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VPS13A disease and Huntington’s disease (HD) are two basal ganglia disorders 
that may be  difficult to distinguish clinically because they have similar 
symptoms, neuropathological features, and cellular dysfunctions with selective 
degeneration of the medium spiny neurons of the striatum. However, their 
etiology is different. VPS13A disease is caused by a mutation in the VPS13A gene 
leading to a lack of protein in the cells, while HD is due to an expansion of 
CAG repeat in the huntingtin (Htt) gene, leading to aberrant accumulation of 
mutant Htt. Considering the similarities of both diseases regarding the selective 
degeneration of striatal medium spiny neurons, the involvement of VPS13A 
in the molecular mechanisms of HD pathophysiology cannot be  discarded. 
We analyzed the VPS13A distribution in the striatum, cortex, hippocampus, and 
cerebellum of a transgenic mouse model of HD. We also quantified the VPS13A 
levels in the human cortex and putamen nucleus; and compared data on 
mutant Htt-induced changes in VPS13A expression from differential expression 
datasets. We found that VPS13A brain distribution or expression was unaltered 
in most situations with a decrease in the putamen of HD patients and small 
mRNA changes in the striatum and cerebellum of HD mice. We concluded that 
the selective susceptibility of the striatum in VPS13A disease and HD may be a 
consequence of disturbances in different cellular processes with convergent 
molecular mechanisms already to be elucidated.
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1 Introduction

Basal ganglia disorders are a heterogeneous group of 
neurodegenerative diseases that affect selectively a group of neuronal 
populations in cortical and subcortical circuitries. VPS13A disease 
(chorea-acanthocytosis, ChAc, OMIM: 200150; Jung et  al., 2011; 
Peikert et al., 2023) and Huntington’s disease (HD, OMIM: 143100; 
Ross et  al., 2014) are two basal ganglia disorders that are often 
clinically difficult to distinguish because they have similar symptoms, 
magnetic resonance imaging findings (Suzuki et  al., 2020) and 
neuropathological features with selective degeneration of the medium 
spiny neurons (MSNs) in the striatum (Liu et al., 2019). However, the 
etiology of both diseases is different. ChAc is a rare autosomal 
recessive neurodegenerative disease caused by a mutation in the 
VPS13A gene located on chromosome 9, which encodes the protein 
VPS13A (Ueno et  al., 2001). Meanwhile, HD is an autosomal 
dominant disease that is due to an expansion of CAG repeat in the 
huntingtin (Htt) gene located on chromosome 4 (Ross et al., 2014). 
Thus, MSNs have a selective vulnerability to the lack of VPS13A 
(Henkel et al., 2008; Walterfang et al., 2011) and to the accumulation 
of mutant Htt (mHtt; Vonsattel and DiFiglia, 1998; Kassubek et al., 
2004), while other neuronal populations in the striatum, such as 
interneurons, are more resistant. Therefore, the understanding of the 
mechanisms that make MSNs more vulnerable can be  useful in 
developing therapeutical strategies to protect these neurons and 
their circuitries.

The low frequency of ChAc patients determines the little 
knowledge so far about the localization and function of VPS13A. This 
is a large ubiquitous protein highly expressed in the brain with a 
distinct VPS13A distribution that contributes to explaining the ChAc 
neuropathology (García-García et al., 2021). However, although the 
main neuropathological feature in ChAc patients is the selective 
degeneration of the caudate nucleus and putamen, the concentration 
of VPS13A in basal ganglia nuclei is weak (Kurano et al., 2007; García-
García et  al., 2021). Thus, the vulnerability of striatal neurons to 
VPS13A disease seems not to be related to the amount of protein 
present in the cell, but to specific striatal functional properties, 
circuitry, and MSN cell processes specifically affected by the lack 
of VPS13A.

VPS13A has a large variety of cellular functions that can affect the 
selective vulnerability of distinct neuronal populations. At the cellular 
level, VPS13A is a lipid transport protein localized in the contact sites 
between organelles (Kumar et al., 2018). Its lack of function has been 
associated with endocytic trafficking and lysosomal degradation 
impairment (Muñoz-Braceras et  al., 2019), impaired autophagic 
degradation (Muñoz-Braceras et al., 2015), and abnormal calcium 
homeostasis (Pelzl et al., 2017). Furthermore, although VPS13A is not 
enriched in the synaptic compartment (Kurano et al., 2007; García-
García et  al., 2021), it is important for maintaining the neuronal 
optimal synaptic activity. Indeed, synaptic plasticity impairment and 
deficient glutamatergic and BDNF transmissions have been related to 
mouse corticostriatal VPS13A knockdown (García-García et  al., 
2023). In this line, enhanced neurite outgrowth and ramifications have 
been described in MSNs differentiated from hiPSC derived from 
fibroblast of ChAc (Stanslowsky et al., 2016), reinforcing the role of 
VPS13A in shaping neuronal dendritic morphology.

