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Computer aided diagnosis methods play an important role in Attention Deficit

Hyperactivity Disorder (ADHD) identification. Dynamic functional connectivity

(dFC) analysis has been widely used for ADHD diagnosis based on resting-state

functional magnetic resonance imaging (rs-fMRI), which can help capture

abnormalities of brain activity. However, most existing dFC-based methods

only focus on dependencies between two adjacent timestamps, ignoring global

dynamic evolution patterns. Furthermore, the majority of these methods fail to

adaptively learn dFCs. In this paper, we propose an adaptive spatial-temporal

neural network (ASTNet) comprising three modules for ADHD identification

based on rs-fMRI time series. Specifically, we first partition rs-fMRI time series

into multiple segments using non-overlapping sliding windows. Then, adaptive

functional connectivity generation (AFCG) is used to model spatial relationships

among regions-of-interest (ROIs) with adaptive dFCs as input. Finally, we

employ a temporal dependency mining (TDM) module which combines local

and global branches to capture global temporal dependencies from the

spatially-dependent pattern sequences. Experimental results on the ADHD-200

dataset demonstrate the superiority of the proposed ASTNet over competing

approaches in automated ADHD classification.

KEYWORDS

dynamic functional connectivity, temporal dependency, local and global evolution

patterns, adaptive learning, fMRI

1 Introduction

Attention Deficit Hyperactivity Disorder (ADHD), with an incidence rate of 7.2%

(Thomas et al., 2015), has been the most prevalent psychiatric disorder among adolescents.

Individuals affected by ADHD often commonly encounter difficulties in behavior

management, hyperactivity, and maintaining attention or focus. However, due to complex

pathological mechanisms of ADHD, most current diagnosis methods for ADHD primarily

rely on clinical behavioral observations, which may be subjective. Undoubtedly, computer

aided diagnosis methods provides a more objective and comprehensive assessment, aiming

to help enhance accuracy and efficiency of ADHD diagnosis.

Resting-state functional magnetic resonance imaging (rs-fMRI), which can capture

changes in blood flow in response to stimulation, has emerged as a valuable tool for

diagnosing diverse psychiatric diseases (Damoiseaux, 2012; Jie et al., 2014a; Wang et al.,

2019a; Wang M. et al., 2022). Functional connectivities (FCs), derived from the rs-fMRI,
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provide insights into quantifying the temporal correlation of

functional activation across different brain regions. FCs are usually

defined by the correlation (i.e., Pearson correlation) between

blood-oxygen-level-dependent (BOLD) signals. In recent years,

researchers have designed various learning-based computer-aided

diagnostic methods for ADHD analysis and they have observed

that ADHD patients exhibit abnormal FCs between ROIs. These

abnormal FCs can serve as potential biomarkers for clinical

diagnosis of ADHD. Previous FC-based methods were usually

conducted with the assumption that FC remains constant during

fMRI recording. Recently, more and more studies have confirmed

that brain activity is actually dynamic (Arieli et al., 1996; Makeig

et al., 2004; Onton et al., 2006), and analysis based on this can

reveal changes in FCs over time (Du et al., 2018; Zhang et al., 2021).

These changes can help us understand how cognitive states evolve

over time, which is critical for better understanding the pathology

of brain diseases. For this reason, there has been a shift toward

dynamic connectivity analysis in recent efforts (Bahrami et al.,

2021; Wang Z. et al., 2022; Yang et al., 2022).

Specifically, most dFC-based methods can be roughly

categorized into two groups: (1) conventional machine learning

methods (Wang et al., 2017; Vergara et al., 2018; Feng et al.,

2022) and (2) deep learning methods (Wang et al., 2019b;

Yan et al., 2019; Lin et al., 2022). Previous machine learning

methods first extract features manually and then feed them into

subsequent prediction models. These approaches take fMRI

feature learning and downstream model training as independent

processes, possibly leading to suboptimal model performance.

In contrast, deep learning methods usually perform feature

learning and downstream prediction tasks in an end-to-end

manner, which can learn task-oriented discriminative fetatures

to facilitate ADHD identification. By automatically learning

features from the dFC network, deep learning methods provide

a cohesive framework for feature learning and classification.

Considering that the functional connectivity network can be

mathematically modeled as a graph, graph convolutional network

(GCN), renowned for their effectiveness in processing the

graph data, has been widely used in FC analysis. However, it

is worth noting that many GCN methods are designed based

on predefined FCs, which hinders the adaptive learning of

interactions between different brain ROIs. Furthermore, most

dFC-based methods only focus on temporal dependencies

between adjacent timestamps, ignoring important global dynamic

evolution.

