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The human’s upright standing is a complex control process that is not yet fully

understood. Postural control models can provide insights into the body’s internal

control processes of balance behavior. Using physiologically plausible models

can also help explaining pathophysiological motion behavior. In this paper, we

introduce a neuromusculoskeletal postural control model using sensor feedback

consisting of somatosensory, vestibular and visual information. The sagittal plane

model was restricted to e�ectively six degrees of freedom and consisted of

nine muscles per leg. Physiologically plausible neural delays were considered

for balance control. We applied forward dynamic simulations and a single

shooting approach to generate healthy reactive balance behavior during quiet

and perturbed upright standing. Control parameters were optimized to minimize

muscle e�ort. We showed that our model is capable of fulfilling the applied tasks

successfully. We observed joint angles and ranges of motion in physiologically

plausible ranges and comparable to experimental data. This model represents

the starting point for subsequent simulations of pathophysiological postural

control behavior.

KEYWORDS

postural control, standing, simulation, forward dynamics, neuromusculoskeletal
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1 Introduction

Human upright standing is inherently unstable. Nevertheless, the human’s postural

control system is able to produce muscle forces and thereby joint torques to maintain

the body in an upright position, even against external perturbations. Up to a certain

degree, this is possible without the need to take a correction step. One typical symptom

of neurological disorders like Parkinson’s disease (PD) is an impaired function of the

postural control system which results in difficulties maintaining balance during daily tasks.

A detailed understanding of the body’s internal control processes during postural control

is essential to explain pathophysiological postural control and to be able to give tailored

therapy recommendations to patients suffering from neurological disorders like PD.
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To maintain balance, the human body continuously initiates

muscle forces to keep the center of mass (COM) within the

base of support (Winter, 1995). The base of support is defined

by the area beneath the contact points of the feet with the

ground. The central nervous system regulates information from

the somatosensory, vestibular and visual systems to gain current

body states and initiates suitable muscle excitations that lead to

adequate muscle forces to keep the body in balance (Forbes et al.,

2018). The somatosensory system consists of proprioception and

cutaneous receptors. Proprioceptive information is perceived by

muscle spindles and Golgi tendon organs. Muscle spindles are

located in the skeletal muscles and sense muscle lengths and

lengthening velocities (Kröger and Watkins, 2021). Golgi tendon

organs are located at the interface between muscle and tendon

and sense muscle tendon forces. Cutaneous receptors deliver tactile

information about the pressure distribution underneath the feet

(Jahn and Wühr, 2020), which includes changes in the location of

the center of pressure (COP). The vestibular system is sensitive to

linear and angular motion and orientation of the head. It consists

of two structures located within the inner ear, the otolith organs

and semicircular canals. Otolith organs detect linear accelerations

as well as the head tilt with respect to the gravitational field,

semicircular canals the rotational head accelerations (Mahboobin

et al., 2002; Jahn and Wühr, 2020). The visual system provides

information about the direction and speed of body sway (Jahn and

Wühr, 2020). All these sensory information are centrally integrated

to ensure a reliable and robust interpretation of the body state that

can be used for postural control reactions. Lower level controls,

like reflexes, are generated in the spinal cord, higher-level controls

in the supra-spinal cord (Jahn and Wühr, 2020). This process is

subject to neural delays consisting of processing, transmission and

activation dynamics delays.

Biomechanical models can be used to simulate and analyze

postural control behavior. Upright standing is often investigated

using simplified models such as single inverted pendulum models

(Masani et al., 2006; Welch and Ting, 2008; Goodworth and

Peterka, 2009). More detailed models can consist of a higher

number of degrees of freedom (DOF) and muscles (Versteeg

et al., 2016; Kaminishi et al., 2019; Koelewijn and Ijspeert, 2020).