Interestingly, in HD, mHtt expression is also ubiquitous (Marques 
Sousa and Humbert, 2013). It accumulates in neurons as insoluble and 

hardly removable aggregates leading to synaptic abnormalities. 
Impairment of corticostriatal synaptic plasticity has been widely 
documented in HD mouse models and patients, with important 
glutamatergic and BDNF transmission disturbances in the molecular 
basis of these impairments (Canals et al., 2004; Del Toro et al., 2006). 
Furthermore, the accumulation of mHtt impairs a plethora of cell 
functions, including disruption of the ERK1/2 and the PKA signaling 
pathways (Saavedra et al., 2011; Tyebji et al., 2015). More interestingly 
mHtt also alters autophagy (Ravikumar et al., 2004), RNA splicing 
processes (Fernández-Nogales et al., 2016), and the rate of synthesis 
of selective proteins in the striatum (Creus-Muncunill et al., 2019), 
being these alterations at the basis of the molecular mechanisms of 
MSN dysfunction.

Considering all that, the involvement of VPS13A in the molecular 
mechanisms of HD pathophysiology cannot be discarded. The first 
step to approach this hypothesis is to depict the distribution of 
VPS13A in the HD brain, which should help to further understand its 
role in both basal ganglia synaptic plasticity and connectivity, and the 
ChAc neurodegenerative mechanisms. Thus, this study is focused on 
the analysis of the putative changes in VPS13A brain distribution 
induced by mHtt, especially in the striatum, cortex, hippocampus, 
and cerebellum.

2 Materials and methods

2.1 Human post-mortem nervous tissue

Human post-mortem tissue samples of the motor cortex and 
putamen were used to assess VPS13A concentration. Samples were 
collected at autopsy from individuals who had suffered a clinical 
history of HD (n = 3 female + 4 male, age: 54.4 (28–72) years; 
postmortem intervals of 4–18 h), and from non-HD controls (n = 4 
female +2 male, age: 62.7 (39–81) years; postmortem intervals of 
4–17 h; Table 1).

2.2 HD mouse model

Male and female R6/1 transgenic mice expressing the human 
exon-1 of mHtt containing 145 CAG repeats, and their corresponding 
wildtype (WT) littermates were obtained from Jackson Laboratory 
(Bar Harbor, ME, United  States) and maintained in a B6CBA 
background. Animals were housed together in groups of mixed 
genotypes and kept under a 12:12 h light/dark cycle in a room at 
19–22 °C and 40–60% humidity, with free access to food and water.

2.3 Mouse brain tissue sampling

Mice aged 20 weeks were used in the experiments. At this age, 
R6/1 mice show motor disturbances and synaptic plasticity 
impairment (Fernández-García et al., 2020; Kim et al., 2020). For 
immunohistochemical analysis, mice were anesthetized with a 
mixture of ketamine plus xylazine (100 + 10 mg/kg, i.p.) and 
transcardially perfused with ice-cooled 0.1 M PBS, followed by 4% 
paraformaldehyde (PFA). Then, brains were removed and fixed by 
immersion in 4% PFA at 4°C overnight. All PFA-fixed brains were 
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cryoprotected with 30% sucrose in 0.1 M PBS and 0.02% sodium azide 
and frozen in dry ice-cooled isopentane. Specimens were stored at 
−80°C until sectioning. Sagittal serial sections were collected at 14 μm 
with a cryotome. For biochemical analysis, mice underwent euthanasia 
by cervical dislocation, and the brains were removed, dissected, and 
kept at −80°C.

2.4 Fluorescence in situ hybridization

A FISH procedure was performed using the RNAscope® 2.5 High 
Definition–Red Assay kit (Advanced Cell Diagnostics, Newark, CA, 
United States), following the instructions of the manufacturer and as 
previously reported in García-García et al. (2021). The target probe for 
the mouse Vps13a gene (Probe-Mm-Vps13a-E61-E71-C2, Advanced 
Cell Diagnostics, Newark, CA, United States) was hybridized for 2 h 
at 40°C, followed by a series of signal amplification and washing steps. 
Hybridizations were performed in a HybEZTM Hybridization System 
(Advanced Cell Diagnostics, Newark, CA, United States). Negative 
controls were performed with a negative control probe (targeting the 
DapB gene from the Bacillus subtilis strain SMY) provided by the kit. 
Specific hybridization signals were detected by fluorescence, and RNA 
staining was identified as red dots.

