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University of Maribor, Slovenia

*CORRESPONDENCE

Abdullah Sheneamer
asheneamer@jazanu.edu.sa

RECEIVED 25 February 2024
ACCEPTED 12 August 2024
PUBLISHED 06 September 2024

CITATION

Khan A, Zubair S, Shuaib M, Sheneamer A,
Alam S and Assiri B (2024) Development of a
robust parallel and multi-composite machine
learning model for improved diagnosis of
Alzheimer’s disease: correlation with
dementia-associated drug usage and AT(N)
protein biomarkers.
Front. Neurosci. 18:1391465.
doi: 10.3389/fnins.2024.1391465

COPYRIGHT

© 2024 Khan, Zubair, Shuaib, Sheneamer,
Alam and Assiri. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Development of a robust parallel
and multi-composite machine
learning model for improved
diagnosis of Alzheimer’s disease:
correlation with
dementia-associated drug usage
and AT(N) protein biomarkers

Afreen Khan1, Swaleha Zubair2, Mohammed Shuaib3,

Abdullah Sheneamer3*, Shadab Alam3 and Basem Assiri3

1Department of Computer Application, Faculty of Engineering & IT, Integral University, Lucknow, India,
2Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh, India,
3Department of Computer Science, College of Engineering and Computer Science, Jazan University,
Jazan, Saudi Arabia

Introduction: Machine learning (ML) algorithms and statistical modeling o�er
a potential solution to o�set the challenge of diagnosing early Alzheimer’s
disease (AD) by leveraging multiple data sources and combining information on
neuropsychological, genetic, and biomarker indicators. Among others, statistical
models are a promising tool to enhance the clinical detection of early AD. In
the present study, early AD was diagnosed by taking into account characteristics
related to whether or not a patient was taking specific drugs and a significant
protein as a predictor of Amyloid-Beta (Aβ), tau, and ptau [AT(N)] levels among
participants.

Methods: In this study, the optimization of predictive models for the diagnosis
of AD pathologies was carried out using a set of baseline features. The model
performance was improved by incorporating additional variables associated with
patient drugs and protein biomarkers into the model. The diagnostic group
consisted of five categories (cognitively normal, significant subjective memory
concern, early mildly cognitively impaired, late mildly cognitively impaired, and
AD), resulting in amultinomial classification challenge. In particular, we examined
the relationship between AD diagnosis and the use of various drugs (calcium
and vitamin D supplements, blood-thinning drugs, cholesterol-lowering drugs,
and cognitive drugs). We propose a hybrid-clinical model that runs multiple ML
models in parallel and then takes the majority’s votes, enhancing the accuracy.
We also assessed the significance of three cerebrospinal fluid biomarkers, Aβ, tau,
and ptau in the diagnosis of AD. We proposed that a hybrid-clinical model be
used to simulate the MRI-based data, with five diagnostic groups of individuals,
with further refinement that includes preclinical characteristics of the disorder.
The proposed design builds a Meta-Model for four di�erent sets of criteria. The
set criteria are as follows: to diagnose from baseline features, baseline and drug
features, baseline and protein features, and baseline, drug and protein features.

Results: We were able to attain a maximum accuracy of 97.60% for baseline
and protein data. We observed that the constructedmodel functioned e�ectively
when all five drugs were included and when any single drug was used to
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diagnose the response variable. Interestingly, the constructed Meta-Model
worked well when all three protein biomarkers were included, as well as when a
single protein biomarker was utilized to diagnose the response variable.

Discussion: It is noteworthy that we aimed to construct a pipeline design that
incorporates comprehensive methodologies to detect Alzheimer’s over wide-
ranging input values and variables in the current study. Thus, the model that
we developed could be used by clinicians and medical experts to advance
Alzheimer’s diagnosis and as a starting point for future research into AD and other
neurodegenerative syndromes.

KEYWORDS

Alzheimer’s disease, biomarker, early diagnosis, drug, hybrid clinical model, machine

learning, multinomial classification, protein

1 Introduction

Neurodegenerative diseases pose a significant challenge

in contemporary medicine, presenting a substantial burden

on healthcare systems worldwide and affecting the quality

of life for millions globally (Whiteford et al., 2015). These

disorders, exemplified by the gradual degeneration of the

nervous system’s structure and function, manifest in a myriad of

ways, affecting cognition, motor skills, and overall neurological

wellbeing. Neurological disorders affect roughly 15% of the

global population at present (Feigin et al., 2020). Over the last

three decades, the actual number of affected individuals has

substantially increased.

After conducting a comprehensive analysis of various

neurological conditions such as Alzheimer’s Disease (AD),

Huntington’s Disease, Parkinson’s Disease, and amyotrophic lateral

sclerosis, dementia becomes evident as a significant outcome of

neurological deterioration, with AD being the most prominent

(Ritchie and Ritchie, 2012; Ciurea et al., 2023; Khan et al., 2023).

Neurodegenerative disorders are multifaceted, and thus it is

complex to diagnose since genetic, environmental, and age-related

factors cause them.

Cognitive decline, a characteristic of AD and related dementias,

encompasses a spectrum of cognitive impairments ranging from

subtle changes in memory and thinking abilities to severe cognitive

dysfunction affecting daily functioning (Whiteford et al., 2015;

Feigin et al., 2020). Different etiologies contribute to cognitive

decline, including neurodegenerative processes such as AD,

vascular pathology, Lewy body disease, and other less common

causes. Syndromic diagnosis, which includes subjective cognitive

decline, mild cognitive impairment, and dementia stages of AD,

plays a crucial role in characterizing the progression of cognitive

decline (Ritchie and Ritchie, 2012; Ciurea et al., 2023).

Dementia currently has a staggering societal cost, accounting

for 1.01% of global GDP (Mattap et al., 2022). This issue is

expected to worsen in the coming years, with an estimated 85%

increase in global societal costs by 2030, assuming no changes

in potential underlying causes (e.g., macroeconomic aspects,

dementia incidence and prevalence, treatment availability, and

efficacy). As stated in theWorld Alzheimer Report 2023, theWorld

Health Organization (WHO) warns of a rising global prevalence of

dementia, which is anticipated to rise from 55million in 2019 to 139

million by the year 2050. As societies continue to age, the related

expenses of dementia are estimated to double, from $1.3 trillion in

2019 to $2.8 trillion by 2030 (Better, 2023).

AD poses a significant challenge to the global health

landscape and is characterized by its relentless progression as

a neurodegenerative disorder. The global rise in AD cases is

directly linked to the aging population, with a rising number

of people surviving above the age of 65 (the key age group

prone to AD) (Jaul and Barron, 2017). The growing prevalence

of AD in an aging population underscores the pressing need

for a comprehensive understanding of the condition and

the development of innovative diagnostic techniques (Saleem

et al., 2022; Alqahtani et al., 2023). The defining characteristic

of AD is the gradual deterioration of cognitive abilities,

which ultimately compromises the quality of life for those

affected. This disorder not only has a detrimental effect on

memory but also disrupts various cognitive, behavioral, and

daily functioning (Khan et al., 2023). The implications of

this condition extend beyond those affected, impacting their

families and caregivers and imposing a burden on healthcare

systems globally.

The traditional diagnostic methods, however valuable, often

fail to deliver timely and precise diagnoses. AD detection needs

a more refined and advanced technique due to its complicated

nature. Such an approach should not only involve identifying

symptoms but also discerning underlying pathological changes in

the brain. The current diagnostic framework for AD encompasses

a comprehensive approach that combines clinical assessments,

neuropsychological tests, neuroimaging methods, and biomarker

analysis (Martí-Juan et al., 2020; Khan and Zubair, 2022a,b).

Although these methodologies have provided valuable insights,

there are still persistent problems, such as the need for early

detection and the development of more accurate and reliable

diagnostic tools. Thus, it is within this context that the role of

protein biomarkers becomes crucial. Protein biomarkers, including

Amyloid-Beta (Aβ), tau, and ptau [AT(N)] have emerged as a

potential indicator in identifying the complex molecular and

cellular alterations linked with AD (Martí-Juan et al., 2020;
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Khan et al., 2023). These biomarkers aid in the early detection

of AD pathology, facilitating diagnosis at the MCI stage when

interventions may be most effective. The incorporation of these

indicators into diagnostic frameworks is consistent with the

continued research of new strategies to address the challenges

encountered by AD. However, diagnosis at preclinical stages,

characterized by the absence of clinical symptoms, is not

recommended in clinical practice and is primarily reserved for

research purposes.

Machine learning (ML), a subfield of artificial intelligence, has

emerged as a transformative technology in the healthcare industry,

with the potential to change how neurodegenerative diseases are

diagnosed and managed (Alowais et al., 2023). ML algorithms,

equipped with the capacity to analyze vast datasets, recognize

patterns, and derive meaningful insights, offer a paradigm shift

in identifying subtle changes in neurological parameters that

precede overt symptoms (Bhatia et al., 2022; Javaid et al., 2022).

By assimilating information from multiple sources, for instance,

neuroimaging, clinical data, and genetic profiling, ML algorithms

contribute to the development of predictive models that aid in early

detection and personalized treatment strategies (Jiang et al., 2017;

Ahmed et al., 2020; Hossain and Assiri, 2020; Khan and Zubair,

2022a,b; Arafah et al., 2023; Assiri and Hossain, 2023).

In the present study, the optimization of predictive models

for the diagnosis of AD pathologies was carried out using a set

of baseline features, and the model performance was improved

by incorporating additional variables associated with patient drugs

and protein biomarkers into the model. Early AD was diagnosed by

considering two key criteria: firstly, whether a patient was taking

specific medications, and secondly, the presence of a significant

protein serving as a predictor of Aβ, tau, and ptau levels among

participants. In particular, we examined the relationship between

AD diagnosis and the use of various medications (calcium and

vitamin D supplements, blood-thinning medications, cholesterol-

lowering drugs, and cognitive drugs). We also assessed the

significance of three cerebrospinal fluid (CSF) biomarkers, tau,

ptau, and Aβ in the diagnosis of AD. The relative importance of

these biomarkers in diagnosing AD is still a topic of discussion in

the academic community (Brookmeyer et al., 2007; Gauthier et al.,

2021).

The adoption of a hybrid-clinical model, incorporating

the simultaneous operation of multiple ML models in

parallel, emerges as a viable strategy for enhancing predictive

accuracy. Given the heterogeneous nature of the dataset under

consideration, employing multiple ML models in parallel

allows for a comprehensive classification approach. Subsequent

to the individual classification outputs generated by each

classifier, a majority voting mechanism is employed to aggregate

predictions. This collective decision-making process, leveraging the

consensus among classifiers, serves to enhance overall predictive

accuracy. Notably, the incorporation of parallelization principles

within our model framework not only contributes to improved

performance but also facilitates efficiency gains by optimizing

computational resources.

The proposed model is used to simulate the MRI-based data,

with five diagnostic groups of individuals (cognitively normal,

significant subjective memory concern, early mildly cognitively

impaired, late mildly cognitively impaired, and AD), with a

further refinement which includes preclinical characteristics of

the disorder. It is noteworthy that we aimed to construct a

pipeline design employing ML that incorporates comprehensive

methodologies to detect Alzheimer’s over a wide- ranging input

values and variables in the current study. The proposed design

builds a meta-model based on four distinct sets of criteria,

which include diagnosing from baseline features, baseline and

medication features, baseline and protein features, and baseline,

medication, and protein features. The meta-model incorporated a

4-step data preprocessing strategy, followed by feature wrapping

using the step-forward technique. Furthermore, twelve efficient

ML algorithms served as base classifiers. During the construction

of the hybrid model, both stacking and voting techniques

were employed. Preceding this, cross-validation with 5 and 10

folds was implemented alongside hyperparameter optimization.