Simulations of musculoskeletal human models often focus on

proprioceptive information (Suzuki and Geyer, 2018; Koelewijn

and Ijspeert, 2020) or assume the body’s full-state information to be

known by the central nervous system (Welch and Ting, 2008; Yin

et al., 2020). Also, the considered amount of neural delays varies

a lot between the different models. An overview about different

simulation approaches of postural control, which biomechanical

humanmodels and control strategies are used, is given by Shanbhag

et al. (2023). To gain a detailed understanding about internal

processes during postural control, it is necessary to consider all of

the different sensory systems that the human body uses to maintain

balance. A clear distinction between the origins of different sensory

signals used by a model, like proposed by Jiang et al. (2017),

is rarely done in postural control simulations. However, detailed

postural control models considering such distinctions and all

sensory systems used for postural control, and also neural delays

in physiologically plausible ranges, could be capable of covering

many aspects of postural control and giving insights into internal

processes of the body that are still not fully understood.

In this paper, we use a forward dynamic approach to simulate

balance control. We introduce a postural control model for

upright standing using a musculoskeletal human model with

nine DOF and 18 muscles. The model considers somatosensory,

vestibular as well as visual information for generating muscle

feedback. Therefore, this feedback consists of reflexes based on

muscle information, enhanced by additional information gained

from cutaneous sensors, the vestibular and visual system. Also,

physiologically plausible neural delays are added within the neural

circuitry, depending on muscle position and information type. The

model is able to simulate quiet and perturbed upright standing.

2 Materials and methods

We used a generic musculoskeletal human model to conduct

forward-dynamic simulations of postural control behavior of

quiet and perturbed upright standing. The simulations in this

study were applied using the software framework SCONE

2.3.0 (Geijtenbeek, 2019) with Hyfydy (Geijtenbeek, 2021). The

implementation consists of three elements, which is described in

the following: A musculoskeletal human model, a neural controller

and an optimization of free control parameters. Additionally, the

simulation approach and the experimental data with which the

simulation results are compared are described.

2.1 Musculoskeletal model

For our simulations, we used a musculoskeletal human model

based on Delp et al. (1990) with updates from Rajagopal et al.

(2016), distributed as part of SCONE. This version is a planarmodel

(sagittal plane) with seven segments, consisting of trunk-pelvis, and

each upper leg, lower leg and foot. The model is restricted to nine

DOF, three DOF per leg (ankle, knee and hip joint) and three DOF

between the pelvis and the ground. In our simulations, we assumed

a symmetric motion behavior as we wanted to show a general

physiological motion behavior. As a result, the model effectively

has six DOF, left and right joint angles were treated identically.

Nine Hill-type muscles (Millard et al., 2013) are considered for

each leg: Gluteus maximus (GLU), hamstrings (HAM), iliopsoas

(IL), rectus femoris (RECT), biceps femoris short head (BFSH),

vastus intermedius (VAS), gastrocnemius medialis (GAS), soleus

(SOL), and tibialis anterior (TA). Values for muscle parameters

were set according toDelp et al. (1990) with updates fromRajagopal

et al. (2016). Ground contact is modeled via two viscoelastic Hunt-

Crossley contact spheres per foot, one on the heel and one on the

forefoot.

2.2 Neural control design

We implemented a neural control circuit to simulate postural

control behavior of upright standing using the aforementioned

musculoskeletal human model. Our aim was to establish processes

on a physiologically plausible basis: All sensory information that

are used in the physiological process of postural control should

be available for the model’s control as well. State information of
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the body, gained by the different sensory systems of the body,

were considered to generate feedback signals, depending on their

corresponding gain factors. Additionally, the feedback loop is

subject to neural delays τ (Section 2.2.2). The whole postural

control model is shown in Figure 1.

2.2.1 Feedback controller
The total muscle excitation that is continuously calculated for

each individual muscle is the sum of the different sensory systems’

feedback and is represented in Equation (1):

u(t) = u0 + usom(t)+ uves(t)+ uvis(t) (1)

The total muscle excitation u(t) consists of a feedforward

element u0, somatosensory feedback usom(t), vestibular feedback

uves(t) and visual feedback uvis(t). Equations (2–4) are used to

determine the corresponding feedback elements.

usom(t) = Kl ·max(0, (lm(t − τ )− lm,0))+ Kl̇ ·max(0, l̇m(t − τ ))

