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In recent years, there has been a growing interest in studying the SuperficialWhite

Matter (SWM). The SWM consists of short association fibers connecting near giry

of the cortex, with a complex organization due to their close relationship with the

cortical folding patterns. Therefore, their segmentation from dMRI tractography

datasets requires dedicated methodologies to identify the main fiber bundle

shape and deal with spurious fibers. This paper presents an enhanced short

fiber bundle segmentation based on a SWM bundle atlas and the filtering

of noisy fibers. The method was tuned and evaluated over HCP test-retest

probabilistic tractography datasets (44 subjects). We propose four fiber bundle

filters to remove spurious fibers. Furthermore, we include the identification of

the main fiber fascicle to obtain well-defined fiber bundles. First, we identified

four main bundle shapes in the SWM atlas, and performed a filter tuning in a

subset of 28 subjects. The filter based on the Convex Hull provided the highest

similarity between corresponding test-retest fiber bundles. Subsequently, we

applied the best filter in the 16 remaining subjects for all atlas bundles, showing

that filtered fiber bundles significantly improve test-retest reproducibility indices

when removing between ten and twenty percent of the fibers. Additionally,

we applied the bundle segmentation with and without filtering to the ABIDE-

II database. The fiber bundle filtering allowed us to obtain a higher number of

bundles with significant di�erences in fractional anisotropy, mean di�usivity, and

radial di�usivity of Autism Spectrum Disorder patients relative to controls.

KEYWORDS

Superficial White Matter, di�usion-weighted imaging, tractography, fiber bundle

segmentation, spurious fibers

1 Introduction

Diffusion magnetic resonance imaging (dMRI) tractography (Basser et al., 2000) is

the only available tool able to reconstruct the brain’s White Matter (WM) pathways non-

invasively. Tractography algorithms infer the WM anatomy as a set of 3D streamlines,

which can be used for in vivo virtual dissection of anatomically meaningful tracts, also

known as fiber bundle segmentation. The delineation of individual fiber bundles has

enabled a quantitative comparison of the WM pathways across different subjects (Zhang

et al., 2022).

Most methods for fiber bundle segmentation are designed for the commissural,

projection, and long-range association connections within theDeepWhiteMatter (DWM).

These tracts are arranged in large and stable bundles with a well-known anatomy
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and description of their trajectory. Therefore, their automatic

extraction has achieved remarkable results over the years

(O’Donnell and Westin, 2007; Guevara et al., 2012; Wassermann

et al., 2016; Garyfallidis et al., 2018; Wasserthal et al., 2018; Bertò

et al., 2021). However, these methods have not been adapted to the

SuperficialWhiteMatter (SWM); specifically, there is no deep study

and performance evaluation on short association fiber bundles.

The SWM refers to the short association fibers just below

the brain cortex, connecting close regions of the same brain

hemisphere (Guevara et al., 2020). They can run along a

gyrus, surround it, or skip one or more convolutions. Their

clinical relevance has been assessed in multiple diseases such

as Schizophrenia (Nazeri et al., 2013; Kai et al., 2023), Autism

Spectrum Disorder (ASD) (d’Albis et al., 2018; Hong et al., 2018),

Multiple Sclerosis (Buyukturkoglu et al., 2021), Alzheimer’s disease

(Reginold et al., 2016) and Parkinson’s disease (Zhang et al., 2021).

Recently, a study of changes in cognitively normal aging revealed a

correlation between age and microstructural features of the SWM

(Schilling et al., 2023).

Recent progress in dMRI acquisitions, using techniques

such as High Angular Resolution Diffusion Imaging (HARDI),

coupled with improved estimations of fiber orientations, has

significantly enhanced the capabilities of tractography algorithms

in reconstructing fiber bundles within the SWM. Hence, their

research is gaining increasing importance in understanding of the

WM structure and function (Guevara et al., 2020). In this context,

new fiber bundle segmentation methods consider short bundles

partially (Bertò et al., 2021) and in a dedicated manner (Vindas

et al., 2023; Xue et al., 2023). Also, works based on fiber clustering

have constructed several SWM fiber bundle atlases containing a

high number of short bundles throughout the whole brain (Guevara

et al., 2017; Zhang et al., 2018; Román et al., 2022), enabling the

identification of short bundles in new subjects by, for example,

labeling the fibers to the closest atlas bundle. Furthermore, methods

employing Regions of Interest (ROIs) can extract short bundles

connecting specific regions within a brain anatomical parcellation.

However, such approaches may also segment a high proportion of

spurious fibers (Guevara et al., 2020).

Despite technological and methodological advances, short fiber

bundles are difficult to segment because of their smaller size and

complex shape due to their proximity to the gyral crowns and sulcal

walls. Other difficulties arise from the high inter-subject variability,

artifacts produced near the cortex, and the ill-posed nature of

the tractography, which implies that the tracking results could

be affected by ambiguous voxels or minor changes in acquisition

noise (Mangin et al., 2013). Consequently, most segmentation

algorithms also label spurious fibers. Furthermore, segmentation

of well-defined short bundles becomes more difficult considering

that probabilistic tracking is needed to properly reconstruct SWM

bundles, which also generates a high proportion of noisy fibers

(Guevara et al., 2020).

Some methods remove noisy fibers by using tract

probability maps (Yeatman et al., 2012; Sommer et al., 2016)

or density maps (Aydogan and Shi, 2015; Yeh et al., 2018) to

generate compact bundles. Others use the distance between

the fiber points (Jordan et al., 2017; Wang et al., 2018;

Xia and Shi, 2020), and fiber clustering to remove outliers

(Cousineau et al., 2017; Wasserthal et al., 2018; Schilling et al.,

2023). However, most of these methods are not specific for

SWM bundles.

This work proposes several filters to improve a well-established

segmentation method based on a multi-subject atlas, developed

in Guevara et al. (2012), which provides a straightforward way

to label subject’s fibers to the closest atlas bundle. Thus, we can

study many short bundles across the whole brain using new SWM

bundle atlases with high cortical coverage (e.g., Román et al., 2022).

Because this segmentation method was proposed for the main

DWM bundles, it does not work well on SWM bundles. A visual

inspection of the segmented SWM bundles suggests two main

problems: spurious fibers and the segmentation of fibers whose

shape differs from the main atlas bundle shape. Next, we describe

our two main contributions.

i) We propose four different fiber bundle filters (see Figure 1A)

to deal with the segmentation of spurious fibers. The filters consider

the spatial characteristics of noisy fibers. The filter based on

Connectivity Patterns quantifies the endpoint similarity between

fibers. The filter based on the Symmetric Segment-Path Distance

(SSPD) (Besse et al., 2016) computes the similarity between the

fiber trajectories. The filter based on Fiber Consistency assigns

a consistency measure to each fiber point (Xia and Shi, 2020),

computed from the fiber’s proximity to its K-nearest fibers. Finally,

the filter based on the Convex Hull represents a fiber bundle as a

point cloud. Then, the Convex Hull of the point cloud generates an

envelope that enables the detection of fibers far away from the core.

ii) We introduce the identification of the main fiber fascicle,

aiming to discard the segmented fibers whose shape differs from

the main atlas bundle shape (see Figure 1B). These fibers cannot

be removed with the filters described above because they are

not isolated and can be located at the core of the bundle. The

identification of the main fiber fascicle solves this problem by

removing segmented fibers that do not follow a trajectory similar to

the centroid of the atlas bundle, that is, a single fiber that properly

describes the shape of the main atlas bundle.

Test-retest reproducibility indices were calculated to evaluate

the effectiveness of fiber bundle filters in removing spurious

fibers. The analysis of repeated scans has been previously used to

assess the reliability of segmentation methods (Zhang et al., 2019;

Schilling et al., 2021a,b). More specifically, it provides insight into

whether the sameWM structure can be accurately reproduced from

two repeated acquisitions of a subject. Nonetheless, results could

be less consistent due to false positive connections or spurious

fibers (Zhang et al., 2019). Additionally, the identification of the

main fiber fascicle and the best fiber bundle filter were used to

detect alterations in diffusion-based microstructural indices within

subjects with Autism SpectrumDisorder (ASD) from the ABIDE-II

database (Martino et al., 2017) relative to controls.