Subsequently, performance evaluation and comparison were

conducted based on various metrics.

Thus, this research seeks to contribute to the broader effort

of improving diagnostic approaches for Alzheimer’s. This study

aims to develop a robust multi-composite machine learning

model that improves diagnostic accuracy by studying the intricate

relationship between protein biomarkers, drugs, and AD. The

model that we have developed offers a tool for healthcare

practitioners to advance Alzheimer’s diagnosis while also laying

the groundwork for further investigation into AD and other

neurodegenerative conditions.

2 Methods

2.1 Proposed design

In this section, we present the proposed meta-model,

followed by an outline of the key steps involved in our

method. The purpose of creating a pipeline environment is to

streamline the entire process and ensure that the procedure

is successful, i.e., to facilitate internal verification and produce

outcomes that are reproducible externally. A schematic flow

of our end-to-end approach is illustrated in Figures 1, 2. In

the subsequent sections, a detailed description of the proposed

approach and the various steps undertaken in this study

are presented.

Every machine learning model possesses unique characteristics

that enable it to achieve success with specific types of data. As this

task involves various kinds and groups of data, we suggest utilizing

multiple machine learning models in parallel to classify the data.

Once we obtain the output of each classifier, which is a specific

class, we aggregate the majority vote of the classifiers to improve

overall accuracy. Our model employs the principle of parallelism to

increase system accuracy and expedite processing time.

2.2 Study design, participants and dataset
collection

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a

comprehensive repository that was established in 2004 and is
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FIGURE 1

Hybrid-clinical model architecture.

headed by Michael W. Weiner as the principal investigator.1 This

repository contains data on clinical, biochemical, genetic, and

imaging biomarkers for detecting AD and MCI at an early stage,

monitoring their progression, and tracking their development over

time through a series of longitudinal, multicenter studies.

The baseline statistical model that we designed was based on

the ADNIMERGE dataset from ADNI, which contained selected

factors relevant to individuals’ clinical, genetic, neuropsychological,

and imaging results. The ADNIMERGE dataset consists of four

distinct studies, namely ADNI-1, ADNI-2, ADNI-3, and ADNI-

GO, which were collected at varying stages of the research project

and represent different time periods. Each dataset includes new

patients who were enrolled during the study period, as well

as previous patients who were continuously monitored. The

ADNIMERGE dataset includes 2,175 individuals, ranging in age

from 54 to 92 years, and contains 14,036 input values for 113

features. These values were collected over a period of 8 years

(2004–2021), with the initial measurement taken when the patient

first arrived, followed by a 6-month follow-up visit every year

1 ADNI | About. Available at: http://adni.loni.usc.edu/about/.

for 8 years. We selected only patients who participated in the

ADNI-1 phase of the initiative, which comprised 818 individuals

and a total of 5,013 input values across 113 variables. These

participants were characterized by demographic information,

neuropsychological, genetic, MRI, Diffusion-tensor imaging (DTI),

electroencephalography, and positron emission tomography (PET)

biomarkers. This was done in order to maintain uniformity across

studies and data handling, as well as to ensure that we could

successfully select only a single observation for each subject.

This study included and integrated three varied datasets i.e.,

baseline data, drug data and protein biomarker data. Separate data

files containing drug and protein biomarker data were stored on

the ADNI repository. They were examined to extract the pertinent

ones and were added to the baseline data.

2.2.1 Baseline dataset
The baseline dataset comprised 818 participants from the

ADNI-1 dataset. given our objective of using predictors that

have been consistently evaluated and effectively integrated into

clinical settings, while also being non-intrusive to patients, we have

chosen to exclusively utilize variables from the ADNI-1 baseline
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FIGURE 2

Workflow design for data cleansing framework.

dataset. these variables pertain to diagnostic subtypes, demographic

details, and scores from clinical and neuropsychological tests. only

diagnoses that were confirmed from screening up until the baseline

visit were considered, whereas any patient data withmore than 20%

missing information were eliminated.

Based on the diagnosis at the follow-up visit, the patients

who were diagnosed at baseline were classified into 5 distinct

categories: Cognitively Normal, Early Mild Cognitive Impairment,

Late Mild Cognitive Impairment, Significant Memory Complaints,

and Alzheimer’s Disease, abbreviated as CN, EMCI, LMCI, SMC,

and AD. The diagnostic classes EMCI and LMCI were unified

into a single diagnostic class MCI. An additional advantage of

doing so was that it made it easier to extend our model in the

future for analyses that might contain additional ADNI data.

Because SMC patients met the criteria for being cognitively

normal, the CN and SMC classes were combined into a single

category. The diagnosis features, which served as a response

variable, were thus divided into 3 categories: AD, MCI, and CN.

Among the 818 patients involved in the study, 193 individuals

were identified with AD, 396 with MCI, and 229 with CN. The

demographic information of the study participants, categorized

by their baseline diagnosis, is presented in Table 1. Age, years of

education, gender, marital status, ADAS11, ADAS13, ADASQ4,

CDRSB, DIGITSCOR, FAQ, LDETOTAL, MMSE, mPACCdigit,

mPACCtrailsB, TRABSCOR, RAVLT-I, RAVLT-L, RAVLT-F, and

RAVLT-PF, are the final variables considered in the present study.

The statistics and descriptions of these variables are provided in

Table 2.

TABLE 1 Subject demographics.

Attribute Total subjects: 818
Male: 476 (58.20%) | Female:

342 (41.80%)

AD MCI CN

Gender (M|F) 102 (52.84%) |

91 (47.15%)

255 (64.39%) |

141 (35.61%)

119 (51.96%) |

110 (48.03%)

Age

Range (Mean | SD) 55.1-90.9

(75.28 | 7.45)

54.4-89.3

(74.43 | 7.40)

59.9-89.6

(75.84 | 5.02)

Education (Years)

Range

4 - 20 4 - 20 6 - 20

Marital Status

Married |

Never Married |

Divorced |

Widowed |

Unknowns

157 | 7 | 9 | 20 |

0

317 | 6 | 25 | 48

| 0

156 | 15 | 17 |

40 | 1

Ethnicity

Hispanic/Latin |

Non-Hispanic/Latin |

Unknowns

4 | 187 | 2 13 | 380 | 3 2 | 226 | 1

Race

White | Black |

Asian | Indian/

Alaskan | More

than 1 type

181 | 8 | 2 | 0 | 2 370 | 15 | 9 | 1 |

1

210 | 16 | 3 | 0 |

0
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TABLE 2 Variable description and related statistics.

Variables AD
Mean (SD)

MCI
Mean (SD)

CN
Mean (SD)

% Missing at
baseline

ADAS

(Alzheimer’s Disease Assessment

Scale)

A comprehensive assessment to

identify cognitive and non-cognitive

signs of Alzheimer’s.

ADAS11 (Alzheimer’s Disease Assessment Scale

- 11 items)

This evaluation consists of 11 questions. The

score range for these questions is between 0

and 70. A score of 0 represents no impairment,

whereas a score of 70 indicates

considerable impairment.

18.60 (6.28) 11.4 (4.42) 6.20 (6.20) 0.12

ADAS13

(Alzheimer’s Disease Assessment Scale -

13 items)

This test consists of 13 questions, and the score

ranges from 0 to 85. A score of 0 signifies no

impairment, whereas a score of 85 signifies

significant impairment.

28.87 (7.62) 18.62 (6.27) 9.50 (4.19) 0.97

ADAS4

This is task 4 in ADAS11. It is the cognitive

subscale for word recognition.

8.56 (1.56) 6.18 (2.26) 2.85 (1.72) 0.0

CDR-SB

(Clinical Dementia Rating–Sum of

Boxes)

It assesses the progression of dementia,

particularly in people with mild to moderate

cognitive decline. A semi-structured interview

is conducted with the patient and other

interviewees, such as family members, to obtain

the rating. The range of values spans 0 to 18.

4.29 (1.64) 1.60 (0.88) 0.03 (0.12) 0.0

DIGITSCOR

(Digit Span Test Score)

This test is performed to determine the storage

capacity of a number. Participants are given a

number sequence and instructed to repeat it

back to the assessor in either forward or reverse

order.

26.93 (12.81) 36.85 (11.17) 45.75 (10.20) 0.61

FAQ

(Functional Assessment

Questionnaire)

It evaluates a patient’s capacity to

independently perform routine tasks. The scale

ranges from zero to thirty. A score of 0 signifies

normal, whereas a score of 30 shows that the

individual is excessively dependent.

12.99 (6.84) 3.82 (4.46) 0.14 (0.60) 0.36

LDETOTAL

(Delayed Total Recall)

It is a neuropsychological test that assesses an

individual’s capacity to recall information after

a certain period of time.

1.27 (1.90) 3.81 (2.27) 12.97 (3.57) 0.0

MMSE

(Mini-Mental State Examination)

It is a questionnaire-based evaluation designed

to detect cognitive impairment. It has a range

from 0 to 30. Normal scores range from 25 to

30; mild scores range from 21 to 24, moderate

scores from 10 to 20, and severe scores from 0

to 10.

23.34 (2.06) 27.03 (1.78) 29.11 (0.98) 0.0

mPACC

(Modified Preclinical Alzheimer

Cognitive Composite)

Cognitive abilities, timed executive

function, and episodic memory are

evaluated by these tests.

mPACC-digit (Modified Preclinical Alzheimer

Cognitive Composite with Digit)

This mPACC test utilizes digit substitution.

−13.98 (3.01) −7.47 (3.29) −0.12 (2.47) 0.0

mPACC-trailsB

(Modified Preclinical Alzheimer Cognitive

Composite with Trails B)

This mPACC test employs Trails B substitution.

−14.24 (3.09) −7.60 (3.39) −0.33 (2.44) 0.0

RAVLT

(Rey Auditory Verbal Learning Test)

RAVLT is a neuropsychological test

that is commonly used to assess

auditory-verbal abilities such as

attention, memory, and learning

ability. The RAVLT is a five-trial

process (Trials 1-5) that consists of

presenting a list of fifteen words.

Following 30 minutes of interpolated

testing, the participant is asked to

recall the terms from the first set. This

is known as delayed recall. These

scores are then used to calculate

various summary scores.

RAVLT-L (Rey Auditory Verbal Learning Test

– Learning)

It is derived by subtracting the Trial 1 and Trial

5 scores.

1.81 (1.79) 3.30 (2.35) 5.85 (2.28) 0.48

RAVLT-I

(Rey Auditory Verbal Learning Test

– Immediate)

It is calculated by adding the results from the

first five trials (Trials 1–5).

23.16 (7.70) 30.76 (9.04) 43.33 (9.09) 0.48

RAVLT-F

(Rey Auditory Verbal Learning Test

– Forgetting)

It is derived by subtracting the Delayed Recall

score from the Trial 5 score.

4.54 (1.91) 4.67 (2.26) 3.58 (2.73) 0.48

(Continued)
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TABLE 2 (Continued)

Variables AD
Mean (SD)

MCI
Mean (SD)

CN
Mean (SD)

% Missing at
baseline

RAVLT-PF

(Rey Auditory Verbal Learning Test -

Percent Forgetting)

It is derived by dividing the RAVLT-F score by

the Trial 5 score.

88.70 (21.92) 67.86 (31.41) 34.18 (27.64) 0.97

TRABSCOR

(Trail Making Test Part B Time)

This diagnostic assessment evaluates cognitive

functioning, specifically the capacity for

reasoning, information retention, and thought.