+KF · Fm(t − τ )+ Kcop · (xcop(t − τ )− xcop,0)

(2)

Kl, Kl̇, KF , and Kcop are gain factors based on proprioceptive and

tactile information of the somatosensory system. lm(t − τ ), l̇m(t −

τ ), and Fm(t − τ ) represent the time-delayed normalized length,

lengthening velocity and force of the corresponding muscle. lm,0

is the offset length of the muscle above which the muscle initiates

length feedback. xcop,0 is the initial COP value and the midpoint

between the two contact points of the feet with the ground. It was

assumed that if the projection of the center of mass and the COP

coincide in this point, the model reaches an equilibrium posture.

uves(t) = Kẍ · ẍ(t − τ )+ Kϕ · (ϕ(t − τ )− ϕ0)+ Kϕ̈ · ϕ̈(t − τ ) (3)

Kẍ, Kϕ , and Kϕ̈ are gain factors based on vestibular information.

ẍ(t − τ ) represents the time-delayed linear acceleration, ϕ(t − τ )

the time-delayed orientation and ϕ̈(t− τ ) the time-delayed angular

acceleration of the head with respect to the environment. ϕ0 is the

initial orientation of the head.

uvis(t) = Kx · (x(t − τ )− x0)+ Kẋ · ẋ(t − τ ) (4)

Kx and Kẋ are gain factors based on visual information. x(t − τ )

and ẋ(t− τ ) represent the time-delayed position and velocity of the

head with respect to the environment.

All feedback gains, the offset muscle lengths lm,0 as well as

feedforward excitations u0 were optimized in the optimization step

(Section 2.3). The calculated muscle excitations u(t) lead to muscle

activations and subsequently adjusted muscle lengths, lengthening

velocities and forces that are determined via the activation and

contraction dynamics of the Hill-type muscle model (Millard et al.,

2013).

Additionally, we applied a small amount of random Gaussian

noise to the model’s sensor systems as well as to the actuators

assuming that these systems do not work noise free in the human

body, consisting of base noise and noise depending on the signal

amplitude s, which is either sensor information ormuscle excitation

(Equations 5, 6):

x′ = x+ knoise · R (5)

knoise = 0.0005+ 0.0001 · s (6)

x is the true signal, knoise the signal-dependent noise amplitude and

R a randomly generated Gaussian distributed number. x′ represents

the resulting signal’s value.

2.2.2 Neural delays
Depending on the muscle position in the body and the sensory

information type, we considered different amounts of neural delays.

For each muscle we defined a lumped neural delay τ consisting of

transmission and processing delay. We set neural delays according

to assumptions of Li et al. (2012). For muscle reflexes based on

proprioceptive information reactions up to 25 ms are possible.

Depending on the muscle’s position, the reflex delay can increase

by additional 25 ms due to the longer transmission distance from

the central nervous system to shank muscles compared to hip

muscles. For vestibular and visual information a higher amount of

processing is necessary. Therefore, additional 100ms were assumed

for each muscle. All neural delays that we used are summarized in

Table 1.

2.3 Optimization of control parameters

The control gains, offset muscle lengths and feedforward

excitations were optimized using single shooting and the pre-

implemented covariance matrix adaption evolution strategy

(CMA-ES) algorithm (Igel et al., 2007) in SCONE. An optimization

was solved to find control parameters to minimize muscular effort

and to fulfill additional constraints, such as knee and hip joint limits

and keeping the model’s COM higher than 60% of the initial height.

