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Introduction: Recent evidence suggests the blood-to-brain influx rate (K1) 
in TSPO PET imaging as a promising biomarker of blood–brain barrier (BBB) 
permeability alterations commonly associated with peripheral inflammation and 
heightened immune activity in the brain. However, standard compartmental 
modeling quantification is limited by the requirement of invasive and laborious 
procedures for extracting an arterial blood input function. In this study, 
we validate a simplified blood-free methodologic framework for K1 estimation 
by fitting the early phase tracer dynamics using a single irreversible compartment 
model and an image-derived input function (1T1K-IDIF).

Methods: The method is tested on a multi-site dataset containing 177 PET 
studies from two TSPO tracers ([11C]PBR28 and [18F]DPA714). Firstly, 1T1K-IDIF 
K1 estimates were compared in terms of both bias and correlation with standard 
kinetic methodology. Then, the method was tested on an independent sample 
of [11C]PBR28 scans before and after inflammatory interferon-α challenge, and 
on test–retest dataset of [18F]DPA714 scans.

Results: Comparison with standard kinetic methodology showed good-to-
excellent intra-subject correlation for regional 1T1K-IDIF-K1 (ρintra  =  0.93  ±  0.08), 
although the bias was variable depending on IDIF ability to approximate blood 
input functions (0.03–0.39  mL/cm3/min). 1T1K-IDIF-K1 unveiled a significant 
reduction of BBB permeability after inflammatory interferon-α challenge, 
replicating results from standard quantification. High intra-subject correlation 
(ρ  =  0.97  ±  0.01) was reported between K1 estimates of test and retest scans.

Discussion: This evidence supports 1T1K-IDIF as blood-free alternative to 
assess TSPO tracers’ unidirectional blood brain clearance. K1 investigation could 
complement more traditional measures in TSPO studies, and even allow further 
mechanistic insight in the interpretation of TSPO signal.

OPEN ACCESS

EDITED BY

Adriaan Anthonius Lammertsma,  
University Medical Center Groningen, 
Netherlands

REVIEWED BY

Maqsood Yaqub,  
VU Medical Center, Netherlands
Catriona Wimberley,  
University of Edinburgh, United Kingdom

*CORRESPONDENCE

Lucia Maccioni  
 lucia.maccioni.1@phd.unipd.it  

Mattia Veronese  
 mattia.veronese@unipd.it

RECEIVED 04 March 2024
ACCEPTED 02 July 2024
PUBLISHED 22 July 2024

CITATION

Maccioni L, Carranza Mellana M, Brusaferri L, 
Silvestri E, Bertoldo A, Schubert JJ, Nettis MA, 
Mondelli V, Howes O, Turkheimer FE, 
Bottlaender M, Bodini B, Stankoff B, 
Loggia ML and Veronese M (2024) A 
blood-free modeling approach for the 
quantification of the blood-to-brain tracer 
exchange in TSPO PET imaging.
Front. Neurosci. 18:1395769.
doi: 10.3389/fnins.2024.1395769

COPYRIGHT

© 2024 Maccioni, Carranza Mellana, 
Brusaferri, Silvestri, Bertoldo, Schubert, Nettis, 
Mondelli, Howes, Turkheimer, Bottlaender, 
Bodini, Stankoff, Loggia and Veronese. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 22 July 2024
DOI 10.3389/fnins.2024.1395769

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1395769&domain=pdf&date_stamp=2024-07-22
https://www.frontiersin.org/articles/10.3389/fnins.2024.1395769/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1395769/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1395769/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1395769/full
mailto:lucia.maccioni.1@phd.unipd.it
mailto:mattia.veronese@unipd.it
https://doi.org/10.3389/fnins.2024.1395769
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1395769


Maccioni et al. 10.3389/fnins.2024.1395769

Frontiers in Neuroscience 02 frontiersin.org

KEYWORDS

BBB, IDIF, kinetic modeling, PET, TSPO, neuroinflammation

1 Introduction

Inflammatory processes are involved in the pathophysiology of a 
wide spectrum of brain disorders (Albrecht et al., 2016; Guzman-
Martinez et  al., 2019) The prolonged activation of microglia and 
astrocytes, the resident immune cells in the brain, and the infiltration 
of peripheral immune cells in the brain parenchyma have been 
associated with the onset and/or progression of neurodegenerative 
disorders  - such as Alzheimer’s disease, Parkinson’s disease and 
multiple sclerosis -, neuropsychiatric disorders - such as schizophrenia 
and depression -, but also stroke, and chronic pain (Loggia et al., 2015; 
Bauer and Teixeira, 2019; Goldsmith et al., 2019; Nutma et al., 2019; 
Dimitrova-Shumkovska et al., 2020; Han et al., 2021).

The growing interest in neuroinflammation has motivated the 
introduction in the past decade of a substantial number of imaging 
biomarkers designed to detect in vivo brain inflammation (Vicente-
Rodríguez et al., 2021).

Positron Emission Tomography (PET) imaging represents a 
powerful tool for the in vivo characterization of neuroinflammatory 
processes (Turkheimer et al., 2015; Werry et al., 2019; Jain et al., 2020). 
The majority of PET imaging studies of neuroinflammation utilize 
radiotracers targeting the 18 kDa translocator protein (TSPO), which 
is expressed in activated microglia, and also in astrocytes and 
endothelial cells, and is upregulated in neuro-immune responses (Jain 
et al., 2020). Despite its limitations (Vivash and O’Brien, 2016; De 
Picker and Haarman, 2021; Zhang et al., 2021; Nutma et al., 2023), 
TSPO PET is currently the most specific method for imaging 
neuroinflammation in the living human brain.

Compartmental modeling is the standard methodology for the 
quantification of dynamic PET data: it provides a mathematical 
description of the kinetic of the radiotracer within the target tissues as a 
function of the tracer concentration in the plasma over time. Plasma 
tracer activity commonly defines the input function of the model, while 
the model parameters describe the tracer kinetics (Bertoldo et al., 2014). 
In the case of TSPO PET tracers, the most widely used kinetic model is 
composed of two reversible compartments and defined by 4 rate 
constants (i.e., K1, k2, k3, k4; Turkheimer et al., 2015; Wimberley et al., 
2021; Figure 1A), which can be extended with the inclusion of a vascular 
component (Rizzo et  al., 2014). If the input is known, the model 
parameters can be estimated by fitting the model to the measured time 
activity curves (TACs). Model parameters are then combined to quantify 
metrics of interest such as the volume of distribution (VT,; Innis et al., 
2007), which is widely employed in TSPO PET studies as a proxy of the 
density of TSPO (Rizzo et al., 2014; Marques et al., 2021).

Among these parameters, is the influx rate constant K1 (mL/cm3/
min). This metric denotes the rate at which the tracer crosses the 
blood–brain barrier (BBB) from plasma and, according to Fick’s law, 
can be expressed as the product of cerebral blood flow and tracer BBB 
extraction fraction (Renkin, 1959; Crone, 1963).