2 Materials and methods

2.1 Di�usion MRI and tractography
datasets

2.1.1 HCP database
We used 44 subjects (13M, 31F; aged 22–35 years old) with

retest acquisition from the HCP database (Human Connectome
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FIGURE 1

Contributions of this work. (A) We designed four fiber bundle filters to remove spurious fibers. (B) We propose a method to identify the main fiber

fascicle. On the right, an atlas bundle (red) and its centroid (black). The segmented bundle is shown on the left. It can be seen that fibers toward the

middle of the segmented bundle deviate from the main atlas shape. Below is the main fiber fascicle, containing fibers following a similar trajectory to

the atlas bundle centroid.

Project, 2017). The database contains two sequences of multi-

shell HARDI data for each subject (test-retest interval: 4.6 ± 2

months). The dMRI data was collected for three shells at b-values

of 1,000, 2,000, and 3,000 s/mm2 and a total of 270 directions,

with an isotropic voxel of 1.25 mm. We used HCP preprocessed

data (Glasser et al., 2013) with diffusion image distortion correction

(Andersson et al., 2003; Andersson and Sotiropoulos, 2015).

Furthermore, we used the MRtrix software (Tournier et al., 2019)

to compute the whole-brain probabilistic tractography based on

Constrained Spherical Deconvolution (CSD) (Tournier et al., 2007)

and second order integration over the fiber orientation distribution

(iFOD2), with default parameters. For each subject, tractography

datasets were computed for the two test-retest dMRI scans with

the following parameters: step size of 0.625 mm, angle threshold

of 90◦, maximum length of 250 mm, minimum length of 30 mm

and FOD amplitude threshold of 0.06. We used Anatomically-

Constrained Tractography (ACT) (Smith et al., 2012) to obtain 30

million streamlines and applied Spherical-deconvolution Informed

Filtering of Tractograms (SIFT) (Smith et al., 2013) to maintain

10% of the fibers. Final tractograms with 3 million streamlines were

transformed to MNI space using the non-linear transformation

provided by theHCP data and resampled with 21 equidistant points

(Guevara et al., 2012).

2.1.2 ABIDE-II database
We used 44 subjects with T1-weighted and single shell HARDI

acquisitions from the ABIDE-II database (Martino et al., 2017).

Subjects were selected from the NYU Langone Medical Center,

comprising 22 controls (21 male, one female; 9.8 ± 3.6 years old)

and 22 Autism Spectrum Disorder (ASD) (21 male, one female;

9.8 ± 5.6 years old). The single shell HARDI data were acquired

on a scanner Siemens MAGNETOM Allegra syngo MR 2004A (64

directions, b-value of 1,000 s/mm2) with an isotropic voxel of 3mm.

Also, T1-weighted images with a voxel size of 1.3 × 1.0 × 1.3 mm

were available. Each dMRI dataset was preprocessed using MRtrix

software (Tournier et al., 2019), including denoising, motion,

and distortion correction. Whole-brain probabilistic tractography

based on CSD (Tournier et al., 2007) (with default parameters)

and iFOD2 tracking were calculated using MRtrix. For each

subject, tractography datasets were computed with the following

parameters: step size of 1.5 mm, angle threshold of 90◦, maximum

length of 250 mm, minimum length of 30 mm and FOD amplitude

threshold of 0.06. We used ACT (Smith et al., 2012) to obtain

30 million streamlines, applied SIFT (Smith et al., 2013) to

maintain 10% of the fibers, and the final 3 million streamlines were

transformed into MNI space. For this purpose, the T1 and dMRI

images were coregistered using FSL software (Jenkinson et al.,

2012). Then, the T1 images were normalized to MNI space using

Advance Normalization Tools (ANTs) (Avants et al., 2011). Finally,

tractograms were transformed into MNI space and resampled with

21 equidistant points for further analysis.

2.2 Automatic segmentation method and
SWM bundle atlas used

The automatic segmentationmethod proposed in Guevara et al.

(2012) labels each subject’s fiber to the closest atlas bundle based

on the DME distance and a length penalization term (NT). First,

the DME between a subject’s fiber S and an atlas bundle fiber A is

computed in Equation (1):

DME (S,A)=min(max
i

‖si − ai‖ , max
i

‖si − aN−i‖) (1)

where si and ai are corresponding 3D points of fibers S and A,

respectively. Also, N is the number of points of the fibers. Then,

the NT term is calculated in Equation (2):

NT =

(

abs(lS − lA)

max(lS, lA)
+ 1

)2

− 1 (2)

where lS and lA are the lengths of fibers S and A, respectively.

Finally, the DNE distance is computed in Equation (3):

DNE(S,A) = dME(S,A)+ NT (3)

Each subject’s fiber S is labeled with the atlas bundle j

if the distance DNE to fiber A in bundle j is less than a

threshold in millimeters. We used the latest version of the

segmentation algorithm (Vázquez et al., 2019), which exploits
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thread-level parallelism on multiple CPUs. We leveraged a new

SWM multi-subject bundle atlas (Román et al., 2022) constructed

from 100 healthy subjects of the HCP database and probabilistic

tractography. The atlas is composed of 525 short fiber bundles

across the whole brain. Segmentation thresholds use the mean

length of the fibers composing the atlas bundle and a linear

mapping (between 6 and 8mm).

2.3 SWM atlas processing

The main goal was to identify the main bundle shapes present

in the SWM bundle atlas. For each atlas bundle, we calculated a

single fiber representing the overall shape of the bundle (centroid),

considering the fiber length, shape, and position. Then, we applied

an alignment to overlap the fiber geometry of every pair of atlas

bundle centroids. The alignment allowed us to disregard their

spatial position and to focus only on shape differences based on the

distance between centroid points. We also used a scaling factor to

remove the differences caused by the centroid length.We computed

the distance matrix between every pair of aligned centroids. Then,

we applied an average-link hierarchical clustering, identifying that

four clusters were optimal using the Within Clusters Sum of

Squares (WCSS) criterion (Aggarwal and Reddy, 2018).

We identified and grouped the corresponding atlas bundles

using the resulting clusters. Finally, for each atlas cluster, we

selected a shape representative bundle (RBi). This step helped us

to generalize the atlas information into a few bundles and mitigate

the risk of overfitting the fiber bundle filters’ parameters. We

summarize the SWM atlas processing and show the selected RBi
in Figure 2. See Supplementary material S1 for more details about

each step performed. Additional results on the quality of the atlas

bundle centroids are shown in Supplementary material S2.

2.4 Identification of the main fiber fascicle

The identification of the main fiber fascicle aims to remove

segmented fibers that do not follow a trajectory similar to the shape

of the main atlas bundle. First, for each atlas bundle i, we computed

a centroid distance threshold (THi). The THi is the mean DNE

distance of the atlas bundle fibers to the corresponding atlas bundle

centroid (see Figure 3A). Then, given a segmented fiber bundle S

using the atlas bundle i, the identification of the main fiber fascicle

consists of computing the DNE distance between each segmented

fiber sj ∈ S and the centroid of the atlas bundle i. Segmented

fibers with a DNE distance higher than the THi are discarded (see

Figure 3B). In practice, the average value of the THi for all atlas

bundles was 15± 2mm.

2.5 Fiber bundle filters

This section presents four fiber bundle filters based on different

approaches to remove isolated or spurious fibers from segmented

bundles. In Figure 4, we show a schematic of each fiber bundle filter

and how their application can be used to obtain a short bundle with

fewer outliers.