197.95 (87.09) 130.74 (73.69) 89.21 (44.26) 1.71

2.2.2 Drug dataset
We created five new variables from components inside the

drug dataset that fall into one of our five analytic categories: blood

thinners, calcium doses, cholesterol-lowering medicines, cognitive

drugs, and vitamin d medicines. Table 3 contains a comprehensive

list of individual drug and supplement names. it is critical to note

that the use of any of these drugs did not preclude a patient from

participating in the ADNI cohort (see footnote1).

2.2.3 Protein biomarker dataset
Using the ADNI dataset, we generated three new variables

from components within the CSF biomarker data to determine the

amounts of Aβ, tau, and ptau.

Therefore, altogether three unique datasets (baseline data, drug

data, and protein data) were gathered, extracted and handled, and

then were passed to the next step i.e., data cleansing framework for

data pre-processing (Figure 2).

2.3 Data cleansing framework

A flowchart depicting the process of complete data cleansing is

portrayed in Figure 2. Initially, the controllers were configured with

specific data values, including C = 1 for baseline data, C = 2 for

baseline and drug data, C = 3 for baseline and protein data, and C

= 4 for baseline, drug, and protein data, respectively. Table 4 shows

a complete description of the procedure for implementing the four

sets of controllers. After the execution of the data cleansing process,

24 individual clean files were generated.

3-step data pre-processing strategy:

The dataset acquired was processed with a three-step

ITR approach i.e., Imputation (I), Transformation (T), and

Reduction (R).

2.3.1 Imputation
In this study, the dataset encountered issues of noise,

incompleteness, and inconsistency, which typically hinder the

mining process. In general, inaccurate or dirty data often pose

challenges for mining techniques, which can obstruct the extraction

of valuable insights. The proportion of missing values for the

extracted variables (at baseline) is depicted in Table 2. To overcome

the challenge of missing data, there exists various techniques.

Specifically in this study, three different approaches were employed

to address this issue. The simplest method involved removing all

instances of missing data, which was implemented as the first

strategy, referred to as “without imputation.”

There are various methods for handling missing data, including

weighting, case-based, and imputation-based techniques (Tartaglia

et al., 2011). The latter technique was used in the present study.

Imputation involves predicting missing data values and then filling

them with suitable approximations, such as the mean, median

or mode. Subsequently, standard complete-data techniques are

then applied to the filled-in data to decrease the biases due to

missing values and improve the efficiency of the model.2 The term

“mean imputation” refers to replacing missing values with suitable

approximations, such as the mean, and subsequently applying

standard complete-data procedures to the filled-in data (Khan and

Zubair, 2019). This was the second approach employed in the study.

The “model imputation” method, on the other hand, involves

replacing missing values with appropriate approximations, such as

a linear regression model, and then using a standard complete-data

process to the filled-in data (Khan and Zubair, 2019). This was the

third approach used in the study.

2.3.2 Transformation
In this study, data transformation involved two main

techniques: normalization and smoothing. These techniques aim

to improve the quality and interpretability of the data (Pires et al.,

2020; Maharana et al., 2022). In this study, normalization was

applied to the ADNI dataset to standardize the scale of numerical

values, which varied in range for different variables. The values

were adjusted and transformed in a way that they fall within a

specified range, often between 0 and 1 (Pires et al., 2020; Maharana

et al., 2022). This adjustment ensured that each variable had equal

importance in the analysis and prevented any one variable from

dominating due to its scale. Smoothing was then performed to

remove any noise or irregularities in the ADNI data, making it

easier to identify underlying patterns. This was particularly useful

for our research, as the data contained random variations and

anomalies that could have masked meaningful trends and patterns.

2 Alzheimer’s Dementia Causes, Risk Factors | ResearchCenter.Alzheimer’s

Association. Available at: https://www.alz.org/alzheimers-dementia/what-

is-alzheimers/causes-and-risk-factors.
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TABLE 3 Drug list.

Supplement type Supplement name

Blood thinners Dabigatran, Naprapac, A.P.C., A.S.A., Actron, Advil, Aggrenox, Aleve, Alka-Seltzer, Anacin, Anaprox, Anexsia, Anodynos,

Ansaid, Apixaban, Arthritis, Artrotec, Ascriptin, Aspergum, Aspirin, Axotal, Bac, Bayer, Bexophene, Bextra, Biloba, Brilinta,

Buffaprin, Buffered, Bufferin, Buffinol, Cama, Cataflam, Celebrex, Cheracol, Clinoril, Clopidogrel, Combunox, Compound,

Congespirin, Coumadin, Damason Darvon, Dasin, Daypro, Dhc Diagesic, Diclofenac, Dipyridamole, Disalcid, Dolabid,

Dolprin, Doxaphene, Dristan, Easprin, Ecotrin, Eliquis, Emagrin, Empirin, Equagesic, Equazine, Etexilate, Etodolac, Excedrin,

Feldene, Fenoprofen, Fiogesic, Fiorgen, Fiorinal, Forte, Gemnisyn, Ginko, Heparin Ibuprofen, Indocin, Indomethacin, Joseph,

Ketoprofen, Ketorolac, Liquprin, Lodine, Lortab, Magnaprin, Marnal, Measurin, Meclofenamate, Mefenamic, Meloxicam,

Meprobamate, Midol, Mobic Momentum, Motrin, Nabumetone, Naprapac, Naprelan, Naprosyn, Naproxen, Nasal Norgesic,

Nuprin, Orudis, Oruvail, Oxaprozin, P, Pabalate, Percodan, Persantine, Persistin, Pf Piroxicam, Plavix, Pletal, Plus, Ponstel,

Pradaxa Presalin, Prevacid Profen, Relafen, Rivaroxaban, Robaxisal, Roxiprin, Rufen, Saleto, Salocol, Salsalate, Soma Spray,

Sprix, St., Sulindac, Supac, Synalgos, Talwin, Ticagrelor Ticlid, Ticlopidine Tolectin, Tolmetin, Toradol Trental, Trigesic,

Trilisate, Ultraprin, Unipro, Vanguish, Vicoprofen, Vimovo, Voltaren, Warfarin, Xarelto, Zipsor, Zorpin

Calcium Calcium (No specific drug name was there in the dataset; only the “calcium” term was used.)

Cholesterol-lowering Altoprev, Atorvastatin, Crestor, Fluvastatin, Lescol, Lescol Xl, Lipitor, Livalo, Lovastatin, Mevacor, Pitavastatin, Pravachol,

Pravastatin, Rosuvastatin, Simvastatin, Zocor

Cognitive Aricept, Donepezil, Exilon, Galantamine, Memantine, Namenda, Namzaric Razadyne, Rivastigmine

Vitamin D Vitamin D (No specific drug name was there in the dataset; only the “vitamin D” term was used.)

TABLE 4 Execution steps for data cleansing framework.

When C = 1,

• load only the baseline data.

• pre-process the data using a 3-step

ITR strategy (described below)

• split into train test data; this will

create six different clean files (train

and test files for without imputation

technique, train and test files for

mean imputation, and train and test

files for model imputation technique)

When C = 2,

• load only the drug data.

• merge with the original baseline

data

• pre-process the data using a 3-

step ITR strategy.

• split into train test data; this will

create six different clean files

(train and test files for without

imputation technique, train and

test files for mean imputation,

and train and test files for model

imputation technique)

When C = 3,

• load only the protein biomarker data.

• merge with the original baseline data.

• pre-process the data using a 3-step

ITR strategy.

• split into train test data; this will

create six different clean files (train

and test files for without imputation

technique, train and test files for

mean imputation, and train and test

files for model imputation technique)

When C = 4,

• load drug and protein biomarker

data.

• merge with the original baseline

data.

• pre-process the data using a 3-

step ITR strategy.

• split into train test data; this will

create six different clean files

(train and test files for without

imputation technique, train and

test files for mean imputation,

and train and test files for model

imputation technique)

2.3.3 Reduction
Data reduction methodologies play a significant role in the

analysis of reduced datasets while maintaining the integrity of

the original data (Khan and Zubair, 2022a). This approach

is often used to enhance efficiency, streamline analysis, and

effectively manage large datasets (Maharana et al., 2022). There are

several techniques for implementing data reduction i.e., dimension

reduction, sampling, aggregation, and binning. Each method is

applied based on the type of dataset and variables present. In this

study, we employed a dimension-reduction strategy. This method

facilitated in identifying and eliminating variables and dimensions

that were insignificant, poorly correlated, or redundant.

2.4 Load clean data

The subsequent step involved loading the clean data (as

depicted in Figure 1). Initially, the clean data files generated when

the controller was set to 1 were loaded and the entire pipeline was

executed. Similarly, this process was repeated for the remaining

three controllers, 2, 3, and 4, resulting in the creation of twelve

different ML meta-models. Later, comparisons were performed to

determine which model performed optimally across a range of

applied methods.

2.5 Machine learning modeling

Machine learning techniques were utilized to develop a

classifier capable of identifying potential instances of AD and

MCI. A hybrid-clinical classification model was constructed,

incorporating variables selected during the feature selection

process. This model development process was repeated for each

of the 4 controllers separately. The clean data was passed to

the base ML classifiers. The model was trained on the training

set. The feature selection process was conducted to determine

the optimal set of features. The performance was assessed, and

it was made to run iteratively until the best feature set was

identified. Subsequently, we applied 5-fold repeated stratified cross-

validation and hyperparameter optimization techniques to obtain

an optimized set of algorithms. The optimized classifier, trained

on the complete training set, was then applied to the independent

test set following 10 iterations of 5-fold repeated stratified cross-

validation on the training set.

The entire modeling process is explained in the following

sections and can be seen in Figures 1, 3, 4 pictorially.

2.5.1 Base ML models
We used a varied set of ML algorithms and techniques

in our operations. A good implementation of the algorithms

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1391465
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Khan et al. 10.3389/fnins.2024.1391465

FIGURE 3

Five-step process: step forward feature selection.

FIGURE 4

Ten-fold repeated stratified cross-validation.

in question was known while selecting these tools for this

study. In this study, twelve efficient ML models were used,

namely, Multinomial Logistic Regression, K-Nearest Neighbors,

Linear Discriminant Analysis, Quadratic Discriminant Analysis,

Decision Tree, Random Forest, AdaBoost, Principal Component

Analysis with Logistic Regression, Support Vector Machine -

Radial Basis Function, Perceptron, MultiLayer Perceptron, and

Elastic Nets. Earlier, fifteen supervised learning classifiers were

executed to study the impact of the built model. However,

we selected twelve classifiers out of these fifteen classifiers.

Gaussian Process, LinearSVC and Stochastic Gradient Descent

are the three ML algorithms that could not fit on the ADNI

dataset efficiently and hence resulted in reduced performance.

These 12 models were chosen for their ability to produce

high performance during the model development step. These

models acted as the base ML models for the creation of a

hybrid meta-model.

The decision to use twelve ML classifiers out of fifteen can be

attributed to the thorough consideration of algorithm performance

and effectiveness in this study. The selection of these twelve

classifiers was based on the following factors:

• Diverse Set of Algorithms: The initial set of fifteen classifiers

likely encompassed a diverse range of ML algorithms,

allowing for comprehensive coverage of different approaches.

By including a variety of models, the study aimed to

explore the strengths and weaknesses of various algorithms,

ensuring a more robust understanding of the data and

problem domain.

• Performance Evaluation: Initially, we explored fifteen

supervised learning classifiers. The decision to narrow down

to twelve models suggests that an extensive evaluation was

conducted, and the performance of each algorithm was

thoroughly assessed. Only the top-performing models were

retained for further analysis.

• Elimination of Underperforming Models: The decision to

exclude certain models was based on their underperformance

and lack of contribution to achieving the study’s objectives,

emphasizing the importance of selecting the most

effective algorithms.