The BBB represents the main regulatory interface between the 
central nervous system and the immune system (Erickson et al., 2012). 
A growing body of evidence indicates its modulation or disruption as 

a common hallmark of neurodegeneration in neuroinflammatory 
conditions (Takata et al., 2021): a likely protective reduction of BBB 
permeability has been suggested as a response to mild peripheral 
cytokine levels (Turkheimer et al., 2023), while BBB leakage has been 
demonstrated in several brain disorders, such as multiple sclerosis 
(Kirk et al., 2003), neurodegenerative disorders (Zlokovic, 2008), and 
chronic inflammatory pain (Brooks et al., 2005).

The reasons above have motivated a recent interest in the 
investigation of K1 alterations. On the other hand, kinetic modeling in 
TSPO PET imaging is hampered by logistical considerations linked to 
the necessity to accurately quantify the metabolite-corrected blood 
input function. Blood input function requires invasive arterial 
sampling, which can cause discomfort to the participants, and laborious 
procedures for the counting of blood and plasma tracer concentrations, 
the extraction and quantification of radio-metabolites as well as the 
measurement of the tracer free plasma fraction (fp), i.e., the fraction of 
the tracer not bound to plasma proteins (Tonietto et al., 2016, 2019).

Many alternative blood-free approaches have been proposed in 
the past years to overcome the practical limitations of arterial blood-
based methods. Among these is the use of an image-derived input 
function (IDIF). However, the actual use of the IDIF approach in 
research studies has been limited by several issues, primarily the 
challenge of deriving from the image the information on the tracer 
parent plasma fraction (PPf; Zanotti-Fregonara et al., 2011a, b; Volpi 
et al., 2023).

In this work, we  propose a new non-invasive and simplified 
methodological framework for the computation of the rate K1, that 
consists of fitting a limited time window of the tracer kinetic after 
tracer injection (within 10 min), with a simplified model composed of 
a single irreversible compartment and a non-invasive IDIF (1T1K-
IDIF). Validation was performed on two second-generation TSPO 
PET tracers, namely [11C]PBR28 and [18F]DPA714, on dynamic scans 
gathered from three different PET centers (the Centre for Neuroimaging 
Sciences at King’s College London, the Athinoula A. Martinos Center of 
Biomedical Imaging, Massachusetts General Hospital, and the Paris 
Brain Institute, Sorbonne University). Model evaluation encompassed 
three main steps: (1) comparison of 1T1K-IDIF to standard-reference 
2T4K-Cp kinetic modeling; (2) application of 1T1K-IDIF approach to 
the study of K1 alterations linked to peripheral inflammation on [11C]
PBR28 PET scans for which a statistically significant reduction of the 
gray matter influx rate measured by the standard kinetic methodology 
was previously reported (Turkheimer et al., 2021); (3) evaluation of 
the reproducibility of 1T1K-IDIF estimates on test–retest [18F]DPA714 
PET data.

2 Materials and methods

2.1 Methodological framework

The current standard for the quantification of the influx rate 
constant for TSPO PET tracers is the use of the reversible two tissues 
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compartmental model, with metabolite corrected plasma input 
function (Cp), to fit the tissue whole-dynamic TAC (2T4K-Cp; 
Figure 1A).

Here, we propose a simplified quantification approach consisting 
of the estimation of the K1 kinetic parameter via fitting of the first 
minutes (within 10 min) of the tracer kinetic in the tissue. This 
methodological framework was readapted from a previous research 
project performed in the context of β-amyloid PET imaging (Silvestri, 
2018). With the aim of deriving a completely non-invasive procedure, 
the method relies on 3 different assumptions:

 1 Within the first minutes after the injection, it is reasonable to 
assume that exchanges between the first and the second 
compartment and the venous efflux have not yet occurred, or 
if it is so, that their effect on the dynamics is negligible. In this 
framework, the kinetic of the tracer is mostly reflecting the 
tracer influx from blood to the brain parenchyma and the two 
tissues reversible compartment model can be  reduced to a 
model with only one irreversible compartment. The model 
equation can be further simplified through the deletion of the 
parametrization of the fraction of blood volume (Vb = 0), which 

brings to the definition of the final linear model for the 
estimation of K1 parameter (1T1K-Cp, Figure 1B). Of note, the 
assumption of null Vb, while commonly applied in the context 
of brain PET parametric imaging (voxel resolution), represents 
a relevant approximation in the case of region-of-interest (ROI) 
analysis.

 2 In a limited time-window after tracer injection, the production 
of metabolites from the parent radiotracers is still limited 
(Tonietto et al., 2016; Peyronneau et al., 2023). In the case of 
many PET tracers, it is possible to identify a specific time 
window after tracer injection in which the impact of the 
metabolites on the PPf is still negligible (<10%) as compared to 
the total parent. If the concentration of metabolites is negligible, 
we can also assume an even tracer distribution between red 
blood cells and plasma that is generally, but not solely, driven 
by polar radioactive molecules. Hence, we  can assume the 
whole blood tracer concentration (Cb) as a reasonable 
approximation of the parent plasma tracer concentration and 
use it as the input function of the model (1T1K-Cb; Figure 1C).

 3 In this framework, by the adoption of a robust protocol for 
image-derived input function extraction and by assuming that 

FIGURE 1

Simplified blood-free methodological framework for K1 estimation. Panel A show the gold standard compartmental model for kinetic modeling of 
TSPO radiotracers; panels B–D show the simplified models for the K1 estimation derived when considering a limited time window for model fitting 
[Cp  =  arterial parent plasma input function, Cb  =  arterial whole blood input function, IDIF  =  image derived input function].

https://doi.org/10.3389/fnins.2024.1395769
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Maccioni et al. 10.3389/fnins.2024.1395769

Frontiers in Neuroscience 04 frontiersin.org

the computed IDIF is a good approximation of the Cb, it can 
be adopted as the input function of the compartmental model 
(1T1K-IDIF; Figure  1D), providing a completely blood 
sampling free method for the estimation of the K1 parameter. 
IDIF from brain PET protocols is known to generally represent 
a poor alternative to Cp, especially in the case of low spatial and 
temporal resolution of dynamic images of traditional brain 
PET scanners (Volpi et al., 2023). This third assumption is thus 
expected to be the most penalizing, with performances of the 
K1 estimation highly dependent on the ability to retrieve a 
reliable estimate of the IDIF.

2.2 Study participants and data acquisition

Five datasets were adopted in this study. In total, 159 [11C]PBR28 
PET imaging scans from two independent research centers (King’s 
College London (KCL) and Athinoula A. Martinos Center for Biomedical 
Imaging, Massachusetts General Hospital (MGH)) and 18 [18F]DPA714 
scans from the Paris Brain Institute of Sorbonne University (ICM) 
were included.