2.5.1 Fiber bundle filter based on Connectivity
Patterns

The fiber bundle filter based on Connectivity Patterns (CP)

uses the Euclidean distance between corresponding endpoints of

two fibers as a criterion to remove spurious fibers. The idea is that

fibers with nearby endpoints have a similar pattern of anatomical

connectivity. We used the DEND distance (Bertò et al., 2021) to

quantify the endpoint similarity between two fibers A and B with

N points, which is defined in Equation (4):

DEND (A,B) =
1

2
(min(

∥

∥a1−b1
∥

∥ ,
∥

∥a1−bN
∥

∥)

+min(
∥

∥aN−b1
∥

∥ ,
∥

∥aN−bN
∥

∥)) (4)

where {a1, aN} and {b1, bN} are the endpoints of fiber A and

B, respectively. Next, we describe how the filter works. First, we

calculate each fiber’s DEND distance to every other fiber in the

bundle, and count the number of similar fibers as those with aDEND

less than a threshold called θEND. Finally, we discard a percentage of

fibers with the lowest number of similar fibers (see Figure 4A). This

fiber bundle filter has two parameters: the Percentage of Discarded

Fibers (PDF) and the θEND distance threshold.

2.5.2 Fiber bundle filter based on Symmetric
Segment-Path Distance

This fiber bundle filter compares fiber trajectories using the

Symmetric Segment-Path Distance (SSPD) (Besse et al., 2016). The

SSPD considers length differences between trajectories and the

possibility that they might be spatially close yet have a different

shape. The computation of the SSPD between two fibers A and B is

described next. First, the point-to-segment distance (Dps) is defined

in Equation (5):

Dps

(

ai, s
B
j

)

=

{
∥

∥

∥
ai − a

proj
i

∥

∥

∥
, if a

proj
i ∈ sBj

min(
∥

∥ai − bj
∥

∥ ,
∥

∥ai − bj+1

∥

∥) , otherwise
(5)

where, ai is a 3D point of fiber A and a
proj
i is the orthogonal

projection of ai on the segment sBj of fiber B. Also, bj and bj+1 are

two 3D points composing the line segment sBj of fiber B. Next, the

point-to-trajectory distance (Dpt) is computed in Equation (6):

Dpt (ai,B) = min
j∈[1,...,N−1]

Dps

(

ai, s
B
j

)

(6)

where N is the number of points of the fibers. Then, the Segment-

Path-Distance (SPD) from fiber A to fiber B is calculated in

Equation (7):

DSPD (A,B) =
1

N

N
∑

i=1

Dpt (ai,B) (7)

Finally, the SSPD distance is calculated in Equation (8):

DSSPD (A,B) =
DSPD(A,B)+ DSPD(B,A)

2
(8)
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FIGURE 2

Illustration of the SWM bundle atlas processing. (A) Summary of the SWM atlas processing, where an adequate centroid was calculated for each atlas

bundle and shape representative atlas bundles were identified. (B) We show each RBi and their position within the human brain.

FIGURE 3

Identification of the main fiber fascicle. (A) An atlas bundle A with N fibers and its centroid CA. First, we compute the distance DNE between each fiber

fi of A and CA. Next, we calculate the mean DNE distance as the centroid distance threshold for atlas bundle A (THA). (B) Illustration of the

identification of the main fiber fascicle. We show a segmented fiber bundle using atlas bundle A. Next, we remove segmented fibers sj with a

DNE

(

sj,CA

)

> THA. Here, fiber s1 is removed because its shape di�ers from the shape of centroid CA.
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FIGURE 4

The four fiber bundle filters. (A) The DEND distance removes fibers with noisy endpoint positions. (B) The DSSPD distance is used to remove fibers with

noisy trajectories. (C) A schematic of the fiber point consistency calculation for the red fiber’s point p (white sphere) using Kf = 5 (blue fibers). (D) An

illustration of the segmented bundle’s point cloud and its Convex Hull (10% of the fibers were discarded for all filters).

The filter works in the same manner as described for the filter

based on Connectivity Patterns. First, we calculate the distance

DSSPD from each fiber to all other fibers in the bundle. Then, we

count the number of similar fibers as those with a DSSPD distance

less than a distance threshold called θSSPD. Finally, we discard a

percentage of fibers with the lowest number of similar fibers (see
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Figure 4B). This fiber bundle filter has two parameters: the PDF and

the θSSPD distance threshold.

2.5.3 Fiber bundle filter based on Fiber
Consistency

This fiber bundle filter uses the concept of fiber point

consistency (Xia and Shi, 2020) to remove spurious fibers. It uses

the Minimum average Direct-Flip (MDF) distance (Garyfallidis

et al., 2012) to quantify the spatial proximity between two fibers.

The MDF distance between fibers A and B with N points

computes the average distance between corresponding fiber points

(Equation 9):

DMDF (A,B) = min(
1

N

N
∑

i=1

∥

∥ai − bi
∥

∥ ,
1

N

N
∑

i=1

∥

∥ai − bN−i+1

∥

∥) (9)

where ai and bi are corresponding fiber points. For each fiber fi in

the bundle, we denote its set of K-nearest fibers by Fi = {fj | j =

1, ...,K}. These fibers are spatially closer to fi, calculated using the

MDF distance. Then, given any fiber point p ∈ fi, we define its

neighborhood point set as P = {nj | j = 1, ...,K} where nj is the

closest point to p on fiber fj ∈ Fi. Then, the consistency measure at

the fiber point p is calculated in Equation (10) (Xia and Shi, 2020):

C
(

p
)

=

K
∑

j=1

e
−
‖p−nj‖

2

σ2c , nj ∈ P (10)

The parameter σc controls the quantitative conversion from

point-wise distance to point-wise affinity. The authors in Xia

and Shi (2020) found that a σc = 6−8 mm is an appropriate

value; therefore, we used a σc = 8 mm. Then, we calculate the

fiber consistency as the average consistency for the streamline

points. Isolated fibers tend to have low consistency because the

factor e
−
‖p−nj‖

2

σ2c decays exponentially as the distance
∥

∥p− nj
∥

∥

increases. Finally, we discard a percentage of fibers with the

lowest consistency (see Figure 4C). This fiber bundle filter has two

parameters: the PDF and the K-nearest fibers (Kf ).

2.5.4 Fiber bundle filter based on the Convex Hull
This fiber bundle filter uses the Convex Hull (CH) (Kai et al.,

2022) to remove spurious fibers. First, we represent a fiber bundle

as a point cloud. Next, we calculate the CH of the point cloud using

the Qhull algorithm from the Python Scipy package (Virtanen et al.,

2020). The CH is the smallest convex set that contains all the points

(see Figure 4D). We defined a fiber Degree of Abnormality (DA),

calculated for fibers fi with at least one vertex belonging to the

CH. For the DA calculation, we first compute the mean Euclidean

distance from each fi point to its K-nearest points in the point

cloud and calculate the average value for the streamline points.

Fibers with a DA greater than one standard deviation from the

meanDA are removed. The algorithm discards fibers until a defined

percentage is reached. This fiber bundle filter has two parameters:

the PDF and the number of K-nearest points (Kp).

2.6 Test-retest reproducibility indices

We computed reproducibility indices to quantify the similarity

between the corresponding test-retest fiber bundles. We employed

measurements widely used in the field. We used the Dice

Volumetric Overlap (Bertò et al., 2021), Average Fractal Dimension

(AFD) (Bertò et al., 2021), Average Minimum Distance (AMD)

(Schilling et al., 2021a), and Average Distance (AD) (Guevara et al.,

2012).

2.6.1 Indices based on the distance between
fibers

Given two bundles, B1 = [f 11 , ..., f
1
N1
] with N1 fibers and B2 =

[f 21 , ..., f
2
N2
] with N2 fibers, we calculate the Average Distance (AD)

(Guevara et al., 2012) and Average Minimum Distance (AMD)

(Schilling et al., 2021a) in Equations (11, 12), respectively:

AD (B1,B2) =
1

N1 × N2

N1
∑

i=1

N2
∑

j=1

DME

(

f 1i , f
2
j

)

(11)

AMD (B1,B2) = (
1

N1

N1
∑

i=1

min
j

DME

(

f 1i , f
2
j

)

+
1

N2

N2
∑

j=1

min
i

DME

(

f 2j , f
1
i

)

)/2 (12)

The AD indicates the spatial proximity between two fiber

bundles. Whereas, the AMD indicates the average distance

of disagreement when two bundles have fibers with different

geometries. Both the AMD and AD are in millimeters.