To solve this issue, we propose a novel adaptive spatial-

temporal neural network (ASTNet) that can not only adaptively

learn functional connectivities between brain ROIs but also mine

global temporal dependencies in dFCs. As illustrated in Figure 1,

the proposed ASTNet consists of three components, i.e., the

partition of rs-fMRI time series, adaptive functional connectivity

generation, and temporal dependency mining. Specifically, we

first divide the rs-fMRI time series into multiple segments using

non-overlapping sliding windows to characterize the temporal

variability of fMRI time series. After that, for each time-

series segment, we design an adaptive functional connectivity

generation (AFCG)module that first adaptively learns FCs between

ROIs and then use GCN to capture topological information of

brain network. Finally, a temporal dependency mining (TDM)

module which integrates local and global branches, is proposed

to capture temporal dependencies from the spatially-dependent

pattern sequences. Within the TDM module, the global branch

investigates variations in individual points within the FC structure,

such as the emergence or disappearance and the strengthening

or weakening of connections, which is referred to as spatial

variation. Meanwhile, the local branch examines temporal changes

between dFCs, known as temporal variation. To further obtain

subject-level representation, we concatenate the generated features

from these two branches, followed by a fully connected layer for

disease classification. Experimental results on 620 subjects in the

ADHD-200 dataset demonstrate the effectiveness of our ASTNet

in adaptive graph learning and temporal dependence mining. This

demonstrates the importance and great potential of our model in

ADHD identification, with great promise in practical applications.

2 Related work

2.1 Static FC-based method

Conventional FC-based methods usually first extract

handcrafted features from functional connectivity networks

and then train a classifier (e.g., support vector machine, SVM) for

disease prediction (Bai et al., 2009; Jie et al., 2014a,b; Plis et al.,

2014; Bi et al., 2018). For example, Bi et al. (2018) designed a

random SVM cluster method for AD identification. This method

firstly randomly selected samples and FC features to establish

multiple SVMs, and then employed an ensemble strategy for the

final prediction. Jie et al. (2014a) extracted and integrated multiple

properties of static FC networks (e.g., connectivity strength and

local clustering coefficient) for diagnosing brain diseases and

achieved better performance compared with single network

measures. Even so, these methods usually rely on handcrafted

feature representations for classification models, thereby possibly

producing sub-optimal classification performance.

More recently, deep learning methods have been proposed

to automatically learn data-driven features from dFC networks.

These methods offer a unified framework for fMRI feature

learning and brain disorder prediction, ultimately achieving better

performance. For example, Liang et al. (2021) proposed a novel

convolutional neural network combined with a prototype learning

(CNNPL) framework to classify brain functional networks for

the diagnosis of autism spectrum disorder. Specifically, it used

traditional convolutional neural networks to extract high-level

features from pre-defined FCs and further designed a prototype

learning strategy to automatically learn prototypes of each category

for ASD classification. Eslami et al. (2019) proposed to extract

the lower dimensional feature representation of FCs using an

autoencoder, followed by a single layer perceptron (SLP) for

ASD identification. Kawahara et al. (2017) developed three

distinct convolutional layers—edge-to-edge (E2E), edge-to-node

(E2N), and node-to-graph layer (N2G)—to capture the spatial

characteristics of structural brain connectivity for cognitive and

motor developmental score prediction in premature infants. Due

to the graph-structured nature of brain functional networks,

graph neural network (GNN), which can learn expressive
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FIGURE 1

Overview of the proposed adaptive spatial-temporal neural network (ASTNet), including three components: (A) partitioning rs-fMRI time series into T

segments via non-overlapping sliding windows, (B) adaptive functional connectivity generation (AFCG), where the adjacency matrix is first learned via

adaptive graph learning (AGL) module for each time window and then fed into graph convolutional network (GCN), and (C) a temporal dependency

mining module (TDM) to capture temporal dynamics across all time windows. With the output of the TDM, a fully-connected layer is further used for

disease classification.

graph representations, have shown significant potential in FC-

based brain disease diagnosis. For example, Ktena et al. (2018)

proposed learning a graph similarity metric using a siamese graph

convolutional neural network for ASD classification. Yao et al.

(2021) developed a mutual multi-scale triplet graph convolutional

network for brain disorder diagnosis using functional or

structural connectivity. Li et al. (2020) designed an ROI-aware

graph convolutional layer that leveraged fMRI’s topological and

functional information for ASD diagnosis.