Images of the Vps13a expression staining were obtained with an 
inverted microscope (Leica DMI6000 B, Thermo Fisher Scientific, 
Waltham, MA, United States). For qualitative visual analysis of the 
intensity of Vps13a mRNA labeling in the slices, digital images were 
processed using an 8-bit 16-color lookup table with ImageJ 1.51a 
(National Institutes of Health, Bethesda, MD, United States).

2.5 Quantitative real-time PCR

The aqueous phase containing total RNA was isolated from the 
different mouse brain regions using QIAzol (Qiagen, Hilden, 
Germany), following the protocol of the manufacturer. Total RNA 

isolation, reverse transcription of RNA and qRT-PCR were performed 
as already described (García-García et al., 2021). PrimeTime qPCR 
assays were used as recommended by the provider (assay code 
Mm.PT.56a.8500899, sequence NM_173028(1) for Vps13a, and assay 
code Mm.PT.39a.1 sequence NM_008084 for GAPDH; IDT 
technologies, United States). The expression level was determined 
using a standard curve and normalized to housekeeper Gapdh gene 
mRNA levels. The ΔΔCt method was used to analyze the data.

2.6 Western blot

Tissues were homogenized in lysis buffer and protein samples 
were resolved in SDS-PAGE and NuPAGE gels as already published 
(García-García et al., 2023). Immunoblots were probed with anti- 
VPS13A (1:1500, Cat: HPA021662, Sigma-Aldrich, St. Louis, MI, 
United  States). Immunoreactive bands were visualized using the 
Western blotting Luminol Reagent (Santa Cruz Biotechnology, Dallas, 
TX, United States). Images were acquired using Chemidoc™ (Bio-
Rad, Hercules, CA, United  States) and quantified by a computer-
assisted densitometer (ImageLab™, Bio-Rad, Hercules, CA, 
United States).

2.7 Statistical analysis

All experiments were blinded and randomized. All results are 
reported as mean ± SEM. Normal distribution of data was assumed 
when the Shapiro–Wilk test was positive for normality. Statistical 
analyses were performed using either a two-tailed Student’s t-test or 
one-way ANOVA followed by the Bonferroni test. Lineal regression 
models were generated to assess the relationship between the VPS13A 
levels in human brain samples and the HD Vonsattel’s grade or the 
number of CAG repeats. All statistic tests were performed on 
GraphPad Prism 9.0 (GraphPad Software, San Diego). Differential 
expression datasets from Microarray and RNA-seq analysis were 

TABLE 1 Human post-mortem Huntington’s disease samples used in this study.

Patient Pathological 
diagnosis

Gender Age (years) CAG repeats Brain area

1 Control Female 74 - STR & CTX

2 Control Female 60 - STR & CTX

3 Control Male 76 - STR & CTX

4 Control Female 71 - STR & CTX

5 Control Female 81 - STR & CTX

6 Control Male 39 - STR & CTX

7 HD, Vonsattel grade 3 Male 55 48 STR & CTX

8 HD, Vonsattel grade 3 Male 85 40 STR & CTX

9 HD, Vonsattel grade 3 Female 65 45 STR

10 HD, Vonsattel grade 3 Female 72 42 STR & CTX

11 HD, Vonsattel grade 3 Male 53 45 STR & CTX

12 HD, Vonsattel grade 2 Female 28 62 STR & CTX

13 HD, Vonsattel grade 4 Male 60 43 STR & CTX

STR, Striatum (Putamen); CTX, Motor Cortex.
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identified in the Gene Expression Omnibus (GEO) repository from 
the National Center for Biotechnology Information (NCBI). The 
comparisons between control and HD conditions were performed 
with the GEO2R tool of the repository. In all analyses, values of 
p < 0.05 were considered statistically significant.