2.6.2 Indices based on bundle binary masks
Given two bundle binary masks M1 and M2, the Dice

Volumetric Overlap (Bertò et al., 2021) and the Average Fractal

Dimension (AFD) are calculated in Equations (13, 14), respectively:

DSC (M1,M2) =
2×

∣

∣v(M1) ∩ v(M2)
∣

∣

∣

∣v(M1)
∣

∣+
∣

∣v(M2)
∣

∣

(13)

where,
∣

∣v()
∣

∣ is the number of voxels in the bundle mask. A Dice

Score Coefficient (DSC) of 1 indicates perfect overlap, whereas a

DSC of 0 indicates that bundle masks do not overlap.

AFD(M1,M2) = (FDbox(M1)+ FDbox(M2))/2 (14)

where FDbox is the Fractal Dimension (FD) (Bertò et al., 2021) of the

bundle mask. The FD quantify the degree of regularity/smoothness

of a 3D shape and it is computed using the box-counting dimension,

which covers a shape with boxes of size δ and it quantifies how

the number of boxes varies as δ changes, in double log scale

(Equation 15):

FDbox (M) = − lim
δ→0

log count(δ)

log(δ)
(15)
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where count(δ) is the number of boxes required to cover the bundle

maskM. A high FD indicates that bundles are smooth and rounded,

whereas a low FD means that bundles are wrinkled and irregular

(Bertò et al., 2021). Therefore, we propose Equation (14) to quantify

the average degree of smoothness/regularity between two bundle

masks. In Bertò et al. (2021) the authors calculated the FD of

segmented fiber bundles, obtaining values between 1.7 and 2.5.

2.7 Enhanced fiber bundle segmentation in
the HCP database

This section presents the methodology implemented to

enhance the segmentation of the short fiber bundles based on

the identification of the main fiber fascicle and the fiber bundle

filters. The database was divided into two groups of randomly

chosen subjects. In training (28 subjects), we used four segmented

representative bundles, each one corresponding to a main bundle

shape identified in the bundle atlas, to perform a filter parameter

tuning and determine the best filter (see Figure 5A). The validation

set comprises 16 subjects and was used to evaluate the best fiber

bundle filter performance using all atlas bundles, with and without

the identification of the main fiber fascicle (see Figure 5B).

2.7.1 Filter parameter tuning in the training set
The segmented bundles from the RBi (see Section 2.3) are

denoted SRBi. Also, the SRBi processed with the identification of

the main fiber fascicle (see Section 2.4) are denoted as MFF SRBi.

In the following, we describe the main concepts used to

formulate a cost function, which is used to compute appropriate

parameters for each fiber bundle filter. We considered two

observations from the test-retest bundles. First, spurious fibers

in the retest bundle are located distant from the core of the

test bundle. Thus, these distant fibers have a high DME distance.

Second, these fibers have a large difference in the number of

neighboring fibers surrounding their trajectory. To estimate the

number of neighboring fibers, we calculated a bundle density

image and averaged the value of the underlying image along the

fiber’s path. The bundle density image calculation is described in

Supplementary material S3. Next, we introduce the DT term in

Equation (16), designed to penalize the difference in the number

of neighboring fibers.

DT
(

fi, fj
)

=

(

abs(NSi − NSj)

max(NSi,NSj)
+ 1

)2

(16)

where NSi and NSj are the number of neighboring fibers of

streamlines fi and fj, respectively. The term DT is 1.0 when NSi and

NSj are equal and increases as the difference becomes larger.

Subsequently, we formulate a cost function to estimate the fit

between the corresponding test-retest main fiber fascicles. Our cost

function is denoted as Test-Retest Maximum Distance [TRMD,

is inspired by the cost function developed in Garyfallidis et al.

(2015)]. Given a test MFF SRBi with fibers B1 = [f 11 , ..., f
1
N1
] and

its corresponding retest MFF SRBi with fibers B2 = [f 21 , ..., f
2
N2
], the

TRMD is calculated in Equation (17):

TRMD (B1,B2) =

(

1

N1

N1
∑

i=1

max
j
DME

(

f 1i , f
2
j

)

× DT
(

f 1i , f
2
j

)

+
1

N2

N2
∑

j=1

max
i
DME

(

f 2j , f
1
i

)

× DT
(

f 2j , f
1
i

)





2 (17)

In the TRMD, we compute the maximum DME distance from

each fiber in B1 to all fibers in B2 (and vice-versa for fibers in

B2). Furthermore, these maximum distances are penalized by the

term DT and averaged. The intuition is that the maximum distance

DME of fibers in the core of B1 will correspond to distant and

isolated fibers in B2 (and likewise for fibers in the core of B2).

Consequently, the TRMD will be high due to the DT term. As we

remove spurious streamlines using a fiber bundle filter, the TRMD

will drop sharply and stabilize. See Figure 6 for an illustration of the

TRMD computation.

Next, we describe the calculation of appropriate parameters for

each fiber bundle filter based on the TRMD. First, we compute

TRMD curves for each fiber bundle filter using different parameter

values (see Table 1) at the individual level (see Figure 7A). For each

TRMD curve, we used the Elbow point to choose the best trade-

off between reducing the TRMD and increasing the PDF. Then, the

curve providing the lowest TRMD on the Elbow point was selected.

To perform a parameter tuning for each fiber bundle filter

and MFF SRBi, we averaged the corresponding selected curves

for the 28 subjects (see Figure 7B). Then, we identified the Elbow

of the averaged curves to determine an appropriate PDF. The

second parameter of each filter was set as the statistical mode of

the selected curves. In Table 2, we show the parameters computed

from the 28 subjects for each filter. The automatic detection

of Elbow points is described in Supplementary material S4.

Supplementary material S5 shows TRMD curves for an individual

subject and the averaged TRMD curves.

2.7.2 Test-retest reproducibility analysis in the
training set

This section describes the methodology used to select the best

fiber bundle filter. Over the subjects’ test and retest main fiber

fascicles, we applied each fiber bundle filter with parameters from

Table 2. The selection of the best filter is based on the best scores in

the reproducibility indices (described in Section 2.6).

We also calculated test-retest reproducibility metrics for

every possible combination between the four fiber bundle filters.

Combining two or more filters means that each fiber bundle

filter was applied independently to the main fiber fascicle. Then,

we obtained the intersection of shared fibers between every

filtered fascicle to produce a final bundle. The results demonstrate

an improvement in the test-retest reproducibility indices when

combining two or more filters. Nonetheless, the improvement was

minimal compared to only applying the filter based on the Convex

Hull. Further details are available in Supplementary material S6.

Finally, the best fiber bundle filter was applied to the segmented

representative bundles without the identification of the main

fiber fascicle, and their test-retest reproducibility was assessed.

The results show that filtering also improved the test-retest
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FIGURE 5

Training and validation set processing. In training we performed a parameter tuning for each fiber bundle filter and each shape representative bundle

identified. We determined the best fiber bundle filter based on test-retest reproducibility indices. The best filter performance is evaluated in the

validation set considering all atlas bundles. (A) Training set processing (28 subjects). (B) Validation set processing (16 subjects).

FIGURE 6

Illustration of the TRMD computation between a pair of test and retest bundles. (A) A rectangular matrix is computed that contains the DME distance

between every pair of fibers of the test and retest bundles. Then, the maximum value of DME (max DME) is calculated for each row and column. (B) A

pair of fibers with a max DME is identified (fibers a1 and b2) and their distance is penalized by the di�erence of density in their neighboring fibers (DT

term). The TRMD is calculated by summing the average of these penalized distances for the test (rows) and retest (columns) fibers, and the final value

is squared. Spurious fibers (e.g., b2) are located far away from the core fibers of the bundle (e.g., a1), resulting in a high DME distance. Also, these fibers

are located in regions with low fiber density, leading to a high DT term. Therefore, test-retest bundles with spurious fibers have a high TRMD value.

Bundle density images are shown with a gray background and color coded with red (low density)—yellow (high density).

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2024.1394681
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mendoza et al. 10.3389/fnins.2024.1394681

TABLE 1 Values used for each parameter of the fiber bundle filters at the

individual level.