Effort minimization is chosen as this is assumed to be the objective

of the central nervous system when creating movements (Selinger

et al., 2015). This leads to the following optimization problem

(Equations 7–11):

Jcost = 100 · Jfall + 0.01 · Jeffort + 10 · Jknee joint + 0.1 · Jhip joint (7)

Jfall =

{

1, if COM height < 0.6 · initial COM height

0, else
(8)

Jeffort =
1

T

∫ T

t=0

Nmusc
∑

i=1

a3i dt (9)

Jknee joint =

{

0, if − 30◦ < knee angle < 0◦

1, else
(10)

Jhip joint =

{

0, if − 20◦ < hip flexion < 40◦

1, else
(11)
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FIGURE 1

Postural control model. The neural controller generates control signals based on feedforward input (FF) as well as somatosensory (SOM), vestibular

(VES) and visual (VIS) feedback. Feedback values are generated by comparing time-delayed states of the model with their corresponding reference

states. Indicated delays belong to the body’s a�erences (τa) and e�erences (τe). For calculations, we used a lumped delay τ consisting of both signal

transmission and processing delays (Section 2.2.2). The reference position is an upright standing pose. Signals from the neural controller lead to

muscle excitations u(t) of the musculoskeletal human model.

TABLE 1 Neural delays for each muscle depending on the muscle’s position and the sensory information type.

Muscle Neural delays

Somatosensory
information

Vestibular
information

Visual
information

Gluteus maximus, hamstrings, iliopsoas, rectus femoris 25 ms 125 ms 125 ms

Biceps femoris short head, vastus intermedius 35 ms 135 ms 135 ms

Gastrocnemius medialis, soleus, tibialis anterior 50 ms 150 ms 150 ms

Nmusc represents the number of muscles and ai the activation

of each muscle. For each scenario (described in Section 2.4),

six optimizations with different random seeds were performed.

During this process, multiple CMA-ES optimizations are carried

out and prioritized depending on their predicted fitness values

(Geijtenbeek, 2019). Optimizations ended as soon as the averaged

reduction of the cost function’s result was smaller than 1e-5

compared to the previous iteration.

In this model, we assumed a symmetric postural control

behavior, so left and right muscle excitations are calculated

identically. For parameters’ initial guesses, we considered findings

of Peterka (2018) where sensory feedback weightings were

identified. They reported postural control to be based 50% on

proprioceptive, 33% on visual, and 17% on vestibular information

for low amplitude perturbations. We considered this ratio for our

feedback gains’ initial guesses, where applicable. Boundaries for

parameter optimization were defined as –3 and 3 for control gains,

as 0.001 and 0.2 for feedforward excitations u0, and as 0.1 and 2

for the muscle’s offset lengths lm,0. Boundaries for control gains

were adopted from Koelewijn and Ijspeert (2020), for feedforward

excitations and offset lengths they were adapted to reduce the

search space.
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FIGURE 2

Box-plots showing median and interquartile ranges of joint angles during quiet upright standing of simulation and each participant. Simulations

assumed left and right symmetry, experimental data were averaged for left and right joint angles of each participant following this assumption.

2.4 Simulation approach

Full simulations lasted 75 s. We evaluated simulation results

for 60 s in total, starting from 15 s simulation time, because the

first seconds are not representative due to a manually predefined

starting position. Simulation frequency was set to 200 Hz.

The model’s initial posture was always an upright stance (pelvis

tilt: −10.0◦, hip flexion: 20.0◦, knee angle: –20◦, ankle angle:

10◦) which was adopted from the pre-defined SCONE settings for

standing simulations (Geijtenbeek, 2019). For evaluation, we tested

our postural control model under two scenarios: In the first step,

we simulated a quiet standing (no external perturbations). Results

were compared to self-collected experimental data. Additionally,

we tested our model performing an upright standing task on a

moving platform. We applied translational perturbations to the

platform comparable to the study of Wang and van den Bogert

(2020). This resulted in anterior-posterior perturbations of the

model and allowed us to compare our simulation results to the
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TABLE 2 Joint angles’ and COP’s parameters of the simulation and

average experimental data during quiet upright standing.

Parameters ROM
simulation

ROM
experiments

RMSE

Pelvis angle (deg) 0.63 2.59± 0.66 5.28

Hip angle (deg) 0.72 2.50± 1.20 4.93

Knee angle (deg) 1.16 1.25± 0.58 1.54

Ankle angle (deg) 0.67 1.02± 0.27 0.91

COP (mm) 11.96 25.62± 8.65 N/A

experimental results of this open accessible dataset. In their study,

a random square signal was applied to the platform. The signal

consisted of different amplitudes of [–5, –2.5, 0, 2.5, 5] cm, and

six stage durations of [0.25, 0.5, 0.75, 1.0, 1.25, 1.5] s. Platform

velocities of up to∼0.22 m/s were observed.