These deep learning methods greatly improve the efficiency

and classification/regression performance in FC-based analysis due

to their end-to-end architecture. However, these methods mainly

study static patterns of brain networks, thereby ignoring the

dynamic characteristics of brain FCs. Besides, GNN-basedmethods

generally take a fixed graph structure as input, whose reliability

remains to be discussed.

2.2 Dynamic FC-based method

Several dynamic functional analysis methods have recently

been proposed for brain disease classification (Wang et al., 2019b,

2023; Yan et al., 2019; Gadgil et al., 2020; Lin et al., 2022; Liu et al.,

2022; Liang et al., 2023). For example,Wang et al. (2019b) proposed

a spatial-temporal convolutional-recurrent neural network (STNet)

for Alzheimer’s disease progression prediction using rs-fMRI time

series. Specifically, a convolutional component was first employed

to construct the FC within each time-series segment. Then, the

long short-term memory (LSTM) units were used to model the

temporal dynamics patterns of these successive FCs. Finally, a fully

connected layer is used to perform disease progression prediction.

Lin et al. (2022) developed a convolutional recurrent neural

network (CRNN) for dynamic FCs analysis and automated brain

disease diagnosis. In this method, a sequence of pre-constructed

FC networks was input into three convolutional layers to extract

temporal features, and an LSTM layer was used to capture temporal

information from multiple time segments, followed by three fully

connected layers for brain disease classification. To take advantage

of spatio-temporal information of fMRI data, Yan et al. (2019)

designed a multi-scale RNN framework to classify schizophrenia.

Specifically, stacked convolution layers were used to extract

different scale features, followed by a two-layer stacked Gated

Recurrent Unit (GRU) to mine dynamic information conveyed

in fMRI series. Gadgil et al. (2020) trained a spatio-temporal

graph convolutional network (ST-GCN) on each segment of the

BOLD time series to predict gender and age. In this method,

a positive and symmetric “edge importance" matrix was first

integrated to determine the importance of spatial graph edges.

Then, three layers of ST-GC units were used to perform spatial

graph convolution, followed by a fully connected layer for final

prediction. Liang et al. (2023) proposed a self-supervisedmulti-task

learning model for detecting AD progression, in which a masked

map auto-encoder and temporal contrast learning were jointly
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pre-trained to capture the structural and evolutionary features of

longitudinal brain networks. Liu et al. (2022) proposed a method

based on nested residual convolutional denoising autoencoder

(NRCDAE) and convolutional gated recurrent unit (GRU) for

ADHD diagnosis. Specifically, the NRCDAE was used to reduce the

spatial dimension of rs-fMRI and extract the 3D spatial features.

Then, the 3D convolutional GRU was adopted to extract the

spatial and temporal features simultaneously for classification.

Although existing dynamic FC-based methods consider the

temporal dynamics in the prediction of disease progression, those

methods fail to capture the global temporal changing patterns of

the whole brain (i.e., the longitudinal network-level patterns).

3 Materials and method

In this section, we introduce the materials used in this work, the

proposed method, as well as implementation details.

3.1 Material

3.1.1 Data acquisition
We use the ADHD-200 dataset to validate the effectiveness

of the proposed method. The ADHD-200 dataset includes 973

subjects collected from eight different imaging sites. Specifically,

the dataset contains 362 ADHD patients, 585 normal controls

(NC), and 26 undiagnosed subjects and can be accessed from the

NeuroImaging Tools & Resource Collaboratory (NITRC) website.1

Each participant’s data in the ADHD-200 dataset consists of a

resting-state functional MRI scan, a structural MRI scan, and

the corresponding phenotypic information. Note that ADHD

patients in the ADHD-200 dataset are further categorized into

three subtypes: ADHD-Combined, ADHD-Hyperactive/Impulsive,

and ADHD-Inattentive. To simplify the binary classification task,

all subtypes in the ADHD-200 dataset are uniformly labeled as

1. During the ADHD-200 Global Competition, the ADHD-200

dataset is divided into a training set and a test set, each with

corresponding phenotypic information. The numbers of subjects

are 768 and 197, respectively. In this paper, we also follow this

division in our experiments for a fair comparison. Note that in our

performance evaluation, we exclude 26 subjects without released

labels in the test set. Furthermore, we also discard subjects from the

Pitt and Washu imaging sites in our study because their training

sets only contained normal control (NC) subjects. Thus, a total of

620 subjects are used in this study, including 340 ADHD patients

and 280 NCs. The detailed demographic information of involved

subjects and data partition for experiments are provided in Table 1.