Fiber
bundle filter

Parameter 1
(PDF %)

Parameter 2

Connectivity

Patterns

0–60%, step size of 5% θEND (mm) = 5, 8, 10, 12, 15

SSPD 0–60%, step size of 5% θSSPD (mm) = 5, 8, 10, 12, 15

Fiber Consistency 0–60%, step size of 5% Kf = 10, 20, 40, 80, 120

Convex Hull 0–60%, step size of 5% Kp = 10, 20, 40, 80

reproducibility indices in this case. See Supplementary material S7

for more details.

We used the Wilcoxon signed-rank test to determine

the statistically significant improvement of the test-retest

reproducibility indices after filtering (Wilcoxon, 1945), corrected

for multiple comparisons using False Discovery Rate (FDR)

(Benjamini and Hochberg, 1995).

2.7.3 Validation set processing
This section evaluates the performance of the best fiber bundle

filter using all atlas bundles. The atlas bundles were grouped by

shape in the SWM atlas processing, and the parameters of the fiber

bundle filter were computed according to the shape of the bundle.

Therefore, the parameters of the best filter were set according to the

shape of the bundle (see Table 2).

We used the subjects from the validation set and bundles

segmented in the 16 subjects with a minimum of 10 fibers. First,

we applied the best filter over bundles with and without the

identification of the main fiber fascicle. Then, we assessed the

improvement of the test-retest reproducibility indices from the

filtered fiber bundles.

Additionally, we applied a random filtering of fibers, using

the same percentage of fiber discarding of the best fiber bundle

filter. The results show that the test-retest reproducibility indices

did not change by respect to the non-filtered bundles. This

demonstrates that the improvement in reproducibility indices was

due to the removal of spurious fibers rather than the decrease in the

fiber count of the bundles. Refer to Supplementary material S9 for

further details.

Again, we used the Wilcoxon signed-rank test to assess

the statistically significant improvement of the test-retest

reproducibility indices after filtering (Wilcoxon, 1945), corrected

for multiple comparisons using FDR (Benjamini and Hochberg,

1995).

2.8 Enhanced fiber bundle segmentation
applied in the ABIDE-II database

In this section, we applied the enhanced short fiber bundle

segmentation in lower-quality data from the ABIDE-II database.

In this case, the enhanced segmentation was applied to detect

alterations in diffusion-based microstructural indices.

We used bundles segmented in all subjects with a minimum

of 10 fibers. Then we applied the best fiber bundle filter (with

parameters from Table 2), with and without the identification of the

main fiber fascicle. Next, a Fractional Anisotropy (FA) mask was

calculated for each bundle, and the mean FA value was computed.

Subsequently, a two-tailed independent t-test was used to assess

the significant difference in the mean FA of the bundles between

control and subjects with ASD. Finally, we compared the number

of significant bundles found with the enhanced segmentation

and the segmentation without processing (see Figure 8). We also

present results for the Mean Diffusivity (MD) and the Radial

Diffusivity (RD).

The normal distribution of the bundles’ mean FA, MD and

RD was tested using the Shapiro-Wilk test (Shapiro and Wilk,

1965). For non-normally distributed data, the Mann-Whitney test

(Mann and Whitney, 1947) was employed. All statistical tests were

conducted with a significance threshold set at a p-value< 0.05.

3 Results

3.1 Results for the test-retest
reproducibility analysis

In this section, we present the test-retest reproducibility indices

(described in Section 2.6) for the SRBi of subjects from the

training set, processed with the identification of the main fiber

fascicle and each fiber bundle filter. To ease the reading of

the following sections, we use the notation MFF+Filterj, which

refers to the bundle SRBi processed with the identification of the

main fiber fascicle and further processed with fiber bundle filter

j. For example, MFF+CH means we processed the segmented

bundles with the identification of the main fiber fascicle, and then

applied the ConvexHull filter. Supplementary Table S3 summarizes

all notations.

Next, we present the mean score for each test-retest

reproducibility index (see Table 3). The mean Dice Volumetric

Overlap score for the main fiber fascicles shows moderate to

relatively good agreement in the volume occupied. The MFF +

CH processing had the highest improvement compared to the MFF

scores. Also, a significant improvement was found between the

MFF and MFF+CH scores for bundles SRB1, SRB2 and SRB4 (p-

value< 0.05 for each comparison), which demonstrates that the

filtering improved the agreement in the volume occupied between

test-retest main fiber fascicles.

The shape of the filtered main fiber fascicles was smoother,

as demonstrated by the higher values of the Average Fractal

Dimension. Similarly, the MFF+CH processing had the highest

improvement compared to MFF scores. In addition, a significant

improvement was found between the MFF and MFF+CH

scores for the four SRBi (p-value< 0.05 for each comparison),

demonstrating the ability to remove spurious fibers, as they

constitute one of the main sources of irregularity in the shape of

the bundle.

The mean score for the Average Minimum Distance improved

when applying the fiber bundle filters. The MFF + FC processing

had the highest improvement in bundles SRB1, SRB3 and SRB4,

when compared to MFF scores. Significant improvements were
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FIGURE 7

Parameter tuning of the fiber bundle filters. (A) Computation of TRMD curves for the fiber bundle filter based on the Convex Hull using a single

subject. A TRMD curve is generated for each value of Kp, using di�erent PDF values. Then, we selected the TRMD curve with the lowest point at the

Elbow point. We show the selected curve for the four MFF SRBi. (B) We averaged the selected curves for the 28 subjects to calculate the appropriate

parameters for each fiber bundle filter. Each averaged TRMD curve shows the selected PDF (Elbow point shown as a red star) and the selected Kp

(statistical mode from the 28 selected curves). The steps described in (A, B) were performed for each fiber bundle filter.

TABLE 2 Parameters selected for each fiber bundle filter and main fiber fascicle of the segmented representative bundles (MFF SRBi).

Fiber bundle filter MFF SRB1 MFF SRB2 MFF SRB3 MFF SRB4

Connectivity Patterns PDF = 15% PDF = 10% PDF = 15% PDF = 20%

θEND = 8.0 θEND = 8.0 θEND = 12.0 θEND = 10.0

SSPD PDF = 10% PDF = 15% PDF = 15% PDF = 10%

θSSPD = 5.0 θSSPD = 5.0 θSSPD = 5.0 θSSPD = 5.0

Fiber Consistency PDF = 20% PDF = 15% PDF = 20% PDF = 15%

Kf = 80 Kf = 120 Kf = 20 Kf = 120

Convex Hull PDF = 15% PDF = 20% PDF = 20% PDF = 10%

Kp = 80 Kp = 10 Kp = 80 Kp = 10

found between the MFF and MFF + FC scores for bundles

SRB1 and SRB4 (p-value< 0.05 for each comparison). The

MFF+CH processing had the highest improvement in bundle

SRB2, compared to MFF scores (p-value< 0.05). The results of

the AMD indicate that the application of the fiber bundle filters

allowed us to obtain more geometrically similar and compact

test-retest fascicles.

The mean score for the Average Distance shows that fibers

from filtered test-retest fascicles were spatially closer. The MFF+FC

processing had the best improvement in bundle SRB1, when
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FIGURE 8

Application of the enhanced short fiber bundle segmentation in the clinical quality database ABIDE-II. We used the identification of the main fiber

fascicle and the best fiber bundle filter to obtain well-defined bundles. Then, bundle FA masks were computed, and the bundles’ mean FA values

were calculated to assess statistically significant di�erences between control and ASD subjects. Finally, we compared the number of bundles with the

significant di�erence found with the enhanced and without processing segmentation.

TABLE 3 Mean scores for each test-retest reproducibility index and SRBi (mean ± standard deviation), using the fiber bundle filters.