All PET imaging sessions were acquired with a continuous dynamic 
acquisition, from 0 to 90 min after a bolus injection of the tracer. For all 
participants (but one subject from the ICM [18F]DPA714 dataset), arterial 
blood data were sampled via radial artery catheter at the time of the scan 
and corrected for metabolites. PET data reconstruction varied across 
imaging sites and scanner types, but all included correction for random 
and scattered coincidences and tissue attenuation.

Given the genetic rs6971 polymorphism of the TSPO gene, which 
conveys different affinity profiles for TSPO radioligands [high affinity 
binder (HAB), mixed affinity binder (MAB), or low affinity binder 
(LAB; Wimberley et  al., 2021)], all participants were genotyped 
before scanning, and only HABs and MABs were retained for 
further analysis.

With the purpose of tissue segmentation and ROIs parcellation, 
structural T1-weighted (T1w) Magnetic Resonance (MR) images were 
also acquired for each participant (simultaneously to PET acquisition 
at MGH, in separate visits at KCL and ICM). Studies were approved by 
local ethics committees and institutional review boards prior to start, 
and all participants provided informed consent after reading a full 
description of the study.

2.2.1 KCL [11C]PBR28 data
A total of 108 dynamic [11C]PBR28 PET and MR images were 

shared by KCL. Available data included a dataset of 94 scans (Dataset 
1) collected in healthy volunteers and psychiatric patients gathered 
from KCL historical database (Age: 34 ± 14 years; Sex: 62 male and 32 
female; Genotype: 63 HABs and 31 MABs; Clinical population: 65 
healthy controls, 14 subjects at ultra-high risk of psychosis, 15 patients 
with schizophrenia). A second dataset (Dataset 2) was composed of 
[11C]PBR28 dynamic PET and MR scans on 7 healthy controls (Age: 
30 ± 6 years; Sex: 7 male; Genotype: 7 HABs), who each received scans 
before and 24 h after an immune challenge performed via 
subcutaneous injection of IFN-α 2a (Roferon-A 3 million IU/0.5 mL 
solution for injection).

Details on participants and data acquisition for the two datasets 
can be found in Bloomfield et al. (2016); Dahoun et al. (2019); and 

Nettis et  al. (2020). In brief, all acquisition protocols included an 
initial low-dose computer tomography (CT) scan, acquired for 
attenuation and scatter correction, using a Siemens Biograph™ 
TruePoint™ PET·CT scanner (Siemens Medical Systems, Germany; 
transaxial field of view (FOV): 60.5 cm, axial FOV: 16.2 cm), followed 
by a 90 min dynamic PET scan after a bolus injection of [11C]PBR28 
(Injected Dose: 329.30 ± 27.43 MBq). Dynamic PET data were binned 
into 26 frames (durations: 8 × 15 s, 3 × 1 min, 5 × 2 min, 5 × 5 min, 
5 × 10 min), reconstructed using filtered back projection, with a 5 mm 
isotropic Gaussian smoothing, and corrected for random noise, 
attenuation, and scatter effects. Radio-pharmaceutical preparation 
acquisition protocol was consistent for all the studies. T1w MR brain 
scan data were collected using a Siemens 3-T MR scanner on either a 
Siemens Tim Trio or Siemens MAGNETOM Verio.

Arterial blood data were sampled using the combination of an 
automatic continuous sampling system of the whole blood activity for 
the first 15 min of each scan, and a series of discrete blood samples, 
manually taken at 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, and 90 min. 
Manual samples were centrifuged and used to determine the plasma 
over blood activity ratio (POB). Samples taken at 5, 10, 20, 30, 50, 70, 
and 90 min were also analyzed using radio-high performance liquid 
chromatography (HPLC) to calculate the PPf. The MIAKAT software 
(MIAKAT™)1 was adopted for blood data processing: subjects’ Cb 
were defined by combining and calibrating continuous and discrete 
whole blood data; a linear and a sigmoid model were, respectively, 
fitted over POB and PPf discrete samples and applied for the definition 
of uncorrected plasma activity (Cp_uncor) and Cp for each subject.

2.2.2 MGH [11C]PBR28 data
MGH dataset (Dataset 3) included dynamic [11C]PBR28 PET/MR 

images from 51 individuals [Age: 55 ± 16 years; Sex: 27 male and 24 
female; Genotype: 31 HABs and 20 MABs; Clinical population: 10 
Healthy Controls, 41 subjects with chronic musculoskeletal pain (low 
back pain, N = 26; knee osteoarthritis, N = 15)] simultaneously 
collected on a Siemens Biograph mMR whole-body PET/MR scanner 
(transaxial FOV: 59.4 cm; axial FOV: 25.8 cm). Full details on 
participant inclusion criteria and data acquisition can be found in 
original references (Weerasekera et al., 2021; Morrissey et al., 2023).

For all these studies dynamic PET data were acquired for a time 
period of 0–90 min after a bolus injection of [11C]PBR28 (Injected 
Dose: 523.60 ± 48.66 MBq), binned into 27 frames (duration: 8x10s, 
3x20s, 2x30s, 1x1min, 1x2min, 1x3min, 8x5min, 3x10min) and 
reconstructed using the Ordered Subset Expectation Maximization 
(OSEM) with four iterations, 21 subsets, and a 3 mm Full Width Half 
Maximum (FWHM) Gaussian smoothing. Structural T1w images 
were used for the generation of attenuation correction maps using an 
in-house developed magnetic resonance-based approach (Izquierdo-
Garcia et al., 2014).

Blood samples were collected at 5, 10, 20, 30, 50, 70, and 90 min 
post radiotracer injection. In 16 subjects, arterial blood processing was 
performed using a HyperSep C18 solid extraction cartridge for 
separation of radio-metabolites from parent radiotracer; in 36 
subjects, HPLC was used instead. For each scan, Cp_uncor was obtained 

1 http://Invicro.org
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from collected blood samples and corrected for metabolites to 
compute the Cp. Cb was not available for these participants.

2.2.3 ICM [18F]DPA714 data
[18F]DPA714 dynamic PET and MR scans acquired on 10 healthy 

volunteers at SFHJ, CEA, Orsay, were shared by the ICM center. 
Details on acquisition protocol are available in García-Lorenzo et al. 
(2018) and Lavisse et al. (2015).

For all participants, after a transmission scan using a 137Cs point 
source, a [18F]DPA714 slow bolus was intravenously injected over 
1 min (Injected Dose: 203.05 ± 25.41 MBq) and subjects underwent 
dynamic PET scans in a high-resolution research tomograph (HRRT, 
Siemens, Knoxville, TN, United States; transaxial FOV: 31.2 cm, axial 
FOV: 25.5 cm) at SHFJ-CEA, Orsay. PET images were corrected for 
attenuation, random and scattered coincidences, reconstructed with 
the iterative ordered-subset expectation maximization (Ordinary 
Poisson [OP]-OSEM) 3D method, and binned into 27 time frames 
(durations: 6 × 1 min, 7 × 2 min, 14 × 5 min). A 3D Gaussian kernel 
with 2 mm FWHM was used as a point-spread function correction. 
Each participant underwent T1w MR imaging, performed with either 
a Philips (Best, The Netherlands) Achieva 1.5 T MR scanner or a 
Siemens Trio 3 T (Erlangen, Germany) scanner.