The description of each employed classifier is presented below:

A. Multinomial Logistic Regression (MLR): In binary logistic

regression, we estimate the probability of a single class, while

in MLR, we extend this concept to estimate probabilities for

multiple classes. This approach is particularly effective for

dependent variables with three/more unordered categories.

MLR applies a logistic function to each category to calculate

the probability of belonging to that specific group, with k

categories are represented by k-1 logistic functions (Khan

et al., 2024). To interpret the results in terms of relative

likelihoods, the probabilities are then normalized to ensure

that they sum to 1 across all categories (Aguilera et al.,

2006; Yang, 2019). MLR calculates a set of coefficients for

each category, representing the correlation between predictor

variables and log-odds of belonging to that group (Yang,

2019; Reddy et al., 2024). Each category has its intercept,
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which represents the log-odds of all predictor variables being

zero. The MLR is usually trained using maximum likelihood

estimation, where the model parameters are calculated to

maximize the likelihood of observing the specific set of

outcomes (Hedeker, 2003).

B. K-Nearest Neighbors (KNN): The KNN algorithm is

a supervised ML technique that is primarily used for

classification. The main concept of KNN is to generate

predictions by examining the majority class amongst the “K”

nearest data points. In the context of classification, when

presented with a new data point, KNN examines the “K” data

points in the training set that are in closest proximity to it

(Li, 2024). The class with the highest prevalence among these

nearby data points is then allocated to the new data point.

Typically, Euclidean distance (a distance metric) is employed

by KNN for measuring the similarity or proximity of data

points within a multi-dimensional feature space (Zhang et al.,

2022; Li, 2024). The parameter “K” indicates the total number

of neighbors to take into account. The choice of an appropriate

“K” is essential as it can significantly impact the quality of

predictions. A small value of K can result in noisy predictions,

whereas a larger value of K can help to identify underlying

patterns more accurately (Li, 2024). The KNN classifier

identifies a set of neighbors and then counts the number of

instances of each class amongst these neighbors. The class with

the most occurrences is then assigned to the new data point.

This is an instance-based learning algorithm that memorizes

the training instances rather than explicitly learning a model.

KNN is a non-parametric method which means it makes no

assumptions regarding the underlying distribution of the data

(Wang et al., 2022).

C. Linear Discriminant Analysis (LDA): It is a supervised

algorithm designed to discover the optimal linear

combinations of features that efficiently separate different

classes within a dataset (Tharwat et al., 2017). By maximizing

the separation between these classes, LDA effectively results

in the formation of different groups of data points (Seng

and Ang, 2017). The algorithm intrinsically performs

dimensionality reduction, which is an inherent feature of the

algorithm. This involves projecting the data onto a lower-

dimensional space while preserving the most informative

features for classification (Seng and Ang, 2017; Graf et al.,

2024). LDA makes the assumption that the covariance matrix

is consistent across all classes and that the features within

each class follow a normal distribution (Seng and Ang,

2017; Tharwat et al., 2017). To effectively distinguish the

distribution of data points within and between classes, LDA

computes mean vectors and scatter matrices. Mean vectors

represent the centroids of data points in each class, whereas

scatter matrices capture the spread or variability within each

class. LDA then performs eigenvalue decomposition on the

generalized eigenvalue problem that includes within-class

and between-class scatter matrices (Tharwat et al., 2017).

The directions of maximum discrimination are revealed by

the eigenvectors that correspond to the largest eigenvalues.

The data points are then projected onto these discriminant

directions, resulting in a new space where the classes are

clearly separated (Tharwat et al., 2017).

D. Quadratic Discriminant Analysis (QDA): It is a supervised

classification algorithm that aims to determine the optimal

boundaries for separating different classes in the feature

space (Jiang et al., 2018). In contrast to LDA, QDA provides

greater flexibility in capturing variability within each class by

allowing distinct covariance matrices for each class (Witten

et al., 2005; Tharwat et al., 2017). QDA, analogous to LDA,

aims to maximize the degree of segregation among distinct

classes. This is achieved through the identification of quadratic

decision boundaries, which adequately represent the complex

relationships among the features (Witten et al., 2005). Because

LDA presumes that all classes utilize the same covariance

matrix, QDA allows each class to possess a unique covariance

matrix. Thus, QDA is more adaptable when handling classes

that may exhibit diverse variability patterns (Siqueira et al.,

2017). Similar to LDA, QDA calculates the mean vector for

each class that serves as the centroid of the data points in

that class. In addition, QDA determines the scatter matrices

for each class, which reflect the dispersion or variability

present within each class (Witten et al., 2005). Following

that, it sets up quadratic decision boundaries that effectively

separate classes using data from the class means and scatter

matrices. The function of the decision boundaries is to classify

the newly acquired data points. Compared to LDA, QDA is

better at finding non-linear correlations and complex patterns

within each class because it uses different covariance matrices

(Siqueira et al., 2017).

E. Decision Tree (DT): A Decision Tree classifier is a tree-like

model that follows a hierarchical structure, where input data

points are classified based on a series of decisions made at

each node (Khan and Zubair, 2022a,b). Leaf nodes represent

the predicted class, whereas internal nodes reflect decisions

based on particular features. The tree structure is composed of

nodes that learn the most important features for classification.

In DT, the features that provide the best separation of classes

are positioned closer to the root of the tree (Blockeel et al.,

2023; Costa and Pedreira, 2023). The root node is the top

node in the hierarchy. It represents the complete dataset

and is divided according to the feature that best separates

classes. The process of selecting features and splitting the

dataset recursively continues until a stopping criterion is met

(Blockeel et al., 2023; Costa and Pedreira, 2023). When a new

data point traverses the tree, it follows the decision path based

on the conditions of the features until it gets to a leaf node. The

predicted class for the input data point is then determined by

the class associated with that leaf node.

F. Random Forest (RF): Random Forest is an ensemble learning

ML model that aggregates predictions from multiple ML

models to construct a more robust and precise model (Belle

and Papantonis, 2021). It employs decision trees as its base

model and uses a bagging technique, which trains several

trees on various subsets of the training data (Campagner

et al., 2023). For classification, the final prediction of the RF

algorithm is determined through a voting mechanism. Each

tree votes for a class and the class with the most votes is

assigned to the input data point. RF produces multiple subsets

of training data using random sampling with replacement

(bootstrap sampling). Each subset trains a distinct DT. For
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each DT, a feature subset is randomly selected at each

split. This approach guarantees that the generated trees are

diverse, thereby minimizing the likelihood of overfitting to

specific features (Wang et al., 2021; Campagner et al., 2023).

Each DT is trained independently, allowing the ensemble to

capture various aspects of the data and lessen overfitting risk

(Campagner et al., 2023). The final prediction is determined

through a voting method in which the individual tree

predictions are aggregated. The class with the maximum votes

is the final predicted class.

G. AdaBoost (AB): AdaBoost, an acronym for Adaptive

Boosting, is an ensemble learning algorithm in which a

robust classifier is constructed by combining several weak

learners. The primary aim of the AB algorithm is to train

weak classifiers iteratively on different subsets of the data and

allocate high weights to instances that have been incorrectly

classified during each iteration (Ying et al., 2013). The final

model integrates the predictions of all weak learners with

varying weights, giving preference to those that perform

adequately on training data. AB classifier initializes each data

point in the training set with equal weights (Ding et al., 2022).

In subsequent iterations, the weights are modified to focus on

instances that are difficult to correctly classify. Weak learners

are trained sequentially; and at each iteration, a new weak

classifier is fitted to the data (Ying et al., 2013; Ding et al.,

2022). Instances that are misclassified are assigned greater

weights, resulting in the final model being a weighted sum

of all weak classifiers. The weights are calculated based on

each classifier’s accuracy on the training data, with models that

demonstrate higher performance contributing proportionally

more to the final prediction (Haixiang et al., 2016). The final

model is a combination of all weak classifiers, with the weights

chosen based on their accuracy on the training data.

H. Principal Component Analysis with Logistic Regression

(PC-LR): PC-LR is a method that combines the

Principal Component Analysis (PCA) method (meant

for dimensionality reduction) with the logistic regression

(LR) algorithm (meant for classification tasks). PCA creates

a new set of uncorrelated features, known as principal

components, which capture the maximum variance in the

data, transforming the original features (Khan and Zubair,

2020). By employing this method, the dimension of the

feature space is decreased. Logistic Regression is a widely-

used classifier that effectively handles linearly separable data

and calculates the likelihood of an instance belonging to a

specific class (Yang, 2019). By combining the dimensionality

reduction capabilities of PCA with the classification power

of Logistic Regression, the PC-LR method aims to retain

the most informative components while reducing overall

dimensionality (Aguilera et al., 2006; Yang, 2019). The input

data is first transformed into a lower-dimensional space

using PCA, and then logistic regression is applied to make

predictions based on the reduced feature set. The LR model

is trained to determine the probability that a given instance

belongs to a particular class. When generating predictions for

new data, the class with the highest probability is assigned as

the final prediction.

I. Support Vector Machine - Radial Basis Function (SVM-RBF):

SVM is a supervised learning technique that seeks to identify

a hyperplane in N-dimensional space (N being the number

of features) that best distinguishes between data points from

various classes (Siddiqui et al., 2023). The objective is to

optimize the margin, defined as the distance between the

hyperplane and the closest data points from each class. RBF

is a widely utilized kernel function in SVM. Transforming the

input space to a higher-dimensional space enables the RBF

kernel to effectively capture non-linear correlations in the data

(Ding et al., 2021). The transformed space enables SVM to

identify a non-linear decision boundary within the original

feature space. SVM-RBF searches for the hyperplane in the

transformed space that effectively segregates the data points

into their respective classes (Ding et al., 2021). The hyperplane

is used to maximize the margin, thereby establishing a robust

decision boundary. SVM allows for the existence of some

misclassified data points to handle cases where a perfect

separation is not possible (Siddiqui et al., 2023). The key data

points that influence the decision boundary are called support

vectors. The RBF kernel has a parameter called the gamma (γ),

which determines the shape of the decision boundary (Valero-

Carreras et al., 2021). Tuning the gamma parameter is crucial,

as a small gamma may lead to underfitting, while a large

gamma may lead to overfitting (Sacchet et al., 2015). After

establishing the decision boundary, SVM-RBF is capable of

classifying newly acquired data points by determining which

side of the hyperplane they lie on.

J. Perceptron (PC): The Perceptron classifier, originally

developed for binary classification, can be tweaked to

perform multi-class classification using a strategy called

the One-vs-All and One-vs-Rest (Raju et al., 2021). The

OvA strategy involves training multiple Perceptrons, each

dedicated to distinguishing one specific class from all the

others (Kleyko et al., 2023). For K classes, K Perceptrons

are trained, where each Perceptron focusses in recognizing

one class and considers the instances of that class as the

positive class and all other instances as the negative class.

For a multi-class problem with K classes, K Perceptrons are

trained. Each Perceptron is allocated to one class, and it aims

to correctly classify instances belonging to that class against

instances from all other classes (Chaudhuri and Bhattacharya,

2000; Raju et al., 2021). Throughout the training phase, the

weights of each Perceptron are tweaked based on the instances

belonging to its allocated class. The aim is to locate weights

that reduce the classification error for that specific class.

During the prediction phase, each Perceptron independently

predicts for a given input instance. The class associated with

the Perceptron that outputs the highest confidence (largest net

input) is then assigned as the predicted class for that instance

(Chaudhuri and Bhattacharya, 2000; Kleyko et al., 2023). In

essence, the decision for multi-class classification is made

by employing a one-vs-rest strategy, where each Perceptron

is treated as a binary classifier for its assigned class vs. all

other classes.