MFF MFF + CP MFF + SSPD MFF + FC MFF + CH

DSC SRB1 0.71± 0.09 0.71± 0.09 0.71± 0.10 0.72± 0.11 0.73 ± 0.11

SRB2 0.73± 0.06 0.75± 0.06 0.75± 0.06 0.76± 0.06 0.77 ± 0.06

SRB3 0.56± 0.17 0.56± 0.17 0.56± 0.18 0.56± 0.18 0.57 ± 0.18

SRB4 0.76± 0.05 0.76± 0.06 0.77± 0.05 0.77± 0.07 0.78 ± 0.06

AFD SRB1 2.11± 0.13 2.13± 0.15 2.13± 0.14 2.15± 0.15 2.17 ± 0.15

SRB2 2.03± 0.12 2.05± 0.12 2.06± 0.11 2.08± 0.12 2.09 ± 0.11

SRB3 1.73± 0.30 1.73± 0.31 1.74± 0.31 1.75± 0.33 1.76 ± 0.33

SRB4 2.13± 0.08 2.13± 0.09 2.15± 0.08 2.17± 0.08 2.18 ± 0.09

AMD SRB1 3.63± 0.66 3.56± 0.67 3.58± 0.69 3.50 ± 0.71 3.52± 0.68

SRB2 2.96± 0.48 2.86± 0.51 2.86± 0.52 2.80± 0.52 2.79 ± 0.53

SRB3 4.67± 1.15 4.62± 1.21 4.64± 1.23 4.58 ± 1.30 4.62± 1.36

SRB4 2.51± 0.32 2.43± 0.36 2.44± 0.33 2.37 ± 0.34 2.39± 0.33

AD SRB1 11.23± 1.11 10.53± 1.24 10.76± 1.20 10.44 ± 1.27 10.60± 1.23

SRB2 11.17± 1.43 10.39± 1.62 10.21± 1.64 10.17± 1.66 10.02 ± 1.73

SRB3 13.00± 0.95 11.98± 1.11 12.12± 1.13 11.84± 1.19 11.56 ± 1.16

SRB4 10.73± 0.78 9.32 ± 0.87 10.29± 0.86 9.86± 0.98 10.20± 0.93

The bold values indicate the best score.

compared to the MFF scores (p-value< 0.05). The MFF+CH

processing had the highest improvement in bundles SRB2 and

SRB3 when compared to MFF scores (p-value< 0.05 for

each comparison). The MFF+CP processing had the highest

improvement in bundle SRB4 when compared to MFF scores (p-

value< 0.05). Results for the Average Distance demonstrate the

ability of the fiber bundle filters to remove fibers far away from the

fascicle’s core and generate test-retest fascicles with fibers spatially

close to each other.

The fiber bundle filter based on the Convex Hull was chosen

as the best filter because it had the highest improvement in most

test-retest reproducibility indices. In Figure 9, we show each SRBi
of subject 143325, where the fiber bundle filter based on the Convex

Hull removed most isolated fibers, providing well-defined fascicles

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2024.1394681
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mendoza et al. 10.3389/fnins.2024.1394681

FIGURE 9

Resulting test-retest main fiber fascicles for subject 143325 of the training set. We show each MFF SRBi processed with each fiber bundle filter. The

filter based on the Convex Hull (fifth column) had the best results, generating rounded bundles with smooth shape and with most isolated fibers

removed.

and improving their test-retest similarity. Finally, the identification

of the main fiber fascicle removed an average percentage of 51.6 ±

17.16% fibers from all SRBi.

To analyze the configuration of rejected fibers, we applied the

QuickBundles clustering (Garyfallidis et al., 2012) to segmented

bundles of the training set from the HCP database (28 subjects).

In Supplementary Figure S18 we show histogram plots of the

mean cluster size (number of fibers) and frequency for segmented

representative bundles, filtered bundles and the rejected fibers. The

clustering of segmented bundles generates clusters with a frequency

decreasing from 100 for the range [1–6] fibers, to around 20 for the

range [91–96] clusters. Furthermore, filtered bundles present fewer

small clusters, with <50 clusters with an average size in the range

[1–6]. On the other side, rejected fibers were clustered into a large

number of small clusters, with a frequency ranging from 190 to 300

clusters for the same size range. These results show that in general,

the filtering removes spurious fibers. However, it may exist some

atlas bundles with one or more subpopulations of fibers.

Additionally, in the Supplementary material, we included

two figures showing representative fibers of the rejected

and accepted fibers of each filter and MFF, for the

U-shaped (Supplementary Figure S19) and the open U-shape

(Supplementary Figure S20) representative bundles. In general,

rejected fibers are similar for the four filters, presenting an irregular

shape and positioned far away from the core of the bundle. It can be

observed that the FC and CH filters discard more complex-shaped

fibers than the other two filters, generating cleaner bundles. This

may be because these filters are not only based on a distance

measure but also consider in some way the density of the bundles.

Respecting the MFF, is it especially useful for bundles with an open

U-shape, such as the one illustrated in Supplementary Figure S20,

where noisy fibers in the middle of the bundle, differing from the

main bundle shape, are removed more efficiently.

3.2 Results for the test-retest
reproducibility evaluation

This section presents results for the test-retest reproducibility

indices using all atlas bundles. We used fiber bundles segmented in
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TABLE 4 Mean scores for segmented bundles in the validation set, with and without processing.

Test-retest reproducibility indice NP CH MFF MFF + CH

Dice Volumetric Overlap 0.70± 0.11 0.74 ± 0.12 0.66± 0.15 0.68 ± 0.16

Average Fractal Dimension (AFD) 2.01+ 0.21 2.11 ± 0.21 1.92± 0.29 1.99 ± 0.29

Average Minimum Distance (AMD) 3.68± 0.91 3.57 ± 1.01 3.88± 1.24 3.77 ± 1.41

Average Distance (AD) 15.70± 2.91 14.05 ± 3.02 12.53± 2.12 11.35 ± 2.28

The Dice Volumetric Overlap shows the mean DSC. The AD and AMD are inmm. Bold values indicate an improvement of the score after applying the filter based on the Convex Hull over NP

bundles and main fibers fascicles.

the 16 subjects from the validation set (and in both test and retest

acquisitions) with a minimum of 10 fibers. Using these criteria,

we obtained 462 fiber bundles per subject and a total of 7,392 (16

× 462) bundles. We applied the identification of the main fiber

fascicle and the fiber bundle filter based on the Convex Hull. For

the resulting bundles of each processing, we computed the mean

score of the test-retest reproducibility indices (see Table 4), which

provides an overall view of the performance of the filter based on

the Convex Hull.

We use the label “No Processed” (NP) to refer to segmented

fiber bundles with neither the identification of the main fiber

fascicle nor the fiber bundle filter based on the Convex Hull

processing. Also, the label CH refers to segmented fiber bundles

processed only with the Convex Hull filter.

First, we present results for CH bundles compared to NP

bundles. We obtained a higher score for the Dice Volumetric

Overlap in filtered bundles. Therefore, filtered test-retest bundles

had a higher agreement in the volume occupied. Also, CH bundles

had a smoother and more regular shape than NP bundles, as

demonstrated by the higher score of the AFD. Concerning the

spatial positioning of the fibers, the results of the AMD score

demonstrate that the filtered bundles had fewer isolated fibers than

NP bundles. Finally, CH bundles had a lower AD score than NP

bundles, which means that filtered test-retest bundles had fibers

spatially closer to each other.

Next, we describe the results for the main fiber fascicles, with

and without filtering. The reproducibility scores of the main fiber

fascicles improved when applying the filtering (MFF+CH column

of Table 4) for all indices. After filtering, we obtained a higher score

for the Dice Volumetric Overlap and AFD. Therefore, filtered main

fiber fascicles were in greater agreement in the volume occupied

with smoother shapes than MFF bundles. Also, lower scores for the

AD and AMD were found for the MFF+CH, which means that test

and retest main fibers fascicles were more compact and with fewer

isolated fibers after filtering. Finally, the identification of the main

fiber fascicle removed an average percentage of 53.1± 19.5% fibers

from segmented bundles.

Supplementary Table S5 shows the number of fiber bundles

with a significant improvement over the reproducibility

indices when applying the filter based on the Convex Hull.

By solely applying the filtering, we improved the test-retest

reproducibility indices in over 300 short fiber bundles. Likewise,

by applying the filtering to the main fiber fascicles, we obtained

improved test-retest reproducibility indices in over 300 bundles.

