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Introduction

The presence of secretory vesicles (synaptic-like microvesicles or SLMVs) in astrocytes
capable of fine-tuning synaptic transmission, has been a topic of debate in the field. While
some studies have suggested that astrocytes release gliotransmitters through SNARE-
dependent vesicular exocytosis, other studies presented contradictory data suggesting
that astrocytes release in a non-regulated manner, such as through lysosomes, or non-
vesicular pathways such as channels (reviewed in Hamilton and Attwell, 2010; Savtchouk
and Volterra, 2018). Evidence showing the presence of secretory vesicles in astrocytes in
situ would support regulated exocytosis; nevertheless, efforts to investigate the presence of
these organelles at the ultrastructural level, using electron microscopy, failed to convince
skeptical scientists so far (Bezzi et al., 2004; Bergersen et al., 2012). Two important studies
(Petravicz et al., 2008; Agulhon et al., 2010) heated the debate, by showing that astrocytic
calcium signaling has no impact on synaptic activity (Smith, 2010). Moreover, murine
models developed to impair astrocytic SLMVs exocytosis such as the dnSnare or IP3RKO
(Pascual et al., 2005; Sherwood et al., 2021) show weak behavioral phenotype. Nevertheless,
we still use genetic models to study astrocytic impact on synaptic activity, somehow
upstreaming SLMVs exocytosis (Petrelli et al., 2020, 2023). Indeed, calcium signaling has
been largely used as a proxy to study the dynamics of SLMVs release in culture (Calì
et al., 2008; Cali et al., 2014; Marchaland et al., 2008; Vardjan et al., 2019; Stenovec et al.,
2020; Mielnicka and Michaluk, 2021), leading to in vivo studies with the assumption that
neuroglia functional interactions might be due to astrocytic SLMVs exocytosis (Kirchhoff,
2010; Wiedemann, 2010; Bindocci et al., 2017; de Ceglia et al., 2023). Aforementioned
reasons led to a progressive abandonment of this quest, leaving the problem almost as a
religious question, where believers don’t need further proofs, and conversely no evidence
will be enough for those who don’t believe in it. Here, we review the current state of the art
regarding our knowledge of exocytotic SLMVs in astrocytes.

Ultrastructural evidence using EM

To date, the best way to study cellular ultrastructure from a morphological level, is by
far Electron Microscopy (EM). In fact, by increasing resolution limit by a factor of two
compared to fluorescence microscopy, it is the only technique capable of unequivocally
identify nanometer-sized structures (Knott and Genoud, 2013; Boges et al., 2020). This
includes small, astrocytic perisynaptic astrocytic processes (PAPs), and their organelles.
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The use of volume EM to characterize
astrocytes fine morphology

Identifying processes on a single section EM micrograph could
be misleading. Depending on the direction and position of the cut,
a cellular process could be mistaken for something similar in its
cross-section (e.g., small axons and microglial processes on a single
section might have a similar round morphology and diameter).
Volume Electron Microscopy (VEM) allows navigating along z-
stacks, and observing single processes at multiple heights to make
sure about who-is-what (Titze and Genoud, 2016). VEM became
more and more common since a seminal paper was published in
2004 (Denk and Horstmann, 2004). Taking on a concept from 1981
(Leighton, 1981), it has been shown how SEM combined with an
ultramicrotome and a high-resolution back scattered detector for
block face imaging could be used to observe large portion of tissues
with similar quality and resolution to classic serial-section TEM for
biological application, and automatically cut serial sections at the
same time (Denk and Horstmann, 2004). Although this technique
has been originally developed to solve the so-called connectome
(DeFelipe, 2010; Oh et al., 2014; Fua and Knott, 2015; Wanner
et al., 2015), few papers managed to produce high-resolution 3D
reconstructions of full morphologies of astrocytes by adapting
VolumeEM to study glial cells (Coggan et al., 2018).