K. MultiLayer Perceptron (ML-PC): This classifier is a type of

artificial neural network that is devised to handle challenging
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ML tasks, such as multi-class classification (Chaudhuri and

Bhattacharya, 2000). An ML-PC is comprised of multiple

interconnected layers, such as an input layer, one/more hidden

layers, and an output layer (Liu et al., 2023). Data flows

through the network in a feedforward manner, with each node

in a layer processing information from the previous layer and

passing it to the next layer. Each node’s weighted sum of

inputs is subjected to activation functions such as hyperbolic

tangent (tanh), sigmoid, and rectified linear unit (ReLU).

These functions add non-linearity, allowing the network to

understand intricate connections. The input layer represents

the features of the input data, with each node corresponding

to a feature and the values being the feature values (Chaudhuri

and Bhattacharya, 2000). Hidden layers process information

from the input layer, capturing complex, non-linear patterns

in the data. The output layer generates the final predictions

for each class in a multi-class setting, with each node’s

output representing the model’s confidence in predicting

that class. Backpropagation, a supervised learning technique,

operates to reduce errors by iteratively modifying weights.

The difference between the predicted and actual outputs

is determined by the loss function. In order to minimize

this difference, optimization algorithms like gradient descent

are implemented, which modify the weights (Chaudhuri

and Bhattacharya, 2000; Liu et al., 2023). The learning rate

determines the size of each weight update.

L. Elastic Nets (EN): Elastic Nets, a regularization technique,

were originally designed for linear models. In multi-class

classification setups, the linear model is extended to handle

multiple classes (Mol et al., 2009). Elastic Networks employ

a combination of L1 (Lasso) and L2 (Ridge) methods of

regularization. L1 regularization encourages sparsity in the

model, promoting feature selection, while L2 regularization

prevents large coefficients (Zhan et al., 2023). For multi-class

classification, Elastic Nets can be applied to extend linear

models to predict probabilities for multiple classes. Elastic

Nets can be used in conjunction with strategies like One-

vs-All (OvA) and One-vs-One (OvO) to handle multi-class

challenges (Chen et al., 2018). OvA trains a distinct model for

each class against the rest, whereas OvO trains models for each

pair of classes. The hyperparameters alpha and l1_ratio, which

control the balance between L1 and L2 regularization, must be

carefully chosen in Elastic Nets. In general, the output layer

utilizes a softmax activation function to transform raw model

outputs into class probabilities, with the certainty that the

sum of the predicted probabilities equals 1. During training,

Elastic Nets optimize themodel’s weights using algorithms like

gradient descent, to reduce the disparity between predicted

and actual class probabilities (Aqeel et al., 2023). The cross-

entropy loss function is frequently employed in multi-class

classification tasks.

2.5.2 Feature selection
Feature selection is a significant step while preparing

data for ML modeling. A subset of the most pertinent

features is chosen from the original set. The primary aim

is to enhance model performance, simplify the model, and

mitigate the risk of overfitting (Pudjihartono et al., 2022). A

model with fewer features is often more interpretable, making

it easier to understand the relationships between variables

(Barnes et al., 2023).

There are 3 types of feature selection strategies i.e., filter,

wrapper, and embedded. In this study, we employed the

wrapper method (Dokeroglu et al., 2022; Pudjihartono et al.,

2022; Kanyongo and Ezugwu, 2023). Wrapper methods involve

evaluating the performance of a ML model based on different

subsets of features. Unlike filter methods that assess feature

relevance independently of the model, wrapper methods use the

actual performance of the model as a criterion for selecting

features. This involves training the model multiple times,

which can be computationally expensive but may yield more

accurate results (Kanyongo and Ezugwu, 2023). Furthermore,

there are 3 types of wrapper methods viz. forward selection,

recursive feature elimination, and backward elimination. In this

study, we employed the step forward feature selection method.

It is a specific wrapper method that builds the feature set

incrementally. It starts with an empty set of features and

adds them one at a time, based on how they affect the

model’s performance. The process involves five steps, illustrated

in Figure 3.

2.5.3 Cross-validation and hyperparameter
optimization

The objective of this study was to construct such a model that

can exhibit optimal generalized performance rather than only for

the cases used during training. Consequently, cross-validation gives

an estimate of the overall performance for each hyperparameter

configuration (Khan and Zubair, 2022a). To achieve this, the train

data was divided into 5 folds. Instances from each fold were held-

out from the training process, while the remaining cases were

trained iteratively. Subsequently, the algorithm was then applied to

the held-out samples following their training.

In this study, ten iterations of a 5-fold repeated stratified CV

training and testing approach were implemented to maintain the

distribution of classes across each fold (Figure 4). The Scikit-Learn

library in Python, for instance, provides a RepeatedStratifiedKFold

class that was employed for implementing this type of cross-

validation. This was employed for evaluating and fine-tuning the

models since we were dealing with scenarios where data variability

and class imbalance challenges needed to be carefully managed.

An imbalanced classification problem can pose a significant

challenge when building a ML model, especially when the data

distribution is skewed toward the target variable (Kanyongo and

Ezugwu, 2023). In such cases, if not addressed properly, the model

may perform poorly, resulting in low accuracy. In the present

study, we aimed to resolve the imbalanced classification problem

by employing the Synthetic Minority Oversampling Technique

(SMOTE) method. SMOTE is a data augmentation technique,

designed to handle minority classes (Kohavi, 1995; Chawla et al.,

2022). As previously stated, there were 3 classes of the target

variable, including cognitively normal, MCI, and AD subjects. But

we discovered a significant disparity in the MCI and AD classes.
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As a result, the built ML model resulted in poor performance

and low accuracy. To address this issue, we utilized SMOTE

analysis to oversample the minority class, which balanced the

class distribution without adding any further information to the

ML model.

The hyperparameters were fine-tuned before assessing each

classifier. Hyperparameters are essential for structuring MLmodels

and are not learned from the data during training. Hyperparameter

optimization is the process of systematically searching for the

best combination of hyperparameter values to achieve optimal

performance from the model (Yang and Shami, 2020; Khan and

Zubair, 2022a). It is crucial to optimize these hyperparameters to

obtain the best possible results when applied to unseen instances.

ML algorithms often have one or more hyperparameters that

can be adjusted during the training process. By varying these

hyperparameters, the algorithm’s prediction performance can be

varied. In this study, each model was trained using specific

hyperparameter configurations to optimize the hyperparameters

for each employed ML algorithm.

2.6 Analyze results

The purpose of this step was to assess the performance of

the base models and determine whether they exhibited improved

performance. If not, the model was subjected to additional

training for an extended period of time, using a varied set of

optimization hyperparameters.

2.7 Evaluate test performance

This stage determined the performance of test splits on the test

data. If the performance was found to be poor, the test distribution

was reevaluated, and any discrepancies were rectified by creating

equitable splits. If the performance proved to be acceptable (with a

high level of accuracy), the subsequent step was carried out and a

meta-model was constructed.

2.8 Build meta-model

To construct a meta-model, we employed an ensemble learning

approach that involved selecting different outputs generated by

12 machine learning classifiers after modeling and optimization.

These classifiers were made to run in parallel and subjected

to a voting and stacking process. Majority voting and majority

stacking are ensemble learning approaches that integrate the

predictions of numerous independent models to improve overall

predictive performance (Raza, 2019; Dolo and Mnkandla, 2023).

Bothmethods involve aggregating the decisions of multiple models,

but they differ in their approaches. Majority voting encompasses

multiple models making independent predictions on a given input,

with the final prediction being determined by the majority vote or

consensus of these individual predictions (Zhao et al., 2023). On the

other hand, majority stacking is a more sophisticated method that

trains a meta-model, often referred to as a stacker or meta-learner,

to combine the predictions of multiple base models (Aboneh

et al., 2022; Dolo and Mnkandla, 2023). The process of averaging

predictions involves selecting the class with the most votes (the

statistical mode) or the class with the highest summed probability.

Stacking extends this method by enabling any machine learning

model to learn how to integrate predictions from contributing

members optimally.

After applying majority voting and majority stacking, we

evaluated their performances individually and selected the

approach that resulted in the best overall performance. The

selected model, whether it was based on majority voting or

majority stacking, effectively served as a meta-model in our

ensemble learning approach. This approach often results in

improved generalization and performance compared to relying on

a single model.

2.9 Generalized performance metrics:
evaluate and compare

Finally, performance evaluations were conducted and

compared to all applied approaches for each of the four controllers

established in this study. We employed accuracy, precision, recall,

and F1-score as classification performance metrics for both the

base model and meta-model. The meta-model was evaluated using

two metrics for classification error: Hamming loss and the Jaccard

index. Each parameter was determined in this study by employing

a 3 × 3 confusion matrix (Figure 5). In ML classification, the

confusion matrix is a widely used method that evaluates the

performance of a model through a comparison between its

predictions to the actual labels in a specific dataset. Table 5 presents

a detailed description of each of the metrics derived from the

confusion matrix.

2.10 Development environment and base
settings of classification algorithms

To ensure the replicability of our study, we documented

the development environment, including software and hardware

specifications, as well as the configuration settings of the

classification algorithms employed. The implementation of our

predictive models for the diagnosis of AD pathologies was

conducted using the Anaconda distribution of Python, which

provides a comprehensive environment for data science and ML

tasks. Anaconda includes a wide range of pre-installed libraries

and tools, making it well-suited for developing and deploying

ML models.

Jupyter Notebook, a web-based interactive computing

environment, was utilized for the implementation of the study.

Jupyter Notebooks offer a convenient interface for writing

code, executing experiments, visualizing results, and cohesively

presenting findings. The hardware utilized for model training and

evaluation consisted of a system with an Intel Core-6100U CPU

running at a base frequency of 2.30 GHz and 4 GB of RAM.

The classification algorithms utilized in our study were

configured with base settings to achieve optimal performance. The
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FIGURE 5

3 × 3 confusion matrix.

TABLE 5 Description of the measures used.

Metric Definition Formula

Accuracy - Accuracy is defined as the ratio of correctly predicted occurrences to total occurrences.

- It measures the overall correctness of the predictions of the model.

(TP+ TN)/(TP+ TN+

FP+ FN)

Precision - Precision is the proportion of correctly predicted positive occurrences to total predicted positives. TP/(TP+ FN)

Recall - It represents the proportion of accurately predicted positive outcomes to the total number of actual

positives.

TP/(TP+ FN)

F1-score - The F1-score is the harmonic mean of precision and recall.

- It is a single metric that balances precision and recall.

2 ∗ (Precision ∗ Recall)

Hamming loss - It calculates the proportion of incorrectly predicted labels.

- In multi-label classification, where each instance may belong to multiple categories, Hamming Loss

calculates the proportion of labels that are incorrectly predicted.

(FP+ FN)/(Total Classes
∗ Total Instances)

Jaccard index - The Jaccard Index quantifies the degree of similarity that exists between the predicted and actual sets

of labels.

- It measures the intersection over the union of the predicted and actual sets of labels, indicating how

closely the predicted labels match the true labels.

TP/(TP+ FP+ FN)

base settings of these algorithms were carefully selected and fine-

tuned to balance model complexity and predictive performance.

Hyperparameters were optimized using techniques like grid search

and random search. For MLR, the base settings included Cs

(regularization strength) set to 10, cv (cross-validation) set to 5,

and multi-class set to “multinomial.” For KNN, the base settings

included n_neighbors set to 5, weights set to “uniform,” and

algorithm set to “auto,” with optimization focused on the number

of neighbors.

LDA used the default settings provided by the “svd” (Singular

Value Decomposition) solver, while QDA utilized a regularization

parameter of 0.0 and did not require specific hyperparameter

optimization. Decision Trees were optimized for parameters

like max_depth (up to 20), cv set to 5, and n_jobs set to

2 respectively. Furthermore, for Random Forest, the settings

consisted of n_estimators set to 50, max_depth set to 20, cv set to

5, and n_jobs set to 4, with optimization performed for the number

of estimators and maximum depth. AdaBoost was optimized for

parameters like max_depth (up to 20) and learning_rate (0.05, 0.1,

0.5), with a base estimator as Decision Tree.