Eight of the participants underwent a second [18F]DPA714 
dynamic PET to generate test–retest data (Dataset 4; Age: 44 ± 13 years; 
Sex: 2 male and 6 female; Genotype: 6 HABs and 2 MABs). For all 
participants, the second acquisition was performed between 5 and 
67 days after the first visit, with a dose difference between the two 
acquisitions of 21.29 ± 18.95 MBq.

Metabolite-corrected and uncorrected plasma curves were 
generated only for 9 of the 10 subjects (Dataset 5; Age: 39 ± 13 years; 
Sex: 4 male and 5 female; Genotype: 5 HABs and 4 MABs). During 
PET scan acquisition, 21 sequential arterial blood samples were 
manually sampled and 7 of them (at 5, 10, 20, 40, 60, 70 and 90 min) 
analyzed as described in Peyronneau et al. (2023) to determine the 
PPf, Cp_uncor, and Cp activity for each subject. As for MGH dataset, Cb 
was not available for these participants.

2.3 Image pre-processing

Data were analyzed by each individual site using different 
combinations of in-house codes and neuroimaging analysis software 
including Statistical Parametric Mapping 8,2 FSL3 and MIAKAT.

Despite these differences among the three centers, all pipelines 
included a step of motion correction of the dynamic PET data, the 
computation of integral PET images, the derivation of brain and gray 
matter masks from structural MR images—which was performed in 
all three cases using FreeSurfer package—and the registration of brain 
and tissues masks to the subject’s native PET space.

A neuroanatomical atlas was implemented and co-registered on 
the subject’s PET native space for the definition of ROIs. In detail, 46 
cortical and 2 cerebellum ROIs (left and right hemisphere) defined by 
CIC neuroanatomical atlas version 2.0 (Tziortzi et  al., 2011) were 

2 http://www.fil.ion.ucl.ac.uk/spm

3 http://www.fsl.fmrib.ox.ac.uk/fsl

considered in the case of [11C]PBR28 data; 68 cortical and 1 cerebellum 
ROI defined by the Desikan-Killany atlas included with FreeSurfer 
(Desikan et al., 2006) were adopted for the [18F]DPA714 data. Mean 
regional TACs were computed for each subject.

2.4 Image-derived input function and 
blood data analysis

An image-derived input function was also calculated from 
each of the processed dynamic PET scans in the PET naïve space. 
The first step in the IDIF computation consisted of the 
segmentation of the arterial carotid siphons. This step was 
performed via intensity thresholding of early dynamic PET frames. 
In the case of KCL and MGH data, a preliminary crop mask was 
defined to delineate an anatomical area including the siphons, and 
then the siphons mask was defined by selecting the voxels 
belonging to the crop mask with the highest intensity in the early 
PET frames. In the case of ICM scans a manual segmentation of 
the internal carotids was already available. However, for 
consistency with the previous method, we decided to still perform 
a selection of the voxels belonging to the manual carotid mask 
with an intensity equal to or higher than 20% of the maximum 
value shown by the voxels in the so-defined ROI.

For each voxel, we computed the one-versus-all correlation of the 
voxels TACs and we heuristically selected 70% of voxels with the more 
correlated dynamics: this step was aimed at excluding the voxels with 
highly noisy dynamics. In the case of MGH data, where the number 
of selected voxels was highly variable among the subjects, a further 
step consisting of the selection of 30 voxels with the highest peak 
amplitude was performed; this step showed to guarantee a better 
description of the peak of the input function curve. IDIF was finally 
derived by averaging the TACs of all voxels resulting from the selection.

Since compartmental modeling assumes a noise-free input 
function, IDIF for each subject was finally fitted using the 
tri-exponential model, employing a linear regression for the rising 
part of the curve and a sum of three exponentials for the descending 
part of the curve (Parsey et  al., 2000). Representative IDIFs are 
reported in Supplementary Figure 1.

Population PPf curves were computed for both [11C]PBR28 and 
[18F]DPA714. This step was aimed at investigating the presence of a 
time window after tracer injection in which the production of 
metabolites is negligible (i.e., Hypothesis #2 of our methodological 
framework). Population curves were derived by averaging PPf data 
from [11C]PBR28 dynamic PET scans of 72 healthy subjects (KCL 
Dataset 1 and Dataset 2, pre INF-α) and [18F]DPA714 PET scans of 9 
healthy volunteers (ICM Dataset 5). Only in the case of KCL data, for 
which individual POB curves were available, population POB curves 
were computed from data of the 72 healthy subjects.

2.5 Model validation

All model fitting and statistical analyses were performed using 
MATLAB (MathWorks), although slightly different versions were 
adopted for the three PET centers: Matlab2017b for KCL, Matlab2023a 
for MGH and Matlab2022b for ICM. This discrepancy was the 
consequence of software and license availability on each site.
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2.5.1 Comparison with standard blood-based K1 
estimates

As a first step in the validation, the performance of the proposed 
methodology in the estimation of K1 parameter was evaluated by 
comparison to the standard reference 2T4K-Cp estimates. This step 
was performed on Dataset 1,3,5. K1 regional estimates were 
computed for each subject’s ROIs, and bias introduced for each 
hypothesis of the proposed simplified method (Figure  1) was 
sequentially tested. Firstly, we tested whether the one irreversible 
compartment applied to early frames of the PET dynamics gave 
comparable results to those obtained with the full compartmental 
model and the true parent plasma adopted as input function (1T1K-
Cp K1). Then, the effect of the assumptions of metabolites production 
and red blood cells uptake negligibility was tested by computation 
of the K1 using the whole blood input function (1T1K-Cb K1). To 
note, information on the whole blood TACs was available only in 
the case of KCL scans. For MGH and ICM datasets the uncorrected 
plasma tracer concentration was adopted instead. Finally, regional 
K1 parameters were computed with IDIF as input to the reduced 
model (1T1K-IDIF K1).

In all the cases, the a priori definition of the time window to use 
for model fitting was necessary. This choice was based on a trade-off 
between the opposite necessities to limit the model fit to a short time 
window, such that the model hypotheses were respected, and to 
include enough data points for model fitting. Ultimately the time 
window selection had to account for differences in the speed of the 
kinetics for the two employed tracers and in the frame binning of 
dynamic PET scans. The time window was selected for each tracer as 
the interval following tracer administration in which the parent 
plasma fraction was >90%. ROIs TACs were also visually inspected 
with the purpose of ensuring the applicability of Hypothesis #1 of our 
methodological framework. This resulted in a time window of around 
4 min for [11C]PBR28 and 8 min for [18F]DPA714.