3.1.2 Data pre-processing
All resting-state fMRI data used in our study were preprocessed

by the C-PAC pipeline.2 This pipeline includes several processing

steps such as skull stripping, slice timing correction, head motion

1 https://fcon1000.projects.nitrc.org/indi/adhd200/

2 http://preprocessed-connectomes-project.org/abide/

realignment, intensity normalization, band-pass filtering (0.01–

0.1 Hz), and the regression of white matter, cerebrospinal fluid,

and motion parameters. To minimize the impact of head motion

on our results, we first removed fMRI data from participants

whose heads moved more than 2.0 mm in any direction or 2◦ in

any rotation. After that, we performed structural skull stripping

and then mapped the remaining fMRI data to the Montreal

Neurological Institute (MNI) space. A 6mm Gaussian kernel was

used to spatially smooth the rs-fMRI data. Note that further our

analysis excluded subjects with a frame displacement exceeding 2.5

min (FD > 0.5). Finally, the automated anatomical labeling (AAL)

template was used to extract the mean rs-fMRI time series for a set

of 116 pre-defined ROIs.

3.2 Method

As illustrated in Figure 1, the proposed ASTNet includes

(1) partition of rs-fMRI time series, (2) adaptive functional

connectivity generation, and (3) temporal dependency mining.

3.2.1 Partition of rs-fMRI time series
To characterize the temporal variability of fMRI series, we first

employ the sliding window strategy to partition all rs-fMRI time

series into T non-overlapping windows, each with a fixed window

size L. Specifically, for each window, we represent the segmented

time series as Gt = (vt1, v
t
2, ..., v

t
N)
⊤ ∈ RN×L(t = 1, · · · ,T), where

the t represents the t-th segments and N denotes the number of

nodes. In our paper, the window size L is set as 20. For PKU, NYU,

OHSU, NI, and KKI sites, the lengths of extracted fMRI time series

are 231, 171, 72, 256, and 119 and the corresponding TR is 2.5, 1.96,

2, 2.5, and 2s, respectively. Since each site has a different scanning

time (i.e., length of fMRI time series), we obtain T = 5, T = 12, T

= 8, T = 3, and T = 11 segments for these five sites, respectively.

The reason for choosing such window length is that window sizes

around 30–60 s can provide a robust estimation of the dynamic

fluctuations in rs-fMRI data (Wang et al., 2021). For each subject,

the time-series segment S will be considered as the input of the

proposed network.

3.2.2 Adaptive functional connectivity generation
In order to better explore the spatial relationships between

brain regions, we employ an adaptive graph learning (AGL)

strategy to learn functional connectivities, instead of relying on

prior knowledge or manual labor. We define a non-negative

function Equation (1) with a learnable weight vector ω =

(ω1,ω2, ...,ωFde
)T ∈ RFde∗1 based on the graph data Gt for each

window to represent the connection between any two brain nodes

xm and xn:

Amn = g(xm, xn) =
exp(RELU(ωT |xm − xn|))∑N
n=1 exp(RELU(ωT |xm − xn|))

, (1)

where xi represents the fMRI data of the i-th brain ROI, nonlinear

activation function ReLU guarantees Amn is nonnegative, and

the softmax operation normalizes each row of A. To introduce
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TABLE 1 Demographic information and data partition of the studied subjects from ADHD-200 dataset.

Item PKU NYU OHSU NI KKI Total

Training dataset

Number 194 216 79 48 83 620

NC 116 98 42 23 61 340

ADHD 78 118 37 25 22 280

Gender (M/F) 144/50 140/76 43/36 31/17 46/37 404/216

Test dataset

Number 51 41 34 25 11 162

NC 27 12 28 14 8 89

ADHD 24 29 6 11 3 73

Gender (M/F) 32/19 28/13 17/17 12/13 10/1 99/63

M, male; F, female.

prior knowledge, we incorporate the following regularization loss

Equation (2):

Lgraph_learning =

N∑

m,n=1

||xm − xn||
2
2Amn + λ||A||2F . (2)

That is, the smaller distance ||xm − xn||2 between xm and

xn, the larger Amn is. This regularization allows nodes/ROIs with

similar features to have greater connection weights. Furthermore,

considering the sparsity nature of brain functional network (i.e.,

brain graph), the second term is introduced, where λ ≧ 0 is a

regularization parameter. Through the proposed graph learning

mechanism, we obtain an adaptively learned adjacency matrix A

used for the subsequent graph convolution operation Equation (3):

H
l+1 = σ (AHl

W
l), (3)

where Hl is the time series signal characteristics of brain network

nodes in layer l, A represents the learned adjacency matrix, W

denotes a learnable weight matrix, and σ is the activation function.