2.5 Experimental data

In this paper, we used two different dataset to compare

our simulation results to experimental data. For a quiet upright

standing, we conducted own data, for a perturbed upright standing

on a moving platform, we used an open-source dataset fromWang

and van den Bogert (2020).

We conducted a study to measure postural control behavior

during quiet upright standing. Eight healthy participants (four

male, four female, age: 51.63 ± 23.12 years) were included in this

study. All participants performed an upright standing task with

eyes open for 60 s. They were instructed to place their feet shoulder-

width apart and focus on a sign at eye level in front of them. Hands

were placed on the hips during this task. We collected the data in a

motion laboratory using an optical motion capture system (VICON

Vero, ten cameras, 100 Hz) and two force plates (AMTI, 1,000 Hz).

We recorded the data with 45 reflective body markers according

to the Plug-in Gait model (Vicon Motion Systems Limited UK,

2021), with four additional markers on each medial knee and

ankle. These four medial markers were detached after an initial

calibration measurement. For processing the experimental data,

we used OpenSim 4.4 (Seth et al., 2018) and a three-dimensional

model, based on Delp et al. (1990). The model consisted of 17

DOF and eight segments. The processing itself was conducted using

the tool AddBiomechanics (Werling et al., 2023) that includes an

automatic model scaling and an inverse kinematics processing from

human motion data. In the end, results were filtered with a third

order Butterworth filter with a cutoff frequency of 6 Hz.

Experimental data that we used to compare an upright standing

on a moving platform was collected from six participants (Wang

and van den Bogert, 2020). Each of them fulfilled two perturbed

standing tasks. They collected optical motion capture, force plate

and EMG data. Measurement data were processed using a two-

dimensional sagittal plane model (three DOF) consisting of hip,

knee and ankle joint. During calculations of this dataset, left and

right joint angles were averaged, as movements were assumed to be

symmetrical.

2.6 Data evaluation

To evaluate our postural control model for upright standing,

we compared simulation results with experimental data (Section

2.5). We used own collected experimental data to evaluate the

unperturbed scenario. For the upright standing on a moving

platform, we compared simulation results with the publicly

available dataset of Wang and van den Bogert (2020). In the dataset

records, platformmovement started after∼12 s. For evaluation, we

used the time period between 15 and 75 s for both our simulation

and experimental data to compare areas with a high amount of

perturbation. For both scenarios we analyzed joint angles and

COP values over 60 s. Additionally, for the upright standing on a

moving platform, we compared curve progressions of experimental

EMG data and simulated muscle activations, where applicable.

Quantitative comparisons are not possible, since EMG data give no

insights about absolute values of muscle activations.

We averaged experimental data to compare them with

simulation results. We calculated RMSEs of simulations and

experimental data as well as ROMs of simulations and average

ROMs of experimental data. To calculate RMSEs, we used

experimental data of each participant averaged for each time step

resulting in average time courses. To gain average ROMs, we

averaged all participant’s individual ROMs. Because the absolute

COP position depends on the definitions of the force plates’

coordinate systems and standing positions of participants, we

compared just the COP ranges. To gain COP results, COP data

were obtained directly from the force plates. The two COP values

from both of the force plates were fused to one resulting COP for

each time step by determining a weighted sum. In this paper, we

considered the anterior-posterior components for further analysis.

To compare EMG data with simulation results for the perturbed

upright standing, we pre-processed raw EMG data from Wang

and van den Bogert (2020). First, we band-pass filtered the signals

between 20 and 500 Hz to remove electrical noise and motion

artifacts (McManus et al., 2020). Then, we rectified and lowpass

filtered the signals by 6 Hz.

3 Results

The simulation model was able to successfully fulfill the

unperturbed standing task for the complete simulation time.