Standard 2T4K-Cp K1 estimates were finally computed by fitting 
the whole 0-90 min tracer kinetic using a weighted non-linear least-
square estimator with weights chosen optimally as

 
w t t C tROI i i ROI i( ) = ∆ ( )/

as suggested by Carson et al. (1983), where ti is the time instant, 
Δti is the length of the scanning interval and CROI (ti) is the ROI average 
time activity at time ti. Both Cp or Cb input functions were corrected 
for delay (i.e., the variable time of appearance of tracer radioactivity 
in blood depending on the time required for the tracer to travel from 
the arterial sampling site to the region of interest; Iida et al., 1988).

To complete the corollary on K1 analysis, assuming the cerebellum 
gray matter (CER) as a representative pseudo-reference region (Lyoo 
et al., 2015), the K1 ratio

 R K K CER1 1 1= / ,

was also computed for each method and each cortex ROI. The 
relative measure R1 was introduced for completeness and consistency 
with previous PET studies where the R1 measure can be used as a 
proxy of relative perfusion (Chen et al., 2015). However, it is important 
to highlight that the identification of a proper reference region 

remains not trivial, especially for TSPO studies, and disease specific 
(Albrecht et al., 2018).

Results obtained with each of the three simplified approaches 
(1T1K-Cp, 1T1K-Cb, 1T1K-IDIF), in terms of both ROIs K1 and R1 
estimates, were compared to the respective standard 2T4K-Cp 
estimates by computation of bias and relative bias in absolute value 
(bias and relBias) and both intra- and between-subjects Pearson’s 
coefficients of correlation (ρIntra, ρBetween).

A multilinear regression model was finally estimated, describing 
the subjects’ mean relBias (averaged across ROIs) between the 1T1K-
IDIF and the 2T4K-Cp K1 estimates, in terms of subjects’ age, genotype 
classification, sex, PET center where the acquisition was performed, 
and the ratio between the area under the curve of IDIF and Cp over the 
specific time window selected for fitting (AUCratio). Regression 
analysis was performed using the fitglm function (Matlab2023a, 
Mathworks). Predictors and response variables were rescaled to the 
same range [0 1]. In the case of categorical variables (genotype 
classification, gender, PET center), with L number of categories 
assumed by the categorical variable, the first category is assumed as 
the reference level, and the remaining L – 1 are included as indicator 
variables in the model and treated as a single variable.

1T1K-Cp, 1T1K-Cb, and 1T1K-IDIF model fitting were repeated 
using different time intervals, ranging from 2 to 5 min in the case of 
[11C]PBR28 (Dataset 1) and from 3 to 9 min for [18F]DPA714 (Dataset 
5). The sensitivity of model performance to the choice of the fitting 
window was investigated for each of the reduced models in terms of 
between-subjects and intra-subject correlation of K1 and R1 estimates 
and bias of K1 estimates with respect to reference full model (2T4K-
Cp), and precision of K1 estimates.

Additionally, 1T1K K1 estimation, with each of the three input 
functions, was repeated for [11C]PBR28 scans (Dataset 1) with the 
inclusion in the model of the parametrization of the fraction of blood 
volume (1T1KVb) and compared with the previous 1T1K-Cp, 1T1K-Cb 
and 1T1K-IDIF K1 estimates obtained under the hypothesis of null Vb.

Finally, the reversible one tissue compartment model (1T2K), with 
and without the Vb parametrization, was tested and results of 1T1K 
and 1T2K fitting were compared both in terms of goodness of fit and 
consistency of K1 estimates to standard 2T4K-Cp K1 estimates.

2.5.2 IFN-α challenge-[11C]PBR28 scans
For each subject, regional cortex 2T4K-Cp K1 and 1T1K-IDIF K1 

estimates were computed from both pre and post IFN-α challenge 
dynamic PET scans (Dataset 2) and averaged across the cortical ROIs. 
Distribution across subjects of pre and post mean cortex K1 estimates 
were compared via a paired t-test following a test for normality 
(Lilliefors test).

2.5.3 Test–retest reproducibility of K1 estimates-
[18F]DPA714 scans

To test the reproducibility of the results, regional 1T1K-IDIF K1 
estimates were computed for both test and retest scans on a pool of 8 
healthy subjects (Dataset 4). K1 estimates were computed for each 
subject (both test and retest scan) from mean TACs of 4 cortical brain 
lobes - frontal, temporal, occipital, and parietal -, insula, cerebellum, 
thalami, and brainstem. Pearson correlation coefficient (ρ) and mean 
root distance (MRD) were computed to compare K1 obtained for test 
and retest scans.
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3 Results

3.1 Population PPf and POB curves

Population PPf and POB curves are reported in Figures  2, 3. 
Average PPf curve for healthy populations reaches a value equal to 
0.90 between 3 and 4 min for [11C]PBR28, while the 0.90 threshold is 
crossed at about 8 min in the case of [18F]DPA714.

3.2 Comparison with standard blood-based 
K1 estimates

Results of mean cortex K1 and R1 estimates obtained from the 
datasets of the 3 PET centers are reported in Figure 4, together 
with Bland Altman plots comparing the mean cortex 1T1K-Cp, 
1T1K-Cb, and 1T1K-IDIF to the reference 2T4K-Cp K1 and 
R1 estimates.

As for K1 estimates, the highest bias is observed for the 1T1K-
IDIF K1 when compared with the ground truth 2T4K-Cp K1, with 
the biggest bias shown in the case of the KCL dataset and the lowest 
bias in the case of ICM data (relBias [min max] %: 
relBiasKCL  = [64.38324.57], relBiasMGH  = [49.18310.50], 
relBiasICM = [12.39 75.00]). relBias from 2T4K-Cp K1 estimates results 
significantly reduced when Cp (relBiasKCL  = [1.86 36.14], 
relBiasMGH  = [3.15 35.07], relBiasICM  = [17.79 36.95]) and Cb 
(relBiasKCL = [3.23 47.64], relBiasMGH = [4.00 37.60], relBiasICM = [19.55 
39.34]) are adopted as input to the 1T1K model, with an average 
relBias across subjects, respectively, of 10 and 16%. The relative bias 
for R1 estimates is under 16% for all comparisons and centers.

Relative bias between 2T4K-Cp and 1T1K-IDIF K1 estimates 
shows a statistically significant correlation with the AUCratio 
(Figure  5); genotype classification and scan site also result as 
significant predictors in the regression model (AUCratio: 
p = 1.29*10−8, tstat = −6.03; genotype (HAB w.r.t. MAB): p = 0.0004, 
tstat = −3.66; PET center (MGH w.r.t. KCL): p = 0.04, tstat = −2.06; 

FIGURE 2

PPf population curves. Figure shows the mean (solid line) and standard deviation (shadowed band) of PPf curves for [11C]PBR28 (panel A) and [18F]
DPA714 (panel B) in healthy controls (HCs) population.

FIGURE 3

POB population curves. Figure shows the mean (solid line) and standard deviation (shadowed band) of POB curves for [11C]PBR28 in healthy controls 
(HCs) population.
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PET center (ICM w.r.t. KCL): p = 0.0003, tstat = −3.69; adjusted 
R2 = 0.51).