The fundamental principle underlying graph convolution is the

iterative aggregation of neighboring node information to update

the feature representation of the central node. Finally, we get the

functional connectivity matrix by Equation (4):

St = H
l(Hl)T , (4)

where Hl denotes the final node features generated from GCN and

St measures the degree of second-order dependency between ROIs.

3.2.3 Temporal dependency mining
To capture temporal dynamic information within fMRI series

across temporal dimension, we design the temporal dependency

mining (TDM) module which includes two parallel architectures,

i.e., local and global branches. The local branch is designed

to explore the temporal evolution of adjacent sliding windows,

providing insights into fine-grained changes. The global branch is

used to capture the evolutionary patterns across all timestamps.

Details are introduced below.

3.2.3.1 Local temporal dependency mining branch

To capture the local temporal dependency of dFCs, we propose

the use of a bi-directional Gated Recurrent Unit (BiGRU), which

is a type of recurrent neural network (RNN). Different from

unidirectional GRU, the bidirectional GRU (BiGRU) consists of

two GRUs, where one GRU scans the sequence from the beginning

to the end, while the other scans the sequence from the end to

the beginning. This bidirectional structure enables the model to

consider both past and future information simultaneously, thereby

enhancing the accuracy of feature information capture in sequential

data. Mathematically, the BiGRU can be represented as Equation

(5):

yt = GRU(xt ,
−−→
ht−1)⊕ GRU(xt ,

←−−
ht−1), (5)

where xt denotes initial temporal state, ht represents hidden state,

and arrows represent different operation directions. The GRU is

composed of two gating mechanisms, including the reset gate and

the update gate. The calculation formulas for the GRU unit are as

follows:

zt = σ (Wz · [ht−1, xt]),

rt = σ (Wr · [ht−1, xt]),

h̃t = tanh(W · [rt ∗ ht−1, xt]),

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t .

(6)

In Equation (6), the reset gate operation rt controls the fusion

of new input information with the previous “memory," and the

update gate zt influences the amount of information to be forgotten

from the previous moment. In the second formula, Wr denotes a

weight matrix, while rt is obtained by linearly transforming the

concatenated matrix of xt and ht−1. This value is subsequently

utilized in the third formula to update the hidden information of

the candidate. For ease of understanding:

h̃t = tanh(xtWxh + (rt ⊙ ht−1)Whh + bh) (7)

In Equation (7) the value of rt in the update gate influences

the amount of information to be forgotten from the previous
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moment, as indicated by the Hadamard product with ht−1. The

first equation represents the update gate, while the fourth equation

controls the extent to which previous information is incorporated

into the current state. In the fourth equation, the closer zt is to 1,

the more information it retains or “remembers." (1 − zt) ∗ ht−1
selectively forgets parts of the previous hidden state, while zt ∗

h̃t selectively incorporates candidate hidden states. In summary,

the fourth equation combines forgetting some information passed

down from ht−1 with incorporating relevant information from the

current node, resulting in the final memory representation ht . In

this way, we can obtain the final local time dependency information

between adjacent time-sliced fMRI data by recursively transmitting

hidden state information.

3.2.3.2 Global temporal dependency mining branch

We employ global attention to capture the global temporal

dependency of dFCs. For each segment, we first employ an MLP

to extract potential hidden abnormal connection information,

ensuring that spatial information at different stages remains intact

despite the temporal interactions. Specifically, the upper triangular

data of the symmetricmatrix is first converted to a one-dimensional

vector x and then fed into the MLP to obtain the characteristic

information Ft , represented as Equation (8):

Ft = g(

M∑

i=0

wixi), (8)

where wi is learnable weight and g is activation function. Then,

we incorporate a global attention mechanism to capture temporal

dependencies between dynamic FCs. The formula of global

attention is defined as Equation (9):

Mc(F) = σ (MLP(AvgPool(F))+MLP(MaxPool(F))), (9)

where F represents the function connectivity information

processed by previous MLP on T segments and σ denotes the

sigmoid function. Note that the MLP weights are shared for

both inputs and the ReLU activation function. The obtained

attention weights (i.e., Mc(F)) are used to combine information

from multiple windows, resulting in a final feature representation

expressed as a one-dimensional vector denoted as d. Finally, we

concatenate the output of global and local branches, yielding a

one-dimensional vector. Then, this one-dimensional vector is fed

into three fully connected layers to obtain the final classification

result.