By using this approach, several labs interested in astrocytes have
started an important work in the field, describing the astrocytic
ultrastructure in three dimension, and quantifying parameters such
as synaptic ensheathment, surface are to volume ratio (SVR),
and working on ontologies to define a proper nomenclature of
astrocytic processes in the parenchyma (reviewed in Calì, 2017).
In the last 5 years, three of them focused on escheatment of
full astrocytes on neurites, such as Calyx of Held (Heller et al.,
2024), or relationships with vasculature, one of the most distinctive
hallmarks of astrocytes in all regions of the CNS (Albargothy
et al., 2022). Nevertheless, astrocytes participate to parenchymal
homeostasis at many levels, hence many works have analyzed
general aspects of structural neuro-glia relationships (Cali et al.,
2019; Shapson-Coe et al., 2021; Møller et al., 2022; Turner et al.,
2022; Salmon et al., 2023).

In a beautiful piece of work, authors have quantified the finest
nanoarchitecture of diverse astrocytic processes, using computer
vision methods specifically tailored for astrocytes (Salmon et al.,
2023). To this regard, the use of VEM, combined with state-of-the-
art computer vision techniques (Agus et al., 2018), could be a novel
unbiased tool to identify astrocytic microdomains hosting SLMVs.

EM sample preparation: stained or
unstained?

When someone wants to approach the problem of studying
astrocytes using EM, the first problem is clearly to identify them.
While immunohistochemistry (IHC) allows the identification of
astrocytes using specific markers [e.g., GFAP, S100Beta, glutamate
transporters GLT-1 or GLAST... (Figure 1A)], it also requires a
permeabilization step needed to allow antibodies to penetrate
the tissue. Permeabilization physically damages membranes; while

this is hardly a problem for fluorescence microscopy, it visibly
degrades image quality under EM. Hence, in order to study proper
ultrastructure, one should rather observe unstained tissue, with
perfectly preserved membranes. Classic staining protocols allows
to study brain ultrastructure (Titze and Genoud, 2016), but tissue
dehydration is known to induce artifacts in particular in the
preservation of extracellular matrix. Recent advancements include
the use of high-pressure freezing, a technique which vitrifies tissue,
using water from the sample itself fix the sample (Schertel et al.,
2013; Korogod et al., 2015), supposedly preserving sample in their
most natural state. Nevertheless, this technique is difficult to set up,
and fails in staining large volumes of samples.

Identification of PAPs and
ultrastructural organelles in unstained
tissue

Either way, identification of astrocytic processes in unstained
tissue requires some training and understanding of electron
micrographs. A good practice for beginners is to use empiric
criteria that can be inferred from solid, well cited literature. If
one has to look for astrocytes in EM micrographs then, one of
the oft quoted sentences to this regard, is that astrocytic processes
usually have an irregular shape, and a relatively clear cytoplasm
(Ventura and Harris, 1999; Witcher et al., 2007; Nahirney and
Tremblay, 2021). This sentence in particular comes from the classic
“The fine structure of the nervous system,” from Peters et al.
(1976) and possibly led to the misbelief that astrocytes are rather
devoid of intracellular organelles, including ER, cisterns, or vesicles,
especially in PAPs in close apposition to synapses.

Ultrastructural basis of Ca2+ signaling
to show rich intracellular content in
PAPs

As previously mentioned, the study of astrocytic Ca2+ waves
have been used as a proxy to characterize SLMVs dynamics, which
are hard to study in vivo. In fact, a rich body of literature, in
the first decade of 2000, has studied SLMVs exocytosis in vitro

using astrocytic cell cultures (Calì et al., 2008, 2009; Cali et al.,
2014; Marchaland et al., 2008). But, because the reliability of
cultured astrocytes as a model has been challenged, supposedly
because of lacking of growth factors and vascular cells during their
development in classical cell culture protocols (Foo et al., 2011),
findings in these papers has not been considered representative of
in vivo physiology (Hamilton and Attwell, 2010; Verkhratsky et al.,
2016; Zorec et al., 2016; Savtchouk and Volterra, 2018). The fact
that it was hard to replicate studies identifying SLMVs in vivo,
together with the misconception that astrocytes lack intracellular
machinery because their cytosol is clear, convinced that also Ca2+

machinery was absent, in contrast to in vitro evidence (Marchaland
et al., 2008). According to this view, a recent series of elegant
studies from the Semyanov lab conducted rigorous quantifications
of different types of hippocampal PAPs, showing in particular how
those in close apposition to synapses are devoid of Ca2+ stores
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FIGURE 1