Between-subjects correlation analysis shows a similar pattern 
to bias, with the lowest Pearson’s coefficients reported when IDIF is 
adopted as the input function of the model. Comparable results are 
reported for the three sites (ρ = mean ± standard deviation; 

ρBetweenKCL  = 0.66 ± 0.03, ρBetweenMGH  = 0.63 ± 0.06, 
ρBetweenICM = 0.67 ± 0.11). When comparing 1T1K-Cb with 2T4K-
Cp K1 estimates, KCL dataset shows the lowest correlation 
(ρBetweenKCL  = 0.84 ± 0.02, ρBetweenMGH  = 0.93 ± 0.04, 
ρBetweenICM  = 0.94 ± 0.05) while comparable results among the 
three sites are shown for the between-subject correlation between 

FIGURE 4

Comparison of mean cortex K1 and R1 estimates. Panel A,B show, respectively, the distribution across subjects of mean cortex K1 and R1 estimates 
computed via each of the aforementioned methods (2T4K-Cp, 1T1K-Cp, 1T1K-Cb, 1T1K-IDIF); panel C,D show the Bland Altman plots for the 
comparison between the results of each of the reduced methodologies (1T1K-Cp, 1T1K-Cb, 1T1K-IDIF) and the standard-reference 2T4K-Cp estimates 
for K1 and R1 respectively; results are shown in different colors for the three PET centers (KCL, MGH, ICM).
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1T1K-Cp and 2T4K-Cp (ρBetweenKCL  = 0.97 ± 0.01, 
ρBetweenMGH = 0.93 ± 0.04, ρBetweenICM = 0.94 ± 0.04; Figure 6A). As 
for the R1 estimates, model performance in terms of between-
subject correlation resulted almost independent from the input 

function adopted (ρBetweenKCL = 0.7 ± 0.1, ρBetweenMGH = 0.9 ± 0.1, 
ρBetweenICM = 0.6 ± 0.3; Figure 6B).

Good-to-high intra-subject correlations were reported between 
the regional K1 estimates obtained with the simplified and full model, 
independently from the input function adopted 
(ρIntraKCL = 0.93 ± 0.07, ρIntraMGH = 0.94 ± 0.08, ρIntraICM = 0.89 ± 0.13; 
Figure 7).

3.3 IFN-α challenge-[11C]PBR28 scans

Despite the limitations of 1T1K-IDIF methodology in 
providing an absolute estimate of the K1 parameter, consistent with 
previous results, comparisons of mean cortex K1 estimates before 
and 24 h after the injection of INF-α revealed a significant 
difference in terms of both 2T4K-Cp (paired t = 5.61; p = 0.001) and 
1T1K-IDIF (paired t = 3.42; p = 0.01) estimates. Figure 8 shows the 
distribution across subjects of average cortex K1. The higher inter-
subject variability of 1T1K-IDIF with respect to 2T4K-Cp K1 
estimates hampers the identification of group effects, thus resulting 
in lower statistical power when comparing the K1 parameter in 
physiological on peripherally inflamed conditions (for 2T4K-Cp: 
Cohen’s d effect size = 1.08 and relative difference = −29% K1 
estimates; for 1T1K-IDIF: Cohen’s d effect size = 0.75 and relative 
difference = −13%).

3.4 Test–retest reproducibility of K1 
estimates-[18F]DPA714 scans

Good-to-high reproducibility of 1T1K-IDIF K1 estimates was 
reported for each of the test–retest subjects (Figure 9), with a Pearson’s 

FIGURE 5

Correlation between relBias and AUCratio. Figure shows the 
correlation between subjects’ average relBias between the 1T1K-IDIF 
and the 2T4K-Cp K1 and respective values of AUCratio; results are 
shown in different colors for the three PET centers (KCL, MGH, ICM) 
and with different shapes for HAB and MAB subjects.

FIGURE 6

Between-subjects correlation of ROIs K1 and R1 estimates. Panel A,B show, respectively for the ROIs K1 and R1 estimates, the distribution of the 
between-subjects Pearson’s correlation coefficients between each of the reduced models (1T1K-Cp, 1T1K-Cb, 1T1K-IDIF) and the full model (2T4K-Cp); 
results are shown in different colors for the three PET centers (KCL, MGH, ICM).

https://doi.org/10.3389/fnins.2024.1395769
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Maccioni et al. 10.3389/fnins.2024.1395769

Frontiers in Neuroscience 10 frontiersin.org

Correlation coefficient of 0.97 ± 0.01. MRD between estimates ranged 
from −19.60 to 32.47%.

4 Discussion

4.1 Model validation

The proposed method represents a completely non-invasive 
quantification approach for the K1 PET imaging parameter via the 
fitting of the early phase of the tracer dynamic. We tested our method 
on three independent TSPO PET datasets. The validation by 
comparison with the reference-standard blood-based estimates 
showed high intra-subject correlations between the 2T4K-Cp and the 
1T1K-IDIF K1 estimates with each of the three tested input functions. 
On the other hand, while a reduced bias was reported when 
comparing 1T1K-Cp and 1T1K-Cb to 2T4K-Cp K1 estimates, high and 
variable bias was reported for the 1T1K-IDIF, depending on the IDIF 
variability to approximate blood input functions. This resulted in 
lower values of between-subject correlations when IDIF was adopted 
as input function of the model. Despite this, the 1T1K-IDIF estimate 
allowed us to replicate the significant reduction in the K1 values 
associated with peripheral inflammation after the immune challenge 
IFN-α (Nettis et al., 2020; Turkheimer et al., 2021).

These results suggest that:

 1) 1T1K-IDIF can be  used to reliably measure topological 
differences in tracer delivery within an individual brain. 
Practically, this approach has the potential to map subtle 
changes in the BBB affecting individual patients and even single 
brain lesions within those patients, presenting particularly 
relevant applications in conditions such as multiple sclerosis.

 2) 1T1K-IDIF can be used to quantify between-subjects differences 
in terms of tracer delivery, although the high bias makes it 
unusable for absolute quantification. Our results demonstrated 
the ability of the non-invasive 1T1K-IDIF method to unveil 
alterations in tracers’ blood-to-brain delivery following IFN-α 
challenge, despite the higher variability in K1 estimates and 
lower sensitivity compared to full blood-based quantification.

 3) Given the similarity of performances between 1T1K-Cp and 
1T1K-Cb with the reference standard, the most penalizing 
assumption for 1T1K-IDIF is the use of IDIF as a proxy of blood 
input (Hypothesis #3), rather than those on simplified modeling 
(Hypothesis #1) or negligible metabolites (Hypothesis #2).