It’s worth noting that, to avoid the trivial solution (i.e., ω =

(0, 0,..., 0), which is due to minimizing the above loss function

Lgraph_learning independently, we utilize it as a regularized term to

form the final loss function Equation (10):

Lloss = Lcross_entropy + Lgraph_learning , (10)

where Lcross_entropy denotes the categorical_crossentropy of the

classification task.

3.3 Implementation

We implement the framework using Python 3.7 and

Pytorch library. For each subject, the adjacency matrix is T
A
B
L
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FIGURE 2

Visualization of group di�erence matrices generated by our learned dynamic FC networks and static network. Note that p-values > 0.05 are set to 1

(shown in yellow), while those ≤0.05 were set to 0 (shown in green). The Fi(i = 1, ..., 11) repesents the group di�erence matrices generated by the i-th

segment.

constructed via our designed AGL strategy, where a random

initialization technique initializes the vector ω according to

a normal distribution. Subsequently, the graph convolution

process comprises three GCN layers, followed by batch

normalization, ReLU activation, and a dropout rate of 0.5.

We then perform a dot product operation on the representation

generated from the GCN layers to construct symmetric matrices

describing the degree of correlation between nodes. To reduce

dimensionality, we flatten the upper triangular portion of

each matrix into a vector. This vector is subsequently fed

into an MLP consisting of three fully connected layers.

Additionally, we incorporate two dropout layers to mitigate

overfitting.

Subsequently, we employ an attention mechanism to obtain

attention weights and compute the weighted sum of the vector

data. This process yields a 32-dimensional vector, which serves

as the final output of the global branch. For local analysis using

the BiGRU, we perform experiments with different numbers of

units, specifically 4, 16, and 64, for training data from various

sites.

4 Experiment and result analysis

4.1 Methods for comparison

In the experiments, we compare our ASTNet model with the

following eight methods, including the baseline methods and any

other variants of the proposed method.

1. MLP (Tolstikhin et al., 2021): in this method, the static FC

matrix for each subject is directly used as the input of the

MLP model. Specifically, the MLP model comprises three fully-

connected layers with hidden neurons of 1,024, 256, and 32,

respectively.

2. AE (Wang et al., 2014): auto-encoder (AE) is an unsupervised

learning model that can learn a mapping supervised by input

X itself. Specifically, AE extracts useful features from brain

networks through bottleneck-like fully connected layers. The

hidden layer dimension is determined by the data length in

different sites.

3. GCN (Kipf and Welling, 2016): this method first uses two

layers of GCN based on Pearson correlation to update spatial
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TABLE 3 Quoted results from literature on ADHD-200 dataset.

Method PKU NYU OHSU NI KKI Avg-ACC

PCA-LDA (Dey

et al., 2012)

62.7 70.7 73.5 72.0 72.7 70.3

EM-MI (Dou et al.,

2020)

70.6 63.4 – – 81.8 70.4

3D CNN (Zou et al.,

2017)

63.0 70.5 – – 72.8 66.0

SASNI (Zhang

et al., 2017)

74.5 70.7 79.4 72.0 63.6 72.0

SPAE (Cao et al.,

2023)

70.6 65.4 65.9 76.0 73.6 70.5

STAAE (Dong et al.,

2020)

79.5 82.2 75.4 63.7 76.6 75.5

KD-transformer

(Zhang et al., 2022)

70.6 82.9 85.3 72.0 90.9 80.3

ASTNet (ours) 74.5 75.6 85.3 76.0 90.9 80.5

Best results are shown in bold (%).

correlation between ROIs where the data length in different sites

determines dimensions. Then, the FCs, calculated from the dot

product of node features, are used as the input to construct a

three-layer MLP model with hidden neuron number of 1,024,

256, and 32, respectively.

4. AGL_s: in this method, FCs are learned by the adaptive method.

Static adaptive graph learning (AGL_s) method replaces the

Pearson correlationmatrices with adaptive brain networks as the

input. The network structure is the same as the previous MLP

method.

5. BiGRU (Chung et al., 2014): This method partitions fMRI data

with a constant length of 20 time points. For each segment,

we build a functional connectivity matrix. Then, these matrices

are sent into the BiGRU model to study their temporal change

information with different numbers of units, specifically 4, 16,

and 64, for training data.

6. AGL_d: dynamic adaptive graph learning method (AGL_d)

implies adaptive learning to construct adjacency matrices on

each segment. Then, the TDM module is used to analyze

time-varying information between different sliding window

data. Specifically, the local branch adopts a two layers BiGRU

with 4 units to make the final classification, and the Global

branch explores temporal and spatial variability using global

attention where MLP has three hidden layers 1,024, 256, and 32,

respectively, and the ratio is set as 3 in attention mechanism.