Figure 2 shows joint angles of the simulation and each participant

of the experiments. We observed RMSEs of 5.28◦ (pelvis tilt), 4.93◦

(hip angle), 1.54◦ (knee angle) and 0.91◦ (ankle angle) between

simulations and average experimental data. Simulation results show

joint angles’ ROMs of 0.63◦ (pelvis tilt), 0.72◦ (hip angle), 1.16◦

(knee angle), and 0.67◦ (ankle angle). Average experimental data

show ROMs of 2.59 ± 0.66◦ (pelvis tilt), 2.52 ± 1.16◦ (hip angle),

1.38 ± 0.54◦ (knee angle), and 1.11 ± 0.30◦ (ankle angle). The

COP range was 11.96 mm during the simulation, 25.62± 8.65 mm

during experiments. Table 2 summarizes RMSEs and ROMs of joint

angles and the COP of each simulation and average experimental

data.

The postural control model was also capable of maintaining

balance on a moving platform. We compared simulation results

with the published joint angles (Wang and van den Bogert, 2020).
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FIGURE 3

Box-plots showing median and interquartile ranges of joint angles during upright standing on a moving platform of simulation and each participant.

During the experiments, each subject fulfilled the perturbed standing task twice. Note that these participants are not the same as in the quiet

standing scenario.

Figure 3 shows joint angles of simulation and each participant of

the experiments. As there was no pelvis tilt given in the published

dataset, we only compared hip, knee and ankle angles. Resulting

joint angle courses of simulation and average experimental data

are represented in Figure 4, COP courses in Figure 5. We observed

RMSEs of 11.11◦ (hip angle), 1.86◦ (knee angle), and 1.04◦ (ankle

angle) between simulation and experiments. Simulation results

showed joint angles’ ROMs of 8.84◦ (pelvis tilt), 8.29◦ (hip angle),

8.73◦ (knee angle), and 4.16◦ (ankle angle). Average experimental

data showed ROMs of 23.46 ± 14.97◦ (hip angle), 13.34 ± 8.35◦

(knee angle), and 9.10 ± 5.47◦ (ankle angle). The COP range was

124.77 mm during the simulation, 120.43 ± 25.55 mm during

experiments. Joint angles’ RMSEs, ROMs and ranges of the COP

are summarized in Table 3. Additionally, we compared simulated

muscle activations with recorded EMG data. In Figures 6, 7,

activation courses are represented for 60 s and for 10 s in detail. For

the muscles gluteus maximus, rectus femoris, biceps femoris short

head, gastrocnemius medialis, soleus and tibialis anterior, we were
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FIGURE 4

Joint angles during upright standing on a moving platform. Joint angles of simulation (orange) and experiments (mean: black, standard deviation:

shaded gray area) are shown for 60 s.

able to compare simulation results with experimental data. It could

be observed, that simulated muscle activations showed comparable

behavior in some parts, especially for gastrocnemius medialis,

soleus and tibialis anterior, but also differed in several areas from

experimental data, especially for gluteus maximus, rectus femoris

and biceps femoris short head.

The model’s resulting optimized parameters, are summarized

in Table S1 for the quiet upright standing and Table S2 for the

upright standing on a moving platform. Results are given for all

free parameters of the neural controller that had been optimized.

4 Discussion

In this paper, we aimed to simulate postural control behavior

using a musculoskeletal human model and complex sensor

feedback of all sensory systems involved in postural control

considering physiologically plausible neural delays. Compared

to many other postural control models, our model uses all,

somatosensory, vestibular as well as visual information for balance

control under the influence of neural delays in physiologically

plausible ranges. Other models often focus on specific aspects

like muscle reflexes based on proprioceptive feedback (Suzuki

and Geyer, 2018; Koelewijn and Ijspeert, 2020). Compared to

them, we aimed to take into account all sensory information

that are considered for postural control by the human body

(Peterka, 2018; Jahn and Wühr, 2020). This way, our model

covers muscle reflexes based on proprioceptive information and

is enhanced by further sensory input. The model is able to fulfill

an upright standing task in unperturbed and perturbed situations.