4.2 Interpretation of K1 measures

According to the Fick principle and Renkin-Crone model, the 
blood-to-brain delivery rate K1 depends on blood perfusion and the 

FIGURE 7

Intra-subject correlation of ROIs K1 estimates. Panel A shows the distribution of the intra-subjects Pearson’s correlation coefficients between 1T1K-IDIF 
and 2T4K-Cp regional K1 estimates; panel B shows representative examples of the intra-subject correlation between 1T1K-IDIF and 2T4K-Cp regional K1 
estimates; results are shown in different colors for the three PET centers (KCL, MGH, ICM).
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product of capillary permeability and capillary surface area (Renkin, 
1959; Crone, 1963). Previous studies have suggested the potential use 
of the influx rate constant K1 as a biomarker for alterations of brain 
barrier permeability that are associated with acute or chronic 
inflammation. In a group of 7 healthy volunteers, increased serum 
peripheral C-reactive protein, induced by the injection of IFN-α, was 
associated with reduced brain barrier permeability measured by the 
rate constants K1 of the TSPO tracer [11C]PBR28 (Nettis et al., 2020; 
Turkheimer et al., 2021). In a dataset of dynamic [11C]PBR28 scans 

from 11 patients with small vessel disease, kinetic modeling also 
showed a reduction when comparing white matter hyperintensities to 
normal appearing white matter (Wright et al., 2020).

Although Sander et al. (2021) showed no significant changes in 
[11C]PBR28 radiotracer kinetic associated with alterations in cerebral 
blood flow, this evidence is not sufficient to exclude the influence of 
cerebral blood perfusion on TSPO tracers delivery and uptake. Study 
by Mackowiak et al. (1998) showed alterations in cerebral perfusion, 
with a focal increase in the basal ganglia after IFN-β, while a decreased 

FIGURE 9

Test–retest reproducibility of K1 estimates - [18F]DPA714 scans. Figure shows correlation between K1 estimates computed from test and retest scans for 
4 cortical lobes, insula, cerebellum, thalami, and brainstem (red solid line: regression line; gray dotted line: identity line); Pearson’s correlation 
coefficient (ρ) and mean root distance (MRD) between test and retest estimates are reported in each panel.

FIGURE 8

IFN-α challenge - [11C]PBR28 scans. Figure shows a significant reduction in the mean cortex K1 associated with peripheral inflammation induced with 
IFN-α challenge; the significant reduction is unveiled both in terms of 2T4K-Cp K1 (panel A) and 1T1K-IDIF K1 (panel B).
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level of regional blood perfusion was reported in patients treated for 
hepatitis with IFN-α (Tanaka et al., 2006). It is thus not possible to 
disentangle an effect of blood perfusion rate alterations from 
alterations more related to endothelial status of BBB and its 
permeability. Pharmacological studies with perfusion-manipulating 
interventions could help to provide more biologically specific insights 
on the interpretation of K1 changes measured with TSPO PET tracers.

Importantly, variations in K1 estimates are reflected in the 
calculations of binding parameters, such as the distribution volume VT 
and other kinetic modeling macro-parameters. These variations may 
be misinterpreted as changes in TSPO density. In fact, changes in tracer 
blood-to-tissue transport have been shown to cause up to 77% of the 
variation in VT measures in the case of [11C]PBR28 PET data (Nettis 
et  al., 2020). When blood data are available and more robust 
quantifications are possible, such as the full blood-based compartmental 
modeling used for VT quantification, the K1 parameter can be directly 
computed with minimal bias by fitting the standard 2T4K model. 
However, when the blood input function is not available and simpler 
semi-quantitative measures of TSPO binding, such as the standardized 
uptake value (SUV) are adopted, the 1T1K-IDIF methodology can add 
value by providing a non-invasive measure of tracer influx and allowing 
the correction of the SUV parameter for differences in tracer delivery.

4.3 Generalizability of the method

The method was tested on two second-generation TSPO PET 
tracers and data collected both on healthy volunteers and patients 
(psychiatric disorders, chronic pain), in three different PET centers 
using different scanners and acquisition protocols. In the case of TSPO 
PET imaging, the application of 1T1K-IDIF approach would provide 
information on tracers delivery on top of neuroinflammation 
measures. However, the proposed methodological framework has the 
advantage of being potentially generalizable to other families of 
tracers  - provided the previously described model hypotheses are 
respected and the method is validated for each new tracer, acquisition 
protocol, and scanner  - especially in the case of radiotracers not 
actively transported in or out of brain (Tournier et al., 2011). In the 
case of tracers with relatively high BBB permeability and extraction 
fraction (e.g., β-amyloid PET imaging), the K1 parameter could 
potentially be adopted as a proxy of cerebral blood flow.

4.4 Methodological considerations and 
study limitations

4.4.1 Blood data
Different blood sampling and analysis procedures were adopted 

across the three PET centers, thus introducing differences in available 
blood data for the different datasets under study. Firstly, while in the 
case of KCL scans, both Cb and Cp_uncor curves (in addition to Cp) were 
provided, thus allowing an investigation of both POB and PPf effects 
when using the Cb instead of traditional Cp as input function of the 
reduced model, only the Cp_uncor was available for the MGH and ICM 
datasets. Additionally, tracer fp - (which is very low for TSPO ligands 
and difficult to measure Turkheimer et al., 2015), thus discouraging 
several PET imaging centers from its measurement - was solely 
available for KCL data; for this reason, the impact of plasma proteins 

on blood tracer activity was not taken into account in this study. 
Finally, in the case of MGH and ICM data, for which a continuous 
blood sampling was not performed, temporal resolution of blood and 
plasma concentration curves was relatively low, potentially affecting 
the accuracy of model fitting.

4.4.2 Image derived input function
Operatively, the main challenge in the application of the method 

was linked to the extraction of a reliable input function from the tracer 
dynamic PET images. In our analysis the AUCratio acts as a measure 
of goodness of performance for IDIF extraction: the AUC approaches 
1 as accuracy improves, while worse results are reflected by lower 
AUCratio values, since the IDIF approach tends generally to 
underestimate the blood kinetic peak.

An accurate description of the activity peak in the early phase of 
the tracer blood kinetic was not trivial, due to the relatively low spatial 
and temporal resolution in PET dynamic data, which caused, 
respectively, relevant partial volume effects (PVEs), and the 
impossibility of following the fast rising and descending part of the 
curve (Volpi et  al., 2023), thus introducing variable bias across 
subjects. In this study no correction for PVEs was applied to computed 
IDIF. To the best of our knowledge, there is not a current standard in 
the application of PVEs approaches (Volpi et  al., 2023) and 
effectiveness of these methods strongly depends on image quality, 
tracer kinetics, and brain anatomy, leading to uncertainty in the 
corrected IDIF and the risk of over-correcting and thus obtaining 
artificially inflated or distorted concentration time curves. These 
effects can ultimately result in biased estimates of kinetic parameters 
as well. Further analyses and a robust validation would be necessary 
to select the optimal method of PVEs correction (depending on 
scanner and imaging protocols), assess the reliability of the corrected 
IDIF, and evaluate the impact of correction on study outcomes. These 
two objectives were beyond the aim of this study.