In Supplementary material S12 we show figures of filtered

fiber bundles.

3.3 Results for the ABIDE-II database

We used bundles segmented in all subjects with a minimum

of 10 fibers, resulting in 422 bundles per subject. In Table 5, we

show the number of bundles with statistically significant difference

(uncorrected p-value< 0.05) in the mean FA, MD and RD, between

control and ASD subjects. We found a higher number of bundles

using the filter based on the Convex Hull.

In Figure 10A, we show the eight bundles with significant

differences in mean FA between controls and subjects with ASD.

These bundles were processed with the identification of the main

fiber fascicle and the filter based on the Convex Hull. Likewise,

we show the twenty bundles with significant MD differences in

Figure 10B and the seventeen bundles with significant differences

in the RD in Figure 10C. Additionally, in Figure 10D, we show

the segmented bundle of a control subject. It can be seen that the

identification of the main fiber fascicle and the filter based on the

Convex Hull obtained well-defined bundles with fewer spurious

fibers than NP bundles, in a lower-quality database.

Supplementary Tables S7–S15 provide the bundles’ mean FA,

MD, and RD values averaged across subjects. Also, the uncorrected

p-value and the Cohen’s d are shown for each bundle. Decreased

FA, increased MD, and increased RD were found in subjects with

ASD. Also, Supplementary Figures S27–S29 show more filtered

bundles from control subjects. After applying the FDR correction

for multiple comparisons, no significant differences were found

in any of the segmentation results, regardless of whether fiber

filtering was applied or not. This is due to the high number of

comparisons performed, which potentially increases the likelihood

of missing genuinely significant findings. Also, bundles found to be

significant without FDR correction had a medium to large effect

size (Cohen’s d).

To evaluate whether the filter based on the CH is also the

best performing for the ABIDE-II database we performed a test

with a small subsample of 5 control subjects randomly chosen

from the ABIDE-II database, with a second diffusion MRI image

(acquired in the same session). We applied the four fiber filters to

the MFF bundles and calculated test-retest reproducibility indices.

In Supplementary Table S16, we list the mean score for each index.

Similar to the HCP database results, the fiber bundle filter based on

the Convex Hull had the best improvement in most indices.

Furthermore, in Supplementary Figure S30, we show bundles

for one subject from each database (ABIDE-II and HCP). In

general, bundle shapes and spurious fibers are similar for both

databases. Nonetheless, we noticed that some bundles from the

ABIDE-II database weremore irregular than bundles from theHCP
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TABLE 5 Number of bundles with significant di�erences in

di�usion-based microstructural indices between control and ASD

subjects (uncorrected p-value < 0.05).

NP CH MFF + CH

FA 2 4 8

MD 15 13 20

RD 7 13 17

A higher number of significant bundles were found with the identification of the main fiber

fascicle and filter based on the Convex Hull.

database, which could be explained by the lower quality of the

data (see bundle SRB2 of Supplementary Figure S30). Furthermore,

in Supplementary Figure S31, a whole-brain tractogram and 100

randomly selected bundles from a subject of the HCP database and

a subject from the ABIDE-II database are shown. It can be seen that

the filtering produced more compact short fiber bundles for both

subjects. Also, the fiber bundles present in general similar shape,

even though the fiber bundles are more noisy and dispersed for the

ABIDE-II database subject.

Additionally, we performed a quick experiment to test the

validity of using the filters’ parameters tuned with theHCP database

without any further filter optimization on the ABIDE-II database.

For that, we analyzed the same small subsample of five control

subjects from the ABIDE-II database employed in the previous test.

Then, we applied the parameter tuning based on the Test-Retest

Maximum Distance (TRMD), described in Section 2.7.1. Results

show that the parameters obtained for the ABIDE-II subjects

are very similar to those calculated using the HCP database for

bundles SRB1 and SRB2, representing the shape of ∼80% of the

atlas bundles (see Supplementary Figure S32). Furthermore, we

calculated the mean FA, MD, and RD values for the filtered bundles

of the ABIDE-II database using the two sets of optimal parameters.

Supplementary Tables S17, S18 list these values for the segmented

representative bundles, where it can be seen that the results are

quite similar, with slight differences in a few bundles.

Finally, Supplementary Tables S19–S21 show the mean and

standard deviation of FA, MD, and RD metrics before and after

filtering with CH and MFF + CH. Furthermore, the difference

between themeanmetrics between control and ASD subjects before

and after filtering are also included. Results show that in general, the

filtering increased the difference between control and ASD subjects.

4 Discussion

This paper proposes several tools to better study the SWM

fiber bundles. Our work consisted of implementing and validating

four fiber bundle filters to remove spurious fibers. Furthermore,

we define a methodology to identify the main fiber fascicle, which

allows us to disregard fibers whose shape differs from the main

atlas bundle shape, enabling us to obtain well-defined bundles. Our

results show an improvement in several test-retest reproducibility

indices from short fiber bundles of the HCP database.

Also, the filter application allowed us to improve the quality

of the short fiber bundles from a lower-quality database (ABIDE-

II). We demonstrated the relevance of filtering by improving

the sensitivity to alterations in diffusion-based microstructural

indices (FA, MD, and RD) between control and ASD subjects. We

found a large number of bundles with significant differences in

microestructural indices using fiber bundle filtering. Furthermore,

these bundles were predominantly located in the parietal and

temporal lobes, consistent with the findings in the existing

literature. We found a decrease in FA and an increase in MD

and RD in subjects with ASD compared to controls. As discussed

in Section 4.2, our results align with previous reports on the

topic, where the same trend of microstructural alterations has been

reported for the subjects with ASD.

4.1 Enhanced short fiber bundle
segmentation in the HCP database

We enhanced the short fiber bundle segmentation in two ways.

First, we used the atlas bundle centroids to identify the main fiber

fascicle. Second, we designed and implemented four fiber bundle

filters to remove spurious fibers. The identification of the main

fiber fascicle allowed us to obtain well-defined bundles. However,

this identification step may depend on the research objective. If

the study focuses on performing a detailed mapping of the U-

fiber shapes, then it could be beneficial to use main fiber fascicles.

However, we suggest omitting this step if high cortical coverage is

needed. Furthermore, future work could improve the identification

process by employing several atlas bundle centroids, allowing the

description of other shapes that may exist within the atlas bundle.

Fiber bundle filters were applied to remove spurious fibers.

First, the HCP database was split into two groups of subjects: the

training and validation set. Next, we describe the main findings

of the training set. Table 2 presents the recommended values

for the filter parameters according to the shape of the bundle.

These parameters were used to filter segmented representative

bundles. Our results show that the best filter is the Convex Hull,

which provides the highest improvement in most of the test-retest

reproducibility indices.

Test and retest bundles, processed with the filter based

on the Convex Hull, had a higher agreement on the volume

occupied, a smoother shape, and fewer isolated fibers than

the unprocessed bundles. The test-retest reproducibility indices

showed minimal improvement when two or more fiber bundle

filters were combined. Furthermore, we showed that the filter based

on the Convex Hull improved the test-retest reproducibility with or

without the identification of the main fiber fascicle.

The superior performance of the fiber bundle filter based on the

Convex Hull may be attributed to its topological properties. The

Convex Hull’s envelope offers a straightforward way of identifying

spurious fibers with noisy trajectory, as they are likely to provide a

vertex to the envelope. This inherent topological advantage allowed

us to efficiently identify and isolate spurious fibers, contributing to

the filter’s effectiveness.

In the validation set, we evaluated the filter based on the

Convex Hull using 462 bundles per subject. We found a significant

improvement in the test-retest reproducibility indices in more than

300 short fiber bundles. The application of the main fiber fascicle

and the filtered test-retest bundles had higher agreement in the
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FIGURE 10

(A–C) Show bundles with significant di�erences in FA, MD and RD mean values, between control and ASD subjects. The bundles were processed

with the identification of the main fiber fascicle and the filter based on the Convex Hull. (A) Eight fascicles with significant di�erence in the mean FA.