Note that, we both have static and dynamic experiments for

method MLP and GCN, named as MLP_s, MLP_d, GCN_s, and

GCN_d. And we apply global branch in the TDM to mine temporal

dependency for MLP_d and adopt the whole TDM module for

GCN_d classification.

4.2 Experiment settings

We evaluate the proposed method on five different sites (i.e.,

PKU, NYU, OHSU, NI, and KKI) of the ADHD database based on

rs-fMRI data.We divide data on each site into training data and test

data, following Global Competition. The test set is unseen during

the training stage.

To evaluate classification performance, three metrics are

used, including accuracy (ACC), sensitivity (SEN), and specificity

(SPE). These metrics are defined as follows: ACC = (TP +

TN)/(TP + TN + FP + FN), SEN = TP/(TP + FN), SPE

= TN/(TN + FP). Here, TP, TN, FP, and FN represent true

positive, true negative, false positive, and false negative values,

respectively. Higher values for these metrics indicate better

classification performance.

4.3 Classification performance

The quantitative results achieved by different methods in the

binary classification tasks are reported in Table 2. FromTable 2, one

could have three main observations.

First, our proposed method and its variants (i.e., AGL_d and

GCN_d) generally achieve better performance compared with

the baseline methods (i.e., MLP, BiGRU, and Auto-Encoder) in

the classification task. For example, in terms of ACC values,

ASTNet achieved an improvement of 13.9%, compared with the

best baseline method (with 66.6%) in ADHD classification. This

demonstrates that our designed adaptive functional connectivity

learning strategy and temporal dependency mining module can

help extract more discriminative fMRI features, thus enhancing

classification performance. Second, our proposed ASTNet and

its variants outperform those methods without considering the

temporal dynamics (e.g., with GCN_s and AGL_s) in terms of

most metrics. In particular, the SEN values produced by our

ASTNet in site PKU and NYU are 85.1 and 75.0%, which is

higher than other methods. These results suggest that our TDM

module can effectively capture dynamic changes in rs-fMRI time

series. Finally, our ASTNet is superior to its variants (i.e., AGL_d

and GCN_d). This result implies that the adaptive functional
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FIGURE 3

Results of the proposed ASTNet method with respect to di�erent sliding windows length in ADHD vs. NC on di�erent sites.

connectivity learning strategy and TDM module help boost the

learning performance of ASTNet.

4.4 Interpretable analysis of the learned
FCs

The proposed ASTNet can automatically learn dFCs in a data-

driven manner, which differs from previous studies that rely on

predefined FC networks (e.g., via Pearson’s correlation). We now

further analyze the FC networks learned by the proposed adaptive

method. Specifically, as introduced in Section 3.2.2, the AFCG can

learn new connectivity strength between each central node/ROI

and all the remaining N-1 ROIs. Therefore, we can generate a

fully connected FC network based on the learned connectivity

vector. Given the size of the sliding window, different lengths of

data will result in different numbers of segments. Taking PKU site

as an example, we can construct K = 11 dynamic FC networks

for each subject, with each network corresponding to a segment.

Finally, using the standard t-test, we measure the group difference

between ADHD and NC via p-values, with group difference

matrices visualized in Figure 2. For comparison, in Figure 2, we

also report the group difference of the stationary FC network that is

constructed via measuring Pearson correlation coefficients between

fMRI time series of pairwise brain ROIs. Note that the obtained

p-values were binarized (i.e., setting p-values more than 0.05 to 1

and 0 otherwise) for clarity in Figure 2. From Figure 2, we have the

following observations.

First, from Fi, i = 1, . . . , 11 in Figure 2, we can observe that

the group difference matrices generated by different segments

exhibit significant differences, which further validates the temporal

variability of brain networks. Second, by comparing our learned

Fi and Static in Figure 2, it can be found that the dynamic FC

network learned by our ASTNet shows superiority over the pre-

defined static network in identifying disease-related functional

connectivities and ROIs. For example, Several ROIs, such as the

anterior cingulate and paracingulate gyri node (ACG.L) in F1, the

superior parietal gyrus node (SPG.L) in F6, and the cerebellum

nodes in F5, are detected by our dynamic FC networks in AD vs.

NC classification. These findings aligns with previous AD-related

studies, which further demonstrates the learned FCs by our ASTNet

have good interpretability.