Evidence for the presence of excitatosis-competent ultrastructural

compartments in PAPs. (A) PAP (Ast) containing SLMVs (red

arrowheads). (B) Double Immunogold showing SLMVs (red arrows)

coupled with D-Serine (small gold particles) and astrocytic

membrane with EAAT2 (big gold particles). A and B, adapted with

permission from Bergersen et al. (2012) (C) 3D reconstruction from

(Continued)

FIGURE 1 (Continued)

volumeEM of PAPs (green) containing ER (yellow tubules,

arrowheads “>”) juxtaposed to excitatory synapses (position of the

PSD is highlighted by *). Adapted from Denizot et al. (2022). (D)

Micrographs from hippocampal neuropil showing vesicular

structures (red arrowheads) and ER tubules (yellow arrowheads) in

PAPs. Adapted with Permission from Calì et al. (2016). (E)

Micrographs showing organelles (red arrows) inside astrocytic

processes. Quantification (bottom panels) reveals the significantly

lower density of astrocytic vesicles compared to axonal bouton.

Adapted from Kiyoshi et al. (2020).

(Patrushev et al., 2013). Those have been found to have a high SVR,
called “leaflets,” in contrast to “branches” and “branchlets,” which
on the contrary contains ER (Gavrilov et al., 2018). Interestingly,
a more recent paper reported and quantified the presence of
organelles (ER and vesicular structures), potentially supporting
Ca2+ signaling and synaptic tuning, in leaflets (Aboufares El Alaoui
et al., 2020). Although this latter study was performed in the cortex,
it supports the finding in a recent work analyzing the presence
of ER in PAPs from an existing VEM dataset (Calì et al., 2016)
(Figure 1C, arrowheads) to simulate calcium dynamics (Denizot
et al., 2021, 2022). Simulations support the presence of ER and
SLMVs in PAPs (Manninen et al., 2018, 2023; Linne et al., 2022).
At present, the body of evidence of astrocytic Ca2+ stores in vivo

cannot be ignored, and might help reconsider the presence of
SLMVs, being Ca2+ their upstream triggering molecule (Calì et al.,
2009; Bohmbach et al., 2018; Vardjan et al., 2019; Mielnicka and
Michaluk, 2021). Moreover, in the dataset from (Calì et al., 2016),
it is also possible to identify vesicular structures resembling SLMVs
in size and shape (Figure 1D, red arrowheads).

Evidence for SLMVs in astrocytes

SLMVs are round, clear, with a diameter of 50 nm, and
resemble glutamatergic vesicles in excitatory boutons (Bezzi et al.,
2004). Exocytotic SLMVs have been first hypothesized in the 1998
Nature paper from the group of A. Volterra (Bezzi et al., 1998),
demonstrating that glutamate was released from astrocytes in a
calcium-dependent manner. SLMVs were shown first in 2004 by
the same group, using EM immunogold (Bezzi et al., 2004). SLMVs
express VGLUTs and SNARE proteins (such as VAMPs), making
them competent for regulated exocytosis. Although exocytosis
from astrocytes have been extensively studied and characterized in

vitro (Savtchouk and Volterra, 2018), the lack of reproducibility of
similar data from other lab, heated the debate that created a hiatus
in the field.