(B) Twenty fascicles with significant di�erence in the mean MD. (C) Seventeen fascicles with significant di�erence in the mean RD. (D) Atlas bundle

connecting the superior temporal and supramarginal gyri (centroid is shown in black), and the segmented bundle in a control subject. The filter

based on the Convex Hull allowed us to obtain well-defined bundles in a lower quality database.

occupied volume, a smoother shape, and fewer isolated fibers than

the unprocessed bundles.

Although an alternative approach could be filtering out

spurious fibers from the atlas bundles and then performing fiber

bundle segmentation, we opted to apply the filtering process

directly to the segmented bundles. This decision was based on our

previous experience, where we observed that the proposed pipeline

yielded better results.

4.2 Results from the ABIDE-II database

Few studies investigate SWM’s structural connectivity in

individuals with Autism Spectrum Disorder (ASD). In the

following, we describe the most important findings of these studies

and compare themwith our results. Sundaram et al. (2008) reported

a decrease in FA in short-range fibers of the frontal lobe, using

subjects with ASD aged 4.8 ± 2.4 years old. Shukla et al. (2011)
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reported a decrease in FA and an increase in MD and RD in

short association fibers of the frontal lobe from subjects with ASD

between 9 and 18 years old. Additionally, they found an increase in

MD and RD in short fibers of the parietal and temporal lobes. On

the other hand, d’Albis et al. (2018) used adult subjects with ASD

and reported a decrease in structural connectivity in 13 short fiber

bundles from the temporal-parietal-frontal lobes.

Hong et al. (2018) used cortical surface and microstructural

indices to quantify SWM alterations in 53 subjects with ASD. They

reported a decrease in FA and an increase in MD and RD in the

medial parietal and lateral temporo-parietal regions in subjects with

ASD. Furthermore, reduced FA and increased MD were observed

in the precuneus and posterior cingulate regions in subjects with

ASD. Finally, Bletsch et al. (2020) used 92 adult subjects with ASD

aged 18–52 years. Individuals with ASD showed reduced FA in the

SWM of the right temporal lobe and the left lateral orbitofrontal

cortex. In addition, they observed an increase inMD in the SWMof

the orbitofrontal cortex, pars triangularis, left fusiform, and inferior

temporal regions.

Comparison between studies is challenging due to the different

methodologies, ages of the subjects, and criteria used to define

the SWM. Nevertheless, our results are consistent with other

works, where FA decreases and MD and RD increase in the

SWM of individuals with ASD. See, for example, microstructural

alterations (Supplementary Tables S7–S15). Overall, the brain

regions most affected by ASD reported in the literature correspond

to the frontal, parietal, and temporal lobes. Using our enhanced

segmentation, our work identified bundles with decreased FA

in the superior temporal, middle temporal, and supramarginal

regions (see Supplementary Table S9). In contrast, the unprocessed

segmentation only identified two bundles with a significant

difference in FA (see Supplementary Table S7).

Unprocessed and enhanced segmentation allowed us to identify

bundles with significant differences in MD. However, enhanced

segmentation allowed us to obtain a greater number of significant

bundles located in the inferior parietal (Supplementary Table S11)

and the middle temporal gyri (Supplementary Table S12). Finally,

the enhanced segmentation allowed us to identify a higher number

of bundles with significant differences in the RD, located in the

precuneus, superior temporal, inferior parietal, and supramarginal

giry (Supplementary Tables S14, S15). Overall, the areas most

affected in our study correspond to the parietal and temporal

lobes, which is consistent with the literature reports. An increase

in the number of significant short fiber bundles offers a broader

scope for uncovering correlations with clinical manifestations

of ASD, such as social awareness or executive functioning

(d’Albis et al., 2018). This processing can facilitate a deeper

understanding and more precise characterization of cognitive

profiles and SWM integrity among individuals with ASD or

other diseases.

4.3 Limitations and future work

Limitations and future work are summarized below. Our study

used a limited sample of 44 subjects from the HCP database

(Glasser et al., 2013), and 44 subjects from the ABIDE-II database

(Martino et al., 2017), further validation of the developed tools

could be performed using more subjects and databases of different

quality, such as the Parkinson’s progression markers initiative

(PPMI) (Marek et al., 2011).

Due to the high inter-subject variability of the short bundles,

other parameter tuning strategies could be employed for the filter

based on the Convex Hull. For instance, the leverage of statistical

analysis or machine learning to automatically fit the parameters

of the filter based on the subject’s unique bundle features.

Another area of improvement in our work is the utilization of

fixed segmentation thresholds. Modifying these thresholds could

enhance the detection of short fiber bundles with the trade-off of

segmenting a higher proportion of spurious fibers. Future work

could include an analysis of the performance of the fiber bundle

filter based on the Convex Hull when increasing the segmentation

thresholds. Also, new tractography algorithms dedicated to the

reconstruction of the short connections could be used (Shastin

et al., 2022).

The proposed processing does not reassign rejected

fibers to other SWM bundles. As it is shown in the

Supplementary Figure S18, most of the rejected fibers constitute

noisy fibers rather than different subpopulations of fibers.

Nonetheless, a reassignment method could be integrated in future

work to avoid removing valid streamlines. Also, a more detailed

SWM bundle atlas could improve the representation of different

fiber populations for high quality data.

This work aimed to evaluate the performance of different

SWM fiber bundle filters and determine suggested parameters

based on the HCP database, that could be used in other databases.

Nevertheless, the two databases used differ vastly in male/female

ratio as well as age and data quality. The sample employed from

the HCP database is composed of subjects aged 22–25 years old

(13 males, 31 females), with high-quality diffusion MRI data (270

total directions, three b-values, and 1.25 mm isotropic voxels).

On the other hand, the sample from the ABIDE-II database is

composed of control subjects (21 male, one female; 9.8 ± 3.6 years

old) and Autism Spectrum Disorder (ASD) patients (21 male, one

female; 9.8 ± 5.6 years old), with low-quality diffusion MRI data

(64 directions, one b-value, and 3mm isotropic voxels). Despite this

asymmetry between databases, the parameter tuning in the ABIDE-

II subsample (see Supplementary Figure S32) was quite similar to

the HCP tuning in most bundles. However, future work could

perform an analysis of the filtering using different data quality

databases and tractography algorithms to evaluate the robustness

of the filters and parameter tuning.

Finally, we limited our work to four test-retest reproducibility

indices. Three of them have been previously used to quantify the

similarity between fiber bundles: Dice Volumetric Overlap (Bertò

et al., 2021; Schilling et al., 2021a), Average Distance (Guevara

et al., 2012), and Average Minimum Distance (Schilling et al.,

2021a). Furthermore, in our work, we proposed the Average

Fractal Dimension (Bertò et al., 2021) as a measure of the

average smoothness between the test and the retest bundles. We

used indices that best fit our research objectives. Nonetheless,

several other proposed indices in the literature, such as the

relative difference of the mean FA (Zhang et al., 2019), the

Intra-class correlation coefficient (Boukadi et al., 2019) or the
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volume overreach (Maier-Hein et al., 2017) can be used in

future work.

5 Conclusion

In conclusion, the fiber bundle filter based on the Convex Hull

significantly improved the test-retest reproducibility indices of the

short fiber bundles. Our results show that we can identify well-

defined short bundles with a regular shape. Our enhanced SWM

segmentation could be beneficial in several research lines, such

as the study of the regional organization of short fibers (Pron

et al., 2020; Guevara et al., 2022), cortical parcellation (López-

López et al., 2020), or the creation of SWM atlas (Zhang et al.,

2018; Román et al., 2022). Our improvements are relevant to

make the bundle segmentation method of Vázquez et al. (2019) or

other segmentation algorithms more sensitive to alterations in the

SWM diffusion-based microstructural indices. The results derived

from the ABIDE-II database provide substantial support for this

assertion. We have shown that the filter based on the Convex Hull

increased the number of bundles with significant differences in the

FA, MD, and RD between controls and subjects with ASD. Notably,

the location of the bundles identified with significant differences is

consistent with prior research in the field.
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