4.5 Comparison with state-of-the-art
methods

We further compare the proposed ASTNet with seven state-of-

the-art (SOTA) methods designed for ADHD analysis, including

PCA-LDA (Dey et al., 2012), EM-MI (Dou et al., 2020), 3D CNN

(Zou et al., 2017), SASNI (Zhang et al., 2017), SPAE (Cao et al.,

2023), STAAE (Dong et al., 2020), and KD-Transformer (Zhang

et al., 2022). Note that all the methods use the standard training/test

sets division by the data set. The classification results achieved

by different methods are reported in Table 3, with the best results

highlighted in bold. From Table 3, we can have the following

findings.

First, the proposed ASTNet outperforms seven SOTA methods

in ADHD classification task on the ADHD-200 dataset, which

implies that our ASTNet can learn more discriminative features for

ADHD identification. Second, Compared with static methods (i.e.,

PCA-LDA, 3D CNN, SASNI, and KD-Transformer), the methods

(i.e., SPAE, STAAE, and KD-Transformer) that consider temporal

dynamics in fMRI series achieves relatively better performance.

This suggests that temporal information conveyed in fMRI series

plays an important role in distinguishing ADHD patients from

normal controls.

Third, the ACC of our ASTNet achieves an improvement

of 5% compared with the STAAE that designs a spatiotemporal

attention auto-encoder long-distance dependency in time. This

finding further demonstrates the superiority of our ASTNet in

dynamic brain network learning and brain disorder classification.
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5 Discussion

In this section, we explore the influence of different sliding

window sizes, compare the proposed method with its degraded

variants, and discuss several limitations of the current work and

future work.

5.1 Influence of sliding window size

In main experiments, we divide fMRI series using sliding

window strategy with window size of 20. To investigate the

influence of different sliding window sizes on results, we vary the

values of sliding window size within [10, 15, · · · , 30]. The results in

ADHD classification on five sites are reported in Figure 3. As shown

in Figure 3, we can see that our the classification accuracy of our

ASTNet fluctuates to a certain extent as the window size increases.

When window size is 20, our method achieves its peak performance

across different sites, which validates that our selected window size

is reasonable.

5.2 Ablation study

To demonstrate the effectiveness of each module in the

proposed ASTNet, we further compare our ASTNet with its

degenerated variants, including (1) GCN_d without incorporating

adaptive graph learning (AGL) module, (2) AGL_d without

incorporating GCN module, (3) ASTNet_G without global branch

and (4) ASTNet_L without local branch. The experiment results of

our ASTNet and its variants are reported in Table 4.

It can be found from that our ASTNet consistently outperforms

GCN_d that fails to adaptively learn FC strength. This

implies that our designed adaptive graph learning strategy

can automatically generate more reliable FC network for

subsequent analysis, thus boosting model performance. In

addition, we can observe that our ASTNet is superior to

ASTNet_G without modeling long-term dependencies among

dynamic functional connectivities (dFCs). Besides, our ASTNet

achieves better performance than ASTNet_L that can not

capture local temporal dependency in dFCs. These observations

further demonstrate the advantage of our ASTNet, which

simultaneously uses global and local branches in fMRI temporal

feature learning.

5.3 Limitations and future work

While our work achieves good results in automatically

identifying ADHD using fMRI data, several issues still need to

be considered in the future to further improve the performance

of the proposed method. First, considering the small-sample-

size issue of fMRI data, we will employ transfer learning and

pretraining strategies to further enhance model generalization.

Second, different brain image modalities, such as structural

MRI and Positron Emission Tomography (PET), can provide

complementary information for ADHD diagnosis. Integrating
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multimodal neuroimages would be an interesting avenue to

pursue, which will be our future work. Finally, we only construct

the functional connectivity matrix based on the AAL atlas

with 116 pre-defined ROIs in this work. In the future, we

will explore multi-scale functional connectivity networks divided

by multiple brain atlas to capture complementary topological

information.

6 Conclusion

In this paper, we propose an end-to-end adaptive spatial-

temporal neural network for ADHD classification using rs-

fMRI time-series data. Specifically, we first divide fMRI data

into non-overlapping segments to characterize the temporal

variability. Then, a adaptive functional connectivity generation

(AFCG) module is used model spatial dependencies between

brain ROIs for each segment. In particular, within the AFCG, a

adaptive graph learning strategy is designed to learn functional

connectivity strength a data-driven manner. Finally, we develop

a temporal dependency mining (TDM) module that integrates

global and local branches to capture the temporal dynamics across

multiple time segments. Extensive experiments on the dataset

demonstrate the superiority of our ASTNet over several state-

of-the-art methods, demonstrating its potential in identifying

ADHD.
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