Utilizing Cs set to 10, cv set to 5, and multi_class set

to “ovr” as base settings for logistic regression, with default

settings used for PCA for hyperparameter optimization in the

PC-LR algorithm. SVM-RBF used parameters like C (ranging

from 0.001 to 1,000), gamma (values ranging from 0 to 1),

kernel set to “rbf,” and decision_function_shape set to “ovr” for

optimization. Perceptron was optimized for the alpha parameter

(ranging from 0.0001 to 10,000) and the penalty set to “l2,”

with optimization centered around the alpha parameter. Multi-

layer Perceptron employed settings for parameters such as

hidden_layer_sizes set to 100, activation function set to “relu,”

and learning_rate set to “constant.” Elastic Nets were configured

with base settings such as l1_ratio (ranging from 0.1 to 1) and

alphas (values ranging from 0 to 10). Also, pre-processing steps

were applied uniformly to ensure consistency in model training

and evaluation.

3 Results

This section presents the findings of the hybrid-clinical ML

modeling for each of the individual set controllers. Initially, the base

models are discussed, followed by the meta-model.

3.1 For baseline (C = 1)

Table 6 presents the modeling results for the base ML models.

These results are for all three approaches to handling missing

data, as discussed in Section 2.3.1. The feature selection process
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TABLE 6 Performance results on Base models (C=1).

Without imputation Imputation with mean Model imputation

Base model Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc.

LR 95.80 92.80 93.00 93.00 0.93 95.60 94.80 95.00 95.00 0.95 95.60 95.30 95.00 95.00 0.95

KNN 89.60 89.20 90.00 90.00 0.89 90.50 87.70 91.00 91.00 0.90 90.00 89.50 90.00 90.00 0.89

LDA 95.30 94.60 95.00 95.00 0.95 93.80 93.30 94.00 94.00 0.94 93.40 93..10 94.00 93.00 0.93

QDA 82.70 77.10 77.00 77.00 0.76 54.90 54.50 69.00 55.00 0.45 66.80 65.00 66.00 65.00 0.64

DT 95.30 94.60 95.00 95.00 0.95 94.40 93.80 94.00 94.00 0.94 94.40 93.80 94.00 94.00 0.94

RF 98.90 94.00 94.00 94.00 0.94 99.80 95.26 96.00 96.00 0.96 99.80 95.30 95.00 95.00 0.95

AB 96.70 95.20 95.00 95.00 0.95 94.20 93.80 94.00 94.00 0.94 94.20 93.80 94.00 94.00 0.94

PCA-LR 92.20 91.00 91.00 91.00 0.91 92.30 89.10 89.00 89.00 0.89 91.60 90.50 91.00 91.00 0.91

SVM-RBF 100.00 92.20 92.00 92.00 0.92 95.60 91.50 91.00 91.00 0.91 95.70 91.50 92.00 91.00 0.91

PC 92.80 89.30 93.00 93.00 0.93 89.60 86.50 90.00 90.00 0.90 89.60 88.50 90.00 90.00 0.90

ML-PC 61.30 58.00 40.00 58.00 0.47 72.00 71.10 56.00 71.00 0.62 70.00 70.60 56.00 71.00 0.62

EN 92.80 92.00 94.00 93.00 0.93 92.40 91.90 93.00 92.00 0.93 92.00 91.80 92.00 92.00 0.92
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TABLE 7 Performance result: meta-model (C = 1).

Without imputation Imputation with mean Model imputation

Train Acc. (%) Test Acc. (%) Train Acc. (%) Test Acc. (%) Train Acc. (%) Test Acc. (%)

Accuracy 97.33 95.78 96.00 95.70 96.22 95.73

Precision (%) 95.88 95.35 95.84

Recall (%) 95.78 95.26 95.73

F-measure 0.96 0.95 0.96

Hamming loss 0.04 0.04 0.04

Jaccard index 0.92 0.91 0.92

identified the following features to be included: Age, Education,

Gender, CDR_SB, ADAS13, ADASQ4, MMSE, RAVLT-I, RAVLT-

L, RAVLT-PF, TRABSCOR, LDETOTAL, FAQ, mPACCdigit,

Ventricles, WholeBrain, Hippocampus, Entorhinal, Fusiform, ICV,

MidTemp, Ethnicity, Race category, Married status, and APOE4.

Moreover, Table 7 summarizes the outcome of the constructed

Meta-Model as well as the metrics used to evaluate performance.

As shown in Table 6, the AdaBoost algorithm without

imputation, Random Forest with mean imputation, Logistic

Regression (multinomial), and Random Forest with model

imputation techniques all achieved a higher accuracy of 95.20%,

95.26%, and 95.30% on the test set, respectively. Subsequently, as

a Meta-Model (Table 7), the improved accuracy was demonstrated

using a no-imputation approach with a 95.78% accuracy on

the test set. On the test set, mean imputation achieved 95.70%

accuracy, whereas model imputation achieved 95.73% accuracy.

Additionally, the performance of the Meta-Model with the no-

imputation technique was determined to be the best among all,

as it gave an accuracy of ∼96.0%, a precision value of ∼96.0%, a

recall value of ∼96.0%, and F1-score of 0.96, which was close to

1.0. A high F-measure, close to 1.0, is considered the best measure.

Furthermore, the classification error i.e., Hamming Loss, gave a

value of 0.04, which was close to 0, considered the best value.

Finally, the Jaccard Index value of 0.92, near 1.0, suggested that the

created Meta-Model reflected the best classification.

3.2 For baseline + drug (C = 2)

Table 8 shows the modeling results for the base ML models.

The feature selection process identified the following features to

be included for controller 2 (baseline + drug): Age, Education,

Gender, CDR-SB, MMSE, RAVLT-I, RAVLT-L, RAVLT-F,

LDETOTAL, TRABSCOR, DIGITSCOR, Ventricles, WholeBrain,

Hippocampus, Fusiform, MidTemp, Ethnicity, Race category,

Married status, Blood thinner, Calcium, Cholesterol, Cognitive, and

Vitamin D. Additionally, Table 9 presents the findings of the built

Meta-Model as well as the metrics used to evaluate performance.

As shown in Table 8, the AdaBoost algorithm produced

an accuracy of 94.00% on the test set when used without

imputation, 96.18% with mean imputation, and 95.00% with model

imputation. Following that, using the no-imputation technique

with a 96.40% accuracy on the test set, the improved accuracy

was demonstrated using a Meta-Model. On the test set, an

improved accuracy of 96.40% was achieved for all three techniques.

When compared to the base model, it was established that

the performance of the Meta-Model was way better. Other

performance metrics including precision, recall, and F-score

demonstrated a performance improvement. Hamming loss was

calculated and yielded a value of 0.06, 0.05, and 0.04 respectively,

which are regarded to be as acceptable. Additionally, the Jaccard

Index values of 0.89, 0.89, and 0.91, which were all near 1.0,

indicated that the Meta-Model built was accurate.

Following that, we present the results for all of the features

above (excluding the drug list), and only one drug at a time

was examined. Table 10 summarizes the modeling results for base

models, whereas Table 11 summarizes the Meta-Model results

when just one particular drug was considered in addition to

baseline characteristics.

As shown in Table 10, all of the algorithms studied had an

accuracy between 94.00% and 96.00%. The following conclusions

were drawn: Comparing Tables 8, 10 results for Base Models

revealed that when only the cognitive drug was considered, the

no-imputation technique (96.00%) using the AdaBoost classifier

produced better accurate results. If just cholesterol-lowering

supplements and baseline characteristics were considered, the

accuracy of the imputation with the mean technique was 96.02%.

When compared to Table 8, which included the performance

results for the selected baseline features and the five medications,

it was discovered that the AdaBoost classifier had an accuracy of

96.18% when using the Linear Regression imputation approach.

If just blood thinners or cholesterol-lowering supplements were

considered in addition to baseline characteristics, the accuracy

for imputation with mean and Linear Regression techniques was

95.80% and 95.80%, respectively. When compared to Table 8, the

accuracy of the AdaBoost classifier for the model imputation

approach was 95.00%.

Following that, Table 11 summarizes the Meta-Model

developed for all of the baseline characteristics assessed, as well

as for a single drug. It revealed that the performance accuracy of

the five Meta-Models was close to 96.0% in three of the scenarios

(Table 11). The precision, recall, and F1-score values, as well as

the classification errors, were all highly commendable as well.

This indicated that the created model performed well for both if

all drugs were taken into consideration or if any single drug was

included for the diagnosis of the response variable as CN, AD, or

MCI, which was a positive factor. When compared to the results in

Table 9, this indicated that the Meta-Model yielded rather similar
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TABLE 8 Outcome-based on base models (C = 2).

Without imputation Imputation with mean Model imputation

Base model Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc.

LR 96.00 92.20 92.00 92.00 0.92 96.00 92.20 92.00 92.00 0.92 96.00 92.20 92.00 92.00 0.92

KNN 90.40 88.40 90.00 90.00 0.90 88.40 90.40 90.00 90.00 0.90 90.40 88.40 90.00 90.00 0.90

LDA 95.30 94.00 94.00 94.00 0.94 95.30 94.00 94.00 94.00 0.94 95.30 94.00 94.00 94.00 0.94

QDA 53.10 48.80 60.00 49.00 0.42 53.10 48.80 60.00 49.00 0.42 53.10 48.80 60.00 49.00 0.42

DT 96.70 95.20 95.00 95.00 0.95 95.80 95.10 96.00 96.00 0.96 95.80 95.10 96.00 96.00 0.96

RF 99.80 93.40 93.00 93.00 0.93 100.00 94.60 95.00 95.00 0.94 99.60 95.20 95.00 95.00 0.95

AB 96.50 94.00 93.87 94.00 0.93 96.50 96.18 94.56 94.58 0.94 96.40 95.00 95.15 95.18 0.95

PCA-LR 92.20 91.60 92.00 92.00 0.92 92.20 91.60 92.00 92.00 0.92 92.20 91.60 92.00 92.00 0.92

SVM-RBF 96.00 94.60 94.00 95.00 0.94 96.00 94.60 94.00 95.00 0.94 95.80 94.60 94.00 95.00 0.94

PC 90.00 85.50 87.00 86.00 0.86 90.00 85.50 87.00 86.00 0.86 90.00 88.50 87.00 86.00 0.86

ML-PC 57.30 58.40 43.00 58.00 0.47 60.00 58.40 40.00 58.00 0.47 71.10 68.20 62.00 71.00 0.65

EN 94.20 92.20 94.00 92.00 0.93 94.20 92.20 94.00 92.00 0.93 94.20 92.20 94.00 92.00 0.93
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TABLE 9 Result: meta-model (C = 2).

Without imputation Imputation with mean Model imputation

Train Acc. (%) Test Acc. (%) Train Acc. (%) Test Acc. (%) Train Acc. (%) Test Acc. (%)

Accuracy 97.00 96.40 96.44 96.40 97.00 96.40

Precision (%) 96.00 96.00 96.00

Recall (%) 96.00 96.00 96.00

F-measure 0.96 0.96 0.96

Hamming loss 0.06 0.05 0.04

Jaccard index 0.89 0.89 0.91

outcomes regardless of whether a specific drug was employed

or all five medications were included. No one medication had a

discernible effect on the diagnosis of AD, CN, or MCI. Each of

them produced an identical result.