Motion behavior shows to be comparable to experimental data
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FIGURE 5

COP during upright standing on a moving platform. The COP of simulation (orange) and experiments (mean: black, standard deviation: shaded gray

area) is shown for 60 s. Additionally, an exemplary section of 10 s (highlighted with a red frame) is represented as zoom-in below.

TABLE 3 Joint angles and COP’s parameters of the simulation and

average experimental data during upright standing on a moving platform.

Parameters ROM
simulation

ROM
experiments

RMSE

Pelvis tilt (deg) 8.84 N/A N/A

Hip angle (deg) 8.29 23.46± 14.97 11.11

Knee angle (deg) 8.73 13.34± 8.35 1.86

Ankle angle (deg) 4.16 9.10± 5.47 1.04

COP (mm) 124.77 120.43± 25.55 N/A

No pelvis angles were given for experimental results.

of healthy participants for both simulation scenarios. For both,

the unperturbed as well as the perturbed situation, the model’s

motion is comparable to the ones observed during experimental

measurements.

We observed RMSEs smaller than 1.9◦ for ankle and knee

angles, only hip and pelvis showed a higher variation between

simulation and experiments (4.93–11.11◦). This is because the

stable standing pose that was found by the optimization, especially

during the standing on a moving platform, consists of a higher

hip flexion and a more forward leaning torso. As the initial

standing pose has influences on the reference control parameters, a

different initial pose could improve the torso orientation. Also, the

model’s reference COP position is currently defined as themidpoint

between the two contact spheres of each foot. In reality, the COP

might not lie directly in this point. As we could not compare

absolute COP positions, simulations and experiments could differ

in this aspect. During quiet standing, ROMs are comparable,

only the COP range shows to be considerably smaller during

the simulation. During the perturbed standing, the simulation’s

ROM is noticeable smaller for all joint angles, the COP range

is comparable to the experiments. It has to be said, that also

the experimental data itself showed high standard deviations

of the ROMs. This means, that the amount of ROM varies

widely between the individual participants. Also, experimental

results showed high variation in absolute mean values in general

which is shown in Figures 2, 3. We aimed to present a general

postural control model, that is able to create physiologically

plausible postural control behavior in the first step. The model

was not yet personalized and simulations were not provided

for different subjects. Therefore, our simulations did not show

as much variability as the experimental data. Considering this,

simulation results show realistic motion behavior. Besides internal

noise of sensory systems and muscle actuators, also low-frequent

disturbances caused by breathing or the heart beat influence

motion during postural control (Forbes et al., 2018). These effects

are currently not considered in our model and could explain

the remaining difference between simulation and experimental

ROMs. We compared simulated and recorded muscle activations

and observed, that muscle activations still varied in several

sections, especially for upper leg and hip muscles. Quantitative

comparisons are currently not possible, we could only compare

muscle activations’ time courses. Maximum voluntary contraction

measures would be necessary to gain insights into absolute muscle

activations during experiments that are extracted via EMG. It

has to be mentioned, that not all simulated muscle activations

could get compared to experimental data. No EMG data was

provided for hamstrings, iliopsoas and vastus intermedius. Since we

focused on creating a postural control model that is able to fulfill

the previously described tasks based on physiologically plausible

assumptions in this first step, muscle activations still seem to vary

in some aspects compared to experimental data. In a next step, a

more similar muscle activation behavior could be one additional

focus aspect.
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FIGURE 6

Muscle activations during upright standing on a moving platform. Muscle activations of simulation (orange) and experiments (mean: black, standard

deviation: shaded gray area) are represented for 60 s. Muscle activations are shown for gluteus maximus (GLU), hamstrings (HAM), iliopsoas (IL), rectus

femoris (RECT), biceps femoris short head (BFSH), vastus intermedius (VAS), gastrocnemius medialis (GAS), soleus (SOL), and tibialis anterior (TA).