3 Results

To study the distribution of vps13a mRNA, we performed FISH 
on sagittal brain sections from WT and R6/1 mice at the age of 
20 weeks. First, we focused on the brain regions of interest (Figure 1A) 
and we  found different staining intensity profiles as previously 
published (García-García et  al., 2021). We  observed a staining 
enrichment in the cerebellum, notably in Purkinje cells and the 
granular layer; the pyramidal layers of the hippocampus and granular 

layer of dentate gyrus also presented high levels of staining. We found 
moderate staining in the somatosensory cortex and with wide 
expression along all cortical layers with a marked signal in layer 
V. Staining in the striatum was weak. We found no apparent differences 
in staining intensity between WT and R6/1 mice (Figure 1A).

We then analyzed the effects of mHtt on the VPS13A expression 
in the cortex, striatum, hippocampus, and cerebellum of 20-week-old 
R6/1 mice. After mRNA quantification by qRT-PCR, we  found a 
significant 19% VPS13A expression decrease in the striatum and a 
23% increase in the cerebellum of R6/1 mice when compared with 
WT animals (Figure  1B). However, these changes were not 
corroborated by western blot since we  found no mHtt-induced 
changes in the VPS13A protein concentration in any of the four 
studied areas (Figure 1C).

We next analyzed whether this lack of significant VPS13A changes 
in symptomatic R6/1 mice was also present in the cerebral cortex and 

FIGURE 1

VPS13A mRNA and protein levels in representative brain regions of R6/1 mice. (A) Specific labeling of Vps13a mRNA in illustrative sagittal sections of 
striatum (STR), somatosensorial cortex (CTX), hippocampal formation (HIP) and cerebellum (CRB); cc, corpus callosum; STR, striatum; I, II, III, IV, V and 
VI are cortical layers; n  =  3 WT and 3 R6/1 mice. Scale bar 250  μm. (B) Vps13a mRNA levels were analyzed by qRT-PCR in the striatum somatosensory 
cortex, striatum, hippocampus, and cerebellum. Values are expressed as mean  ±  SEM. Differences were analyzed by One-way ANOVA followed by the 
Bonferroni post-hoc test. *p  <  0.05. Each point represents data from an individual mouse. n  =  8 WT and 8 R6/1. (C) VPS13A protein levels were analyzed 
by western blot. Values are expressed as mean  ±  SEM. Differences were analyzed by Student’s t-test. Each point represents data from an individual 
mouse. n  =  8 Ctrl and 8 R6/1 (CTX, HIP and CRB) and 6 WT and 8 R6/1 (STR).
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the putamen of HD patients. We  found no significant changes in 
VPS13A levels in the motor cortex. However, we detected a significant 
34% decrease in the putamen of HD patients compared with 
non-affected individuals by western blot (Figure 2A). The regression 
models showed no relationship between the levels of VPS13A protein 
with the HD Vonsattel’s grade in the motor cortex or the putamen 
(r2 = 0.005, p = 0.893 for the motor cortex and r2 = 0.098, p = 0.493 for 
the putamen; Figure 2B). Finally, we found no significant correlation 
between the levels of VPS13A and the number of CAG repeats in the 

motor cortex (r2  = 0.023, p  = 0.772) or the putamen (r2  < 0.001, 
p = 0.994; Figure 2C).

To validate these results, we finally assessed the involvement of the 
VPS13A gene expression changes in HD in a series of differential-
expression datasets published in the GEO. We compared the VPS13A 
expression in either, the motor cortex of HD-patients vs. controls (Lin 
et al., 2016), the whole blood of HD patients vs. controls (Hu et al., 
2011), the iPSC-derived MSNs of HD vs. control patients (Chiu et al., 
2015), the striatum of R6/2 mice vs. WT mice (Labbadia et al., 2011), 

FIGURE 2

The levels of the VPS13A protein do not correlate with the HD condition. VPS13A protein levels were analyzed by western blot. (A) Representative 
immunoblots are shown. Values are expressed as mean  ±  SEM. Differences were analyzed by un-paired Student’s t-test. *p  <  0.05. Dot plots show the 
lack of correlation of the VPS13A levels in the motor cortex and the putamen with either the neuropathological stage (Vonsalttel grade) (B) or with the 
number of CAG repeats in the Htt gene (C). Each point corresponds to the value from an individual sample. n  =  6 Ctrl and 6 HD (cortex) and 6 Ctrl and 
7 HD (putamen).
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and the conditionally immortalized HD STHdhQ111/Q111 striatal 
neuronal progenitor cell line vs. conditionally immortalized WT 
STHdhQ7/Q7 striatal neuronal progenitor cell line (Sadri-Vakili et al., 
2007). According to the fold-change parameter of the VPS13A gene 
expression, with the p-value adjusted by the false discovery rate 
(Table 2), we found no significant HD effect in the VPS13A expression 
in any of the datasets analyzed.