3.3 For baseline + protein (C = 3)

The features that were selected post-feature selection

mechanism are Age, Education, Gender, CDR-SB, ADAS13,

MMSE, RAVLT-L, LDETOTAL, DIGITSCOR, TRABSCOR,

mPACCdigit, Fusiform, MidTemp, Ethnicity, Race category,

Married status, Aβ, Tau, and PTau. To categorize the response

variables CN, MCI, and AD based on these features, ML modeling

was performed. Table 12 presents the results for the base ML

models. In addition, Table 13 highlights the findings of the

Meta-Model that was developed as a result of this process.

Table 12 exhibited that when the AdaBoost technique was

employed without imputation on the test set, it delivered a

high accuracy of 96.43%. When compared to the Meta-Model, it

achieved an accuracy of 97.60% for the same applied approach. The

accuracy of the Base Model was 86.0% with mean imputation and

87.30% with model imputation techniques, respectively. Following

that, using an imputation with mean approach with an accuracy of

88.40% and an imputation with Linear Regression technique with

an accuracy of 89.00%, the enhanced accuracy was demonstrated

using a Meta-Model. As shown in Table 13, the results achieved so

far employing baseline characteristics and protein biomarkers are

commendable on other measures. As a result of this, we present

the results for a reduced collection of baseline characteristics

such as education and gender, CDR-SSB, ADASQ4, RAVLT-I,

RAVLT-L, RAVLT-PF, mPACCdigit, andmPACCtrailsB, along with

only one protein biomarker (at a time). When only one specific

protein biomarker (Aβ/Tau/Ptau) was included in addition to the

aforesaid baseline characteristics, the results of the modeling are

summarized in Table 14, whilst the findings of the Meta-Modeling

are summarized in Table 15.

Comparing Tables 12, 14 results for Base Models demonstrated

that when only the Tau protein biomarker was evaluated, the

no-imputation strategy offered more accurate findings with a

95.40% accuracy using the Decision Trees classifier. When only

the Aβ/Tau/PTau protein biomarker and baseline parameters were

included, the imputation withmean approach achieved an accuracy

of 88.00% (Table 14).When compared to Table 12, which contained

performance results for the specified baseline features and the three

protein indicators, it was determined that the Logistic Regression

(Multinomial) classifier had an accuracy of 86.00%when employing

a similar imputation strategy. When only the Aβ protein biomarker

was included in addition to baseline features, the accuracy of the

model imputation technique on the AdaBoost classifier was 88.40%,

respectively. When compared to Table 14, the Logistic Regression

(Multinomial) classifier had an accuracy of 87.30% for the Linear

Regression imputation strategy.

Table 15 presents the Meta-Model built for all baseline features

along with a single protein biomarker. It demonstrated that the

three meta-models’ performance accuracy ranged from 87.00%

to 96.40% in three of the cases (Table 15). Additionally, the

precision, recall, F1-score, and classification errors were all

noteworthy. This suggested that the developed model performed

efficiently on both employed techniques i.e., when all protein

biomarkers were included and when a single protein biomarker

was used to diagnose the response variable as CN, AD, or

MCI, which was a significant indicator. When compared to the

results in Table 13, this implied that the Meta-Model resulted

in a modest increase in outcomes when Aβ, Tau, and PTau

were taken into account in the mean imputation technique.

However, the Meta-Model (Table 13) achieved an accuracy of

97.60% for the no-imputation technique, which was greater

than the no-imputation method in Table 15 for all Aβ/Tau/PTau

protein biomarkers.

3.4 For baseline + medication + protein
(C = 4)

The selected features after applying the feature selection

technique for controller 4 included: Education, Gender, CDR-

SB, ADAS13, ADASQ4, MMSE, RAVLT-I, RAVLT-L, RAVLT-PF,

DIGITSCOR, LDETOTAL, mPACCdigit, Ventricles, Entorhinal,

Aβ, Tau, PTau, Ethnicity, Race category, Married status, APOE4,

Blood thinner, Calcium, Cholesterol, Cognitive, and Vitamin

D. The results of the modeling for the base ML models are

summarized in Table 16. Table 17 presents the results of the

Meta-Model construction process as well as the metrics used to

evaluate performance.

As demonstrated in Table 16, when employed without

imputation on the test set, the Logistic Regression (Multinomial)
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TABLE 10 Base model: baseline features + individual drug.

Baseline + blood thinner drug

Without imputation Imputation with mean Model imputation

Base model Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc.

LR 94.70 94.00 94.00 94.00 0.94 94.70 94.00 94.00 94.00 0.94 94.70 94.00 94.00 94.00 0.94

KNN 93.40 91.80 93.00 93.00 0.93 93.40 91.80 93.00 93.00 0.93 93.40 91.80 93.00 93.00 0.93

LDA 93.00 92.80 93.00 93.00 0.93 93.00 92.80 93.00 93.00 0.93 93.00 92.80 93.00 93.00 0.93

QDA 20.00 17.00 03.00 17.0 0.05 20.00 17.00 03.00 17.0 0.05 20.00 17.00 03.00 17.0 0.05

DT 97.30 95.20 95.00 95.00 0.95 98.40 95.20 95.00 95.00 0.95 98.00 95.20 95.00 95.00 0.95

RF 100.00 95.20 95.00 95.00 0.95 99.10 94.60 94.00 95.00 0.94 99.60 95.20 95.00 95.00 0.95

AB 95.78 93.37 93.35 93.38 0.93 95.78 93.37 93.35 93.38 0.93 98.00 95.80 96.00 96.00 0.96

PCA-LR 92.20 90.20 92.00 92.00 0.92 92.20 90.20 92.00 92.00 0.92 92.20 90.20 92.00 92.00 0.92

SVM-RBF 97.30 94.00 94.00 94.00 0.94 97.30 94.00 94.00 94.00 0.94 97.30 94.00 94.00 94.00 0.94

PC 92.80 87.10 93.00 93.00 0.92 92.80 87.10 93.00 93.00 0.92 92.80 87.10 93.00 93.00 0.92

ML-PC 78.30 73.10 66.00 78.00 71.00 78.30 73.30 67.00 78.00 72.00 78.00 71.30 66.00 78.00 71.00

EN 92.70 92.20 93.00 92.00 0.93 92.70 92.20 93.00 92.00 0.93 92.70 92.20 93.00 92.00 0.93

Baseline + calcium drug

Base model Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc.

LR 95.00 94.60 95.00 95.00 0.95 95.00 94.60 95.00 95.00 0.95 95.00 94.60 95.00 95.00 0.95

KNN 93.40 92.00 93.00 93.00 0.93 93.40 92.00 93.00 93.00 0.93 93.40 92.00 93.00 93.00 0.93

LDA 93.10 92.20 92.00 92.00 0.92 93.10 92.20 92.00 92.00 0.92 93.10 92.20 92.00 92.00 0.92

QDA 33.10 31.60 11.00 33.00 0.16 33.10 31.60 11.00 33.00 0.16 33.10 31.60 11.00 33.00 0.16

DT 99.00 95.00 95.00 95.00 0.95 98.20 95.20 95.00 95.00 0.95 98.20 94.60 95.00 95.00 0.95

RF 100.00 94.00 94.00 94.00 0.94 99.10 95.20 95.00 95.00 0.95 98.20 94.80 96.00 96.00 0.96

AB 95.56 93.37 93.53 93.37 0.93 96.50 95.00 95.00 95.00 0.95 96.50 94.40 94.00 94.00 0.94

PCA-LR 92.20 90.20 92.00 92.00 0.92 92.20 90.20 92.00 92.00 0.92 92.20 90.20 92.00 92.00 0.92

SVM-RBF 94.20 92.80 93.00 93.00 0.93 94.20 92.80 93.00 93.00 0.93 94.20 92.80 93.00 93.00 0.93

PC 91.00 89.00 92.00 91.00 0.91 91.00 88.70 92.00 91.00 0.91 91.00 88.70 92.00 91.00 0.91

ML-PC 77.10 73.00 65.00 77.00 0.70 80.70 74.20 68.00 81.00 0.74 79.00 75.10 67.00 79.00 0.72

EN 92.40 92.20 93.00 92.00 0.93 92.40 92.20 93.00 92.00 0.93 92.40 92.20 93.00 92.00 0.93

(Continued)
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TABLE 10 (Continued)

Baseline + cholesterol drug

Base model Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc.

LR 95.20 94.70 95.00 95.00 0.95 95.20 94.70 95.00 95.00 0.95 95.20 94.70 95.00 95.00 0.95

KNN 93.60 93.40 93.00 93.00 0.93 93.60 93.40 93.00 93.00 0.93 93.60 93.40 93.00 93.00 0.93

LDA 93.10 92.80 93.00 93.00 0.93 93.10 92.80 93.00 93.00 0.93 93.10 92.80 93.00 93.00 0.93

QDA 20.00 17.00 03.00 17.0 0.05 20.00 17.00 03.00 17.0 0.05 20.00 17.00 03.00 17.0 0.05

DT 95.80 95.10 96.00 96.00 0.96 98.00 94.60 95.00 95.00 0.95 99.60 94.60 95.00 95.00 0.95

RF 98.40 95.80 96.00 96.00 0.96 99.00 93.40 93.00 93.00 0.93 96.22 94.00 94.00 94.00 0.94

AB 95.56 94.00 94.00 94.00 0.94 96.22 96.02 94.00 94.00 0.94 98.00 95.80 96.00 96.00 0.96

PCA-LR 92.20 90.20 92.00 92.00 0.92 92.20 90.20 92.00 92.00 0.92 92.20 90.20 92.00 92.00 0.92

SVM-RBF 97.30 94.00 94.00 94.00 0.94 97.30 94.00 94.00 94.00 0.94 97.30 94.00 94.00 94.00 0.94

PC 92.20 91.80 93.00 92.00 0.92 92.20 91.80 93.00 92.00 0.92 92.20 91.80 93.00 92.00 0.92

ML-PC 80.10 71.60 69.00 80.00 73.00 60.80 60.70 44.00 61.00 0.50 73.30 77.70 65.00 78.00 0.71

EN 92.40 92.20 93.00 92.00 0.93 92.40 92.20 93.00 92.00 0.93 92.40 92.20 93.00 92.00 0.93

Baseline + cognitive drug

Base model Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc.

LR 94.70 94.60 95.00 95.00 0.95 94.70 94.60 95.00 95.00 0.95 94.70 94.60 95.00 95.00 0.95

KNN 93.80 93.40 93.00 93.00 0.93 93.80 93.40 93.00 93.00 0.93 93.80 93.40 93.00 93.00 0.93

LDA 93.00 92.20 92.00 92.00 0.92 93.00 92.20 92.00 92.00 0.92 93.00 92.20 92.00 92.00 0.92

QDA 33.10 31.60 11.00 33.00 0.16 33.10 31.60 11.00 33.00 0.16 33.10 31.60 11.00 33.00 0.16

DT 97.30 95.80 96.00 96.00 0.96 95.78 93.37 93.35 93.37 0.93 95.11 93.37 93.35 93.37 0.93

RF 99.30 96.00 96.00 96.00 0.96 99.80 93.37 93.35 93.37 0.93 95.80 92.20 92.00 92.00 0.92

AB 96.41 96.00 96.00 96.00 0.96 98.00 93.37 93.35 93.37 0.93 98.00 95.50 96.00 96.00 0.96

PCA-LR 92.20 90.20 92.00 92.00 0.92 92.20 90.20 92.00 92.00 0.92 92.20 90.20 92.00 92.00 0.92

SVM-RBF 94.40 92.80 93.00 93.00 0.93 94.40 92.80 93.00 93.00 0.93 94.40 92.80 93.00 93.00 0.93

PC 86.10 85.10 87.00 86.00 0.86 86.10 85.10 87.00 86.00 0.86 86.10 85.10 87.00 86.00 0.86

ML-PC 76.50 76.50 65.00 77.00 0.70 77.70 73.60 66.00 78.00 0.71 80.10 75.30 68.00 80.00 0.73

EN 92.70 91.60 93.00 92.00 0.92 92.70 91.60 93.00 92.00 0.92 92.70 91.60 93.00 92.00 0.92
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TABLE 10 (Continued)

Baseline + vitamin D drug

Base model Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc.