We used a sagittal plane musculoskeletal human model to

simulate postural control. We are aware that not only anterior-

posterior, but also medio-lateral movements are relevant in order

to holistically simulate motion behavior. Additionally, our current

simulation approach creates symmetrical motion. In reality, human

motion is never completely symmetrical. Still, a sagittal plane

model will already be capable of providing some insights into

impaired neural control as well, even if it is not complete. We

assumed different neural delays depending on muscle position and

sensor information type. It has to be mentioned that the specific

amount of different neural delays is still being discussed. In this

respect, current models for postural control differ considerably,

like with 100 ms (van der Kooij et al., 2001), 120 ms (Jiang et al.,

2017), 150 ms (Van Wouwe et al., 2022) or 185 ms (Masani

et al., 2006). However, at the same time, postural control models

could help to identify neural delays by investigating differences
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FIGURE 7

Muscle activations during upright standing on a moving platform. Muscle activations of simulation (orange) and experiments (mean: black, standard

deviation: shaded gray area) are represented as an exemplary zoom-in of 10 s. Muscle activations are shown for gluteus maximus (GLU), hamstrings

(HAM), iliopsoas (IL), rectus femoris (RECT), biceps femoris short head (BFSH), vastus intermedius (VAS), gastrocnemius medialis (GAS), soleus (SOL),

and tibialis anterior (TA).

in motion behavior resulting from adaptions of neural delays.

Our model assumes a multisensory integration in form of a

weighted sum of several sensory information in the feedback

loop. Also this internal process of sensory integration of the body

is still unclear. Many models use this approach to fuse sensor

information (Goodworth and Peterka, 2009; Jiang et al., 2017;

Van Wouwe et al., 2022). Other models use for example optimal

estimator methods (van der Kooij et al., 2001; Kuo, 2005) to

process the information before initiating corresponding model

reactions. Some studies inform about frequency-dependencies of

the body’s sensory systems (Forbes et al., 2018; Peterka, 2018;

Jahn and Wühr, 2020). Optimal estimator methods can take

this aspect into account. In our approach, this characteristic

is currently not addressed. We aimed to simulate the reactive

postural control behavior of upright standing. Up to this point, our

model considers aspects of spinal and supra-spinal control. Motion
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aspects such as voluntary movements, are currently not included in

the model.

Postural control behavior can differ substantially between

subjects. Even in healthy individuals, factors like age influence

postural control significantly (Rinaldi et al., 2009; Van Humbeeck

et al., 2023). Even though we ensured to include subjects of

different sex and age, a higher number of subjects could still

influence our reference values. We used experimental data of eight

subjects (age: 51.63 ± 23.12 years) to compare them with our

simulation results and gain an overall impression of our model

compared to human data. In a next step, also aging effects could

be considered to model age-specific postural control. Up to this

point, our simulations were conducted with a generic OpenSim

model. A next step could be to use personalized musculoskeletal

human models to get a more subject-specific motion behavior. By

using customized models that are adapted to represent specific

individuals, evenmore precise simulation performances and higher

similarities would be expected compared to experimental data.

To model movements of patients with neural disorders, such as

PD, further adaptions to the model are necessary. Depending on

the severity and progression of the disease, patients may even

exhibit an altered body pose, independent of external perturbations.

In addition, the reactive postural control behavior can differ

significantly. Therefore, targeted modifications to the model are

necessary to achieve accurate simulation results for Parkinson’s

patients.

Additionally, it is important to keep in mind that even though

if a postural control model shows human-like motion behavior,

this does not necessarily prove that the model mimics the control

processes of real humans. Nevertheless, these models may help

to gather insights into the differences between physiological and

pathophysiological control.

5 Conclusion and outlook

In this paper, we introduced a musculoskeletal postural

control model using complex sensor feedback consisting of

somatosensory, vestibular and visual information considering

physiologically plausible neural delays. It is able to maintain

balance in both unperturbed as well as perturbed scenarios. The

simulated motion behavior showed to be comparable to empirical

data of healthy participants.

This model will serve as a basis to simulate and even

characterize motion behavior of persons suffering from

neurological disorders like PD. In a next step, parameters

that are thought to be the cause of symptoms such as postural

control impairments could be adjusted. This will allow us

to further investigate the balance behavior of Parkinson’s

patients and to assess, for example, the effects of different

rehabilitation interventions.
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