4 Discussion

With the evidence from the results obtained, we found that mHtt 
accumulation only subtly alters VPS13A, with some significant 
changes in the mRNA and protein concentration in the striatum but 
does not influence the tissue distribution. This indicates that VPS13A 
is a very stable protein with crucial functions in neuronal functioning. 
Previous results found that VPS13A neuronal content is stable over 
time and that its concentration is not modulated by the overactivation 
of cholinergic, dopaminergic, or glutamatergic systems (García-García 
et al., 2021). Altogether, these data suggest that VPS13A has a stable 
presence and role in neurons with a fine regulation of protein levels 
that maintains its steady role.

Our results validate previous observations of the heterogeneous 
VPS13A brain distribution (Kurano et al., 2007; García-García et al., 
2021). Of the four analyzed regions, the striatum showed the lowest 
expression, also in the HD brain, although it is the most affected area 
in ChAc patients, while the cerebellum showed the highest expression, 
also in the R6/1 mouse model of HD. The fact that mHtt does not 
modify the brain distribution of VPS13A indicates a lack of 
interdependence of both proteins. Consequently, it suggests that their 
respective mutations might trigger convergent pathological 
mechanisms affecting the weak cellular properties of the MSNs. 
Although the protein tissue distribution is unaffected, the decrease in 
protein levels in the putamen of HD patients suggests that a direct 
interaction of VPS13A with mHtt cannot be discarded. As proposed 
for many other proteins (Wanker et  al., 2019), a pathological 
interaction of VPS13A with mHtt may limit its functionality and 
biological functions, leading to VPS13A dysfunction, subsequent 
deficient phospholipid homeostasis (Miltenberger-Miltenyi et  al., 
2023), and mitochondrial function impairment.

In this regard, both VPS13A and mHtt have been involved in 
some common cellular processes. For example, data suggest the 
VPS13A involvement in the protein degradation machinery and 
autophagy in ChAc pathophysiology (Muñoz-Braceras et al., 2015; 
Lupo et al., 2016; Vonk et al., 2017), a process that is also altered in 
HD (Ravikumar et al., 2004). However, among all these common 
pathophysiological processes, mitochondrial dysfunction stands 

out. Recent studies showed that VPS13A is localized at sites where 
the endoplasmic reticulum (ER) and mitochondria are in close 
contact to enable lipid transfer required for mitochondria and lipid-
droplet-related processes in cell lines (Yeshaw et  al., 2019). 
Interestingly, structural and functional changes in the 
ER-mitochondria contact sites leading to mitochondrial 
dysfunction (Shirendeb et al., 2011; Cherubini et al., 2020), and 
aberrant lipid homeostasis or calcium signaling (Aditi et al., 2016; 
Pchitskaya et al., 2018; Tshilenge et al., 2023) have been reported to 
contribute to the specific degeneration of the striatum in HD 
(Browne, 2008).

Additionally, despite the low expression of VPS13A and mHtt in 
the striatum, both VPS13A reduction and mHtt accumulation have 
been associated with striatal synaptic plasticity impairment (Parievsky 
et al., 2017; García-García et al., 2023) and a reduction of signaling 
molecules important for synaptic functioning such as BDNF and 
CX3CL1 (Canals et  al., 2004; Giralt et  al., 2009; Kim et  al., 2020; 
Azman and Zakaria, 2022; García-García et al., 2023). Strong evidence 
links these two proteins with altered neuronal communication and 
deficient long-term depression induction in the corticostriatal 
circuitry of HD (Baydyuk et al., 2011; Besusso et al., 2013; Kim et al., 
2020) Thus, defining the role of VPS13A in striatal synaptic plasticity 
and MSN communication may constitute a key point to understanding 
the specific striatal vulnerability not only in ChAc, but also in HD.

Finally, the low number of HD-patient samples and transgenic 
animals herein analyzed constitutes a limitation of the study, as it may 
cause a loss of statistical power to detect differences in VPS3A 
expression and protein. Keeping this in mind, we  conclude that 
VPS13A brain distribution is not substantially affected by mHtt. 
Therefore, the selective susceptibility of MSN in both ChAc and HD 
might be  a consequence of disturbances in convergent cellular 
processes and circuitry alterations with divergent molecular 
mechanisms. Further experiments are necessary to evaluate the role 
of the VPS13A function in mediating these convergent mechanisms 
that determine MSN-specific vulnerability in basal ganglia disorders.
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