 93.73%, average precision of 92.95%, and AUC of 
0.9818. Similarly, cross-subject training and testing were conducted 
using spindles from the insomnia subjects; the results of five-fold cross-
validation demonstrated that the accuracy of the model reached 92.77%, 
with an average recall of 94.17%, F1 score of 92.87%, precision of 
91.61%, and AUC of 0.9791. These results demonstrate the effectiveness 
of the data collected in this study and the proposed CNN model.

We also investigated the application of transfer learning in spindle 
analysis using a CNN model trained on data from the normal subjects 
to detect spindles in insomnia patients. When transferring all 
convolutional layers, the model achieved an average accuracy of 91.41%, 
an average recall of 91.70%, an average F1 score of 91.45%, and an 
average precision of 91.20%. In addition, the AUC of the model was 
0.9701. These results indicate that transfer learning can be applied to 
spindle detection in both normal and insomnia subjects and can obtain 
satisfactory results. To further investigate the impact of different transfer 
degrees on the results, an experiment was conducted by only 
transferring the first four layers. Here, we  found that the average 
accuracy in five-fold cross-validation was 92.18%, the recall was 92.98%, 
the average F1 score was 92.25%, the precision was 91.55%, and the 
AUC was 0.9745. The transfer learning results indicate that transferring 
only the first four layers yields better results compared to transferring 
all of the convolutional layers. This may be because the features learned 
by the initial layers are more general and encompass common features 
present in spindles, while the subsequent convolutional layers may 
be more specialized to learn specific features that are relevant to the 
original task. Spindle data from normal and insomnia subjects may 
be similar in some common features; thus, transferring the initial layers 
selectively can utilize the generalized features of the pretrained model 
effectively, thereby enhancing the model’s performance on the data from 
insomnia subjects.

The proposed method has exhibited favorable outcomes in 
spindle identification for individuals with and without sleep 
disorders, as well as in the domain of transfer learning. Compared 
to the SpindleNet model (Kulkarni et  al., 2019), the F1 score 
obtained by the proposed model exhibits an improvement of 
approximately 17%. In addition, in contrast to an existing fusion 
algorithm (Chen et al., 2023), the accuracy of the proposed model 
demonstrates an enhancement of approximately 2%. These findings 
signify that the proposed model exhibits superior performance and 

TABLE 5 Five-fold cross-validation results for transferring only the first four layers.

Accuracy (%) Recall (%) F1 score (%) Precision (%) AUC

1 92.80 94.28 92.92 91.59 0.9782

2 92.26 92.42 92.29 92.16 0.9741

3 91.62 93.46 91.78 90.17 0.9713

4 91.99 91.92 92.00 92.08 0.9742

5 92.21 92.81 92.27 91.73 0.9747

Average (standard 

deviation)

92.18 (0.43) 92.98 (0.92) 92.25 (0.43) 91.55 (0.81) 0.9745 (0.0024)

Bolded text indicates the best result in this column.
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efficacy in the spindle recognition task. Using transfer learning, the 
knowledge obtained from a model trained on spindles from normal 
subjects can reduce the time and computational resources required 
to train a model for a new task significantly. By fine-tuning the 
model using spindles from insomniac subjects, the model can better 
adapt to the specific task, thereby enhancing the model’s 
generalizability on unknown data.

There are some limitations to the proposed methods. Firstly, 
this study only collected data from 30 participants and extracted 
spindles for analysis and classification. Thus, the results may 
be influenced by the small sample size. Secondly, this study only 
focused on analyzing spindles from the C3 and C4 channels. 
Therefore, in the future, it will be necessary to expand the sample 
size to improve the reliability and generalizability of the results 
obtained in the current study. In addition, we  will consider 
additional channels to further analyze the differences in spindle 
characteristics among different subjects. Furthermore, the 
subsequent work could incorporate additional sleep spindle 
features, e.g., amplitude, density, and frequency, to explore their 
role and significance in the sleep process.

The proposed CNN model performed well in the spindle wave 
recognition task, achieving excellent results for normal participants 
and insomnia participants, and demonstrating potential in transfer 
learning. The findings of this study provide strong support and 
reference for future research and the practical application of similar 
spindle recognition technologies.

6 Conclusion

In this paper, we propose a CNN model to classify sleep spindles 
in healthy individuals, yielding an accuracy of 93.68%, a recall of 
94.53%, and an AUC of 0.9373. In addition, the proposed model 
achieved a classification accuracy of 92.77% on insomnia subjects. 
These outcomes underscore the efficacy of both the collected dataset 
and the proposed CNN model.

Using transfer learning, the CNN model trained on spindle data 
from healthy subjects was transferred to spindle data from 
individuals with insomnia. This approach facilitated a faster 
training process, conservation of both computational resources and 
time, and bolstered the model’s generalizability, thereby enhancing 
performance on new tasks. When transferring all convolutional 
layers, the model obtained an average accuracy of 91.41%, while 
transferring only the initial four convolutional layers resulted in an 
average accuracy of 92.18%. These results highlight the applicability 
of transfer learning in spindle recognition, with superior 
recognition performance observed when transferring only a subset 
of the convolutional layers. These findings exhibit potential for 
advancing the automated detection of clinical sleep spindles, 
minimizing labor costs, aiding in sleep disorder diagnoses, and 
elevating diagnosis and treatment standards.
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