The strong correlation between bias and AUCratio suggests how 
the use of more sophisticated pipelines for vessel segmentation, blood 
voxels selection and correction for IDIF extraction could possibly 
enhance the performance of the proposed method. The introduction 
of new generation PET scanners, with better sensitivity, improved 
spatial resolution and temporal resolution, and larger scanner field of 
view, opens the promise of a high enhancement in the performances 
of IDIF extraction (Volpi et al., 2023). It should be noted that K1 bias 
in the case of MGH PET scans appears less correlated to AUCratio. 
This could be linked to different reasons. Firstly, it is worth mentioning 
that the AUCratio, here assumed as a measure of goodness of IDIF 
approximation of the arterial Cp, simply counts for differences in the 
area under the two curves, but not for differences in curves shapes. 
Secondly, IDIF extraction and time resolution are dependent on PET 
experimental protocol over which we did not have control being the 
study performed over pre-existing data. Moreover, as previously 
highlighted, the blood protocols which will affect the gold standard K1 
estimation are different for the sites.

In general, the use of a limited time window after tracer injection 
has the strong advantage of allowing to reasonably ignore the 
metabolite production, which, so far, represents the main unresolved 
issue and one of the main obstacles to a wider application of IDIF 
approach (Zanotti-Fregonara et al., 2011a). The radio-metabolites 
activity in the late phase of blood TACs is indeed known to strongly 
affect the estimation of tracer binding parameters (Volpi et al., 2023). 
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In a pilot study conducted on [11C]PBR28 PET scans from MGH 
(Dataset3), VT estimates obtained with the adoption of the IDIF, 
without any correction for metabolites activity, showed high 
inconsistency (Pearson’s coefficient ρ  = 0.35) with standard VT 
estimates obtained with arterial input function (Whitehead 
et al., 2023).

4.4.3 Fitting time window
The time window for 1T1K model fitting was experimentally 

chosen for each dataset and tracer, considering the kinetic of the 
tracer, tracer metabolism, and the temporal resolution of the dynamic 
PET scan that would determine the total number of samples used for 
model fitting for a fixed time window. To note, the relatively low time 
resolution of tissue TACs in the early phase following tracer injection 
represents one of the major limitations in this study, strongly affecting 
the accuracy of model fit and K1 estimates. Sensitivity analysis showed 
robustness of model performances with respect to the adopted 
fitting-time-window (Supplementary Figures 2, 3), although higher 
between-subjects correlation for K1 estimates was obtained with 
longer time windows. Of note, the longer the window and the higher 
the number of data samples adopted for model fitting and thus the 
precision of the K1 estimates (i.e., lower coefficient of variation). In 
the case of [18F]DPA714, the adoption of an excessively short time 
window (3.5 or 4.5 min) resulted in a strong reduction of between-
subjects correlation of 1T1K-IDIF with respect to 2T4K-Cp 
K1 estimates.

4.4.4 Comparison of different modeling choices
The analysis of the impact of Vb parametrization on model 

performance showed modest to no significant difference in K1 
estimates but a slight improvement in the precision of estimates in the 
case the Vb parametrization was included (Supplementary Figure 4). 
This assumption should be further confirmed for those tissues with a 
higher blood volume fraction. Also, the minor effect of setting the Vb 
to 0 could be the consequence of the poor fit of the Vb parameter, due 
to the poor timing resolution at the early phase of tissue tracers kinetic 
(e.g., initial frame length of 15 s in the case of KCL scans). Interestingly, 
comparisons of results obtained with different modeling choices 
(different input functions and compartmental models, both reversible 
and irreversible) showed better data fits, as assessed by the Akaike 
Information Criterion (Golla et al., 2017), for 1T2K compared to 1T1K 
model, but at the cost of higher variability, as well as higher bias and 
less consistency (in terms of both intra- and inter-subjects 
correlations) to the standard 2T4K-Cp ROIs K1 estimates 
(Supplementary Figure 5).

4.4.5 Tracer and scanner effects
In this study, results obtained for [18F]DPA714 seemed to 

demonstrate different performances with respect to [11C]PBR28 in 
terms of bias and intra- and between-subjects correlation of K1 
and R1 estimates. The higher AUCratio and lower relative bias 
between 1T1K-IDIF and 2T4K-Cp K1 in the ICM cohort may 
be  explained by the higher spatial resolution of dynamic PET 
images, with the consequent reduction of the partial volume 
effects, and the relative slow bolus injection causing the arterial 
peak to be smoother. Of note, a smaller number of [18F]DPA714 
scans, with respect to [11C]PBR28 scans, were included in the 
study. Additionally, the acquisition of data in different PET centers 

and scanners introduces relevant batch effects (Joshi et al., 2009), 
which could result for example in a different level of noise on 
the image.

Independently from the specific model adopted, differences 
across sites were also reported in ROIs K1 estimates derived from the 
quantification of KCL and MGH [11C]PBR28 scans. 
Supplementary Figure  6 shows how between-subjects pairwise 
correlations of ROIs 2T4K-Cp K1 estimates of healthy controls of 
Dataset 1 (KCL) and Dataset3 (MGH) are high when comparing 
subjects from the same dataset and lower when comparing subjects 
from different datasets, thus revealing differences in terms of K1 
topological patterns across the two sites. However, it is important to 
note that the same pattern reported for 2T4K-Cp is detected by 
1T1K-IDIF K1 estimates. The investigation of the causes of this 
disagreement is beyond the purposes of this study and not 
necessarily uniquely related to scanner differences. It is worth 
mentioning indeed that a significant difference in healthy controls’ 
age (Wilcoxon rank-sum test p < 10−4) was found between the two 
datasets, which could partially explain differences in K1 values 
between the two scanners.

In general, no effort for data harmonization was performed across 
the three sites, reflecting the aim of the study to test the performance 
and general applicability of the proposed methodology for the 
quantification of K1 on datasets with different characteristics and 
experimental settings, rather than performing a comparison between 
sites. However, the specific dependency of the results on tracers, 
scanners (resolution, sensitivity, noise on data), and acquisition 
protocols was not systemically investigated. Nonetheless, we managed 
to provide good preliminary evidence in support of the 1T1K-IDIF K1 
methodology. Further studies including [11C]PK11195 and third-
generation TSPO tracers (e.g., [18F]LW223 (MacAskill et al., 2021) and 
[11C]ER176; Ikawa et al., 2017) would shed additional light on the 
relationship between method performance and 
tracers pharmacokinetic.

5 Conclusion

Our results validated the use of the 1T1K-IDIF method as a blood-
free alternative for assessing blood-to-brain tracer exchange in TSPO 
PET studies and exploring topological differences in blood–brain-
barrier permeability at an individual level.

The proposed method has the main advantage of overcoming the 
practical limitations of standard compartmental modeling 
quantification and could potentially be applied to a different family of 
tracers after proper validation.

The dependence of K1 bias on IDIF variability to describe the 
arterial blood input function suggests that adopting more sophisticated 
IDIF extraction pipelines, in combination with the current 
development of new generation highly performant PET scanners, 
could potentially lead to a significant improvement in the 1T1K-
IDIF performance.
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