State of the art on the quest of
exocytotic organelles

In the last 10 years, only a few research papers have
specifically characterized exocytosis of synaptic-like microvesicles
from astrocytes (Cali et al., 2014; Stenovec et al., 2016, 2018,
2020; Lasič et al., 2017; Sobieski et al., 2017; Wolfes et al.,
2017; Chowdhury et al., 2018; Eersapah et al., 2019; Rituper
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et al., 2022), all from in vitro models. None of these works has
shown any EM micrograph, and only two are showing some
fluorescence immunohistochemistry with markers for vesicular
markers in situ (Plá et al., 2017; Di Marco Vieira et al., 2020).
Looking at in vivo studies, two recent papers characterizing
neuro-glia interplay at synaptic level, suggest the involvement of
SLMVs exocytosis in the process. In Abreu et al., hippocampal
plasticity is shown to be dysfunctional in dnSNARE mice lacking
astrocytic d-Serine signaling (Abreu et al., 2023). De Ceglia
et al. identified a subpopulation of exocytotic astrocytes in
the hippocampus, expressing VLGUTs, the vesicular glutamate
transporter, supposedly expressed on SLMVs (de Ceglia et al.,
2023). No matter how strong the evidence or solid the work,
one must admit that no novel ultrastructural evidence regarding
the presence or nature of SLMVs came out in the last decade
of research. The last paper on this topic was published in
2012 (Bergersen et al., 2012), using a similar approach, from
the same group in Oslo (Norway) whose EM school was
able to identify SLMVs in the first place (Bezzi et al., 2004)
(Figures 1A, B). An important criticism to the work, is the
fact that all evidence is coming from the hippocampus, leading
to speculations that SLMVs exocytosis might be a feature of
a subgroup of astrocytes in this specific region. Interestingly,
previous cited work of PAPs and others (Gavrilov et al.,
2018; Denizot et al., 2022) have also analyzed hippocampal
neuropil (Figure 1).

Large-scale VEM to look for SLMVs

One very elegant study (Kiyoshi et al., 2020; Aten et al.,
2022) provided ultrastructural analysis, together with 3D
reconstructions, showing organelles populating microdomains
(Figure 1E). Although 3D reconstructions were not provided,
single micrographs showing the organelles reveal their presence,
in close proximity to synaptic structures. Interestingly, data
from this paper are also coming from the hippocampus, raising
again questions regarding the possible specificity of the presence
of organelles only in this region only, where astrocytes are
highly diverse (Viana et al., 2023). Compared to cell cultures,
the presence of SLMVs in astrocytic PAPs is sparse, unlike
axonal terminals (Figure 1E, bottom right panel). Distribution
of SLMVs follows rules that we cannot decode just yet, which
makes it difficult to identify astrocytic exocytotic subdomains.
In fact, the possibility to find these by chance might be rather
low, considering that a recent report shows that secretory
astrocytes accounts for only 8% of all astroglial cells in the ventral
hippocampus, and 24% in the dorsal hippocampus (de Ceglia et al.,
2023).

Conclusions

The presence of secretory synaptic-like microvesicles in
astrocytes has a solid base of correlative data, suggesting that
astrocytes participate to neuronal signaling by fine tuning synaptic

transmission in a fast and highly-regulated manner. Nevertheless,
ultimate proof, to show them under electron microscopy in
independent studies from different labs, is still missing. Few
recent studies (Aboufares El Alaoui et al., 2020; Aten et al.,
2022; Denizot et al., 2022) might play an important role in re-
opening a game that seemed closed a decade ago, by taking
advantage of VEM. Moreover, an increasing number of labs
acquiring high-resolution, large volumes, under EM, are sharing
data with a larger community, a wonderful practice allowing the
re-use of precious dataset for other purposes; this could be key
to extend this quest to labs that are not directly working using
electron microscopy.

Questions that might help to find an answer are:

• Do exocytotic microdomains in astrocytes exists?
• Which types of synapses benefit from gliotransmission?
• Are astrocytic SLMVs clustered like in synaptic boutons?
• Are SLMVs an exclusive feature of hippocampal synapses?

In the end, those who don’t believe we went to the moon often
cite the lack of photos of the landing sites, and that we can’t really
see any equipment left there using our imaging systems. This does
not really mean that Neil Amstrong did not put his foot on the
moon in 1969; simply, we are still not that good at looking into it.
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