LR 95.20 94.70 95.00 95.00 0.95 95.20 94.70 95.00 95.00 0.95 95.20 94.70 95.00 95.00 0.95

KNN 93.40 91.60 93.00 93.00 0.93 93.40 91.60 93.00 93.00 0.93 93.40 91.60 93.00 93.00 0.93

LDA 93.00 92.80 93.00 93.00 0.93 93.00 92.80 93.00 93.00 0.93 93.00 92.80 93.00 93.00 0.93

QDA 33.10 31.60 11.00 33.00 0.16 33.10 31.60 11.00 33.00 0.16 33.10 31.60 11.00 33.00 0.16

DT 96.00 95.10 96.00 96.00 0.96 98.40 95.20 95.00 95.00 0.95 96.00 94.10 94.00 94.00 0.94

RF 100.00 95.00 93.35 93.38 0.93 98.20 95.20 95.00 95.00 0.95 97.30 94.00 94.00 94.00 0.94

AB 98.00 95.00 93.35 93.38 0.93 96.00 94.00 93.47 94.00 0.94 98.00 94.80 94.04 93.38 0.93

PCA-LR 92.20 90.20 92.00 92.00 0.92 92.20 90.20 92.00 92.00 0.92 92.20 90.20 92.00 92.00 0.92

SVM-RBF 97.30 94.0 94.00 94.00 0.94 97.30 94.0 94.00 94.00 0.94 97.30 94.0 94.00 94.00 0.94

PC 84.0 87.30 90.00 87.00 0.86 84.0 87.30 90.00 87.00 0.86 84.0 87.30 90.00 87.00 0.86

ML-PC 78.30 73.30 66.00 78.00 0.71 77.10 70.00 65.00 77.00 70.00 85.50 80.00 88.00 86.00 0.85

EN 93.00 92.20 93.00 92.00 0.93 93.00 92.20 93.00 92.00 0.93 93.00 92.20 93.00 92.00 0.93
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TABLE 11 Meta-model: baseline features + individual drug.

Without imputation Imputation with mean Model imputation

Train Acc. (%) Test Acc. (%) Train Acc. (%) Test Acc. (%) Train Acc. (%) Test Acc. (%)

Baseline + blood thinner drug

Accuracy 98.00 95.80 96.50 96.40 96.22 96.00

Precision (%) 96.00 96.00 94.04

Recall (%) 96.00 96.00 94.00

F-measure 0.96 0.96 0.94

Hamming loss 0.06 0.06 0.06

Jaccard index 0.90 0.90 0.89

Baseline + calcium drug

Accuracy 96.50 96.40 96.18 96.00 95.50 95.00

Precision (%) 96.00 94.01 94.01

Recall (%) 96.00 94.00 94.00

F-measure 0.96 0.94 0.94

Hamming loss 0.06 0.06 0.06

Jaccard index 0.88 0.89 0.89

Baseline + cholesterol drug

Accuracy 96.40 96.00 96.41 96.40 97.10 96.40

Precision (%) 96.00 96.00 96.00

Recall (%) 96.00 96.00 96.00

F-measure 0.96 0.96 0.96

Hamming loss 0.06 0.06 0.06

Jaccard index 0.90 0.90 0.90

Baseline + cognitive drug

Accuracy 96.41 96.40 97.30 95.80 97.30 95.80

Precision (%) 96.00 96.00 96.00

Recall (%) 96.00 96.00 96.00

F-measure 0.96 0.96 0.96

Hamming loss 0.06 0.06 0.06

Jaccard index 0.88 0.88 0.88

Baseline + vitamin D drug

Accuracy 96.00 95.80 96.41 96.40 95.56 95.00

Precision (%) 96.00 96.00 95.00

Recall (%) 96.00 96.00 95.00

F-measure 0.96 0.96 0.95

Hamming loss 0.06 0.06 0.06

Jaccard index 0.88 0.89 0.88

algorithm produced an accuracy of 95.20%. In comparison

to the Meta-Model, it attained a high accuracy of 96.20%

when the identical approach was used. When the mean

imputation approach was applied, the base model’s accuracy

was 87.50%. Following that, an imputation with a mean technique

with an accuracy of 88.40% was used to demonstrate the

enhanced accuracy for a Meta-Model. Additionally, model

imputation yielded an accuracy of 88.40% on the Logistic

Regression (Multinomial) classifier for a Base Model, while

the Meta-Model yielded an accuracy of 89.30% for the same

applied approach. As shown in Table 17, the findings thus

far based on baseline characteristics, medication, and protein
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TABLE 12 Performance result on base model for C = 3.

Without imputation Imputation with mean Model imputation

Base model Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc.

LR 97.10 96.40 97.00 96.00 0.96 98.20 86.00 86.00 86.00 0.86 98.20 87.30 87.00 87.00 0.87

KNN 90.00 80.00 80.00 80.00 0.80 90.00 80.40 82.00 80.00 0.80 88.70 79.00 80.00 79.00 0.78

LDA 95.00 94.00 94.00 94.00 0.94 97.20 82.10 84.00 82.00 0.82 97.20 83.00 85.00 83.00 0.83

QDA 58.20 26.20 42.00 26.00 0.15 53.50 30.40 31.00 30.00 0.18 53.50 30.40 31.00 30.00 0.18

DT 97.00 96.40 97.00 96.00 0.96 96.10 85.00 86.00 85.00 0.84 97.50 88.40 89.00 88.00 0.88

RF 99.50 96.40 96.00 96.00 0.96 100.00 86.00 88.00 88.00 0.87 100.00 85.00 87.00 85.00 0.84

AB 98.00 96.43 96.00 96.00 0.96 97.50 86.60 88.00 87.00 0.86 97.50 87.00 88.00 87.00 0.86

PCA-LR 90.00 89.30 90.00 89.00 0.89 90.10 79.00 80.00 79.00 0.78 90.50 77.00 78.00 77.00 0.77

SVM-RBF 99.50 93.00 93.00 93.00 0.93 100.00 86.00 86.00 86.00 0.86 100.00 87.00 87.00 87.00 0.87

PC 85.60 84.50 88.00 85.00 0.84 90.50 77.00 78.00 77.00 0.76 90.10 71.00 74.00 71.00 0.68

ML-PC 57.70 57.10 69.00 57.00 0.60 69.70 58.00 43.00 58.00 0.49 48.20 45.00 20.00 45.00 0.28

EN 93.30 90.50 92.00 90.00 0.91 94.40 83.00 85.00 83.00 0.83 94.00 86.00 87.00 86.00 0.86
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TABLE 13 Result: meta-model (C = 3).

Without imputation Imputation with mean Model imputation

Train Acc. (%) Test Acc. (%) Train Acc. (%) Test Acc. (%) Train Acc. (%) Test Acc. (%)

Accuracy 98.08 97.60 97.54 88.40 98.30 89.00

Precision (%) 98.00 88.53 89.49

Recall (%) 98.00 88.71 89.61

F-measure 0.98 0.86 0.89

Hamming loss 0.03 0.14 0.13

Jaccard index 0.93 0.75 0.77

biomarkers were notable in terms of additional performance

evaluation criteria.

3.5 Comparative analysis

Figure 6 presents a comparative analysis of all four developed

Meta-Models based on performance accuracy.We can comprehend

the following from Figure 6: the highest accuracy of 97.60% was

shown by no imputation approach when the controller C = 3

(baseline + protein); for controller C = 4 (baseline + drug +

protein), the no imputation approach gave an improved accuracy of

96.20% amongst the three employed techniques; for C= 2 (baseline

+ drug), the accuracy of 96.40% for all the three applied approaches

was observed; and when C = 1 (baseline data), the accuracy for all

the three methods was found to be close to 96.0% respectively.

4 Discussion

The timely and precise diagnosis of AD is critical to reducing

the consequences of this disorder, whose incidence has been on the

rise. The application of ML can enhance the clinical diagnosis of

AD in its early stages and provide valuable insights into research

on this damaging and progressive disease. Early Alzheimer’s

disease was diagnosed in this study by considering characteristics

associated with specific ADmedications such as calcium, vitamin D

supplements, blood thinner medicines, cholesterol-lowering drugs,

and cognitive drugs, including a substantial protein biomarker

(Aβ, tau, and ptau) as a predictor. To simulate the MRI-based

data, we proposed a hybrid-clinical model. The diagnostic group

in this study comprised five categories. We designed a pipeline

that integrated exhaustive approaches for detecting AD across a

broad range of input values and parameters. We evaluated the

association between the diagnosis of AD and the use of several

drugs in particular. Aiming to better understand how Alzheimer’s

is diagnosed, we looked at the importance of three cerebrospinal

fluid biomarkers: tau, ptau, and Aβ. The proposed design generated

four Meta-Models for four different sets of criteria. The diagnostic

criteria were established based on baseline features, baseline and

drug characteristics, baseline and protein features, and baseline,

drug, and protein features. The developed model incorporated a

range of methodologies, including data collection and integration,

multi-step data pre-processing, feature selection, development

of machine learning models employing wide-ranging methods,

optimization and analysis of results, measuring of test performance,

construction ofMeta-Model, generalized performance metrics, and

comparative analysis.

Our results indicate that patients’ age, education, gender,

CDR_SB, ADAS13, ADASQ4, MMSE, RAVLT-I, RAVLT-L,

RAVLT-PF, TRABSCOR, LDETOTAL, mPACCdigit, Ventricles,

WholeBrain, Hippocampus, Entorhinal, Fusiform, MidTemp, ICV,

ethnicity, race category, marital status, and APOE4 are associated

with a higher likelihood of being diagnosed with AD based on

our analysis of the baseline visit data. In addition, our results

reveal that CSF biomarkers, tau, ptau, and Aβ, when added to

the baseline model, could be the significant predictors. We were

able to attain a maximum accuracy of 97.60% for baseline and

protein data without any imputation technique. We observed that

the constructed model functioned effectively when all five drugs

were included, as well as when any single drug was used for the

diagnosis of the response variable (CN, AD, or MCI). Interestingly,

the constructed Meta-Model worked well when all three protein

biomarkers were included, as well as when a single protein

biomarker was utilized to diagnose the response variable. Thus,

our developed model not only has the potential to aid clinicians

and medical professionals in advancing Alzheimer’s diagnosis

but also serves as a valuable starting point for future research

into AD and other neurodegenerative disorders. With further

refinement and exploration, it could pave the way for innovative

diagnostic techniques and therapeutic interventions in the field

of neurology.

Researchers are increasingly employing machine learning and

deep learning techniques in their work to classify and evaluate

patients and the associated risks and predict treatment outcomes.

One area where these methods have been particularly useful is in

the classification of neurodegenerative conditions caused by AD,

as well as their different stages, using imaging-based detection.

Additionally, researchers have constructed automated pipelines

that employ feature extraction approaches based on a range of

biomarker methodologies to improve the quality of their findings

(Shukla et al., 2023). ML models have become ubiquitous in real-

time clinical applications, diagnostics, and the treatment of AD.

Numerous recent studies (as reported in Table 18) have integrated

MRI data into ML models for predicting AD as evidenced by the

works of Gopi et al. (2020), Khan and Zubair (2020), Liu et al.

(2020), Diogo et al. (2022), Kavitha et al. (2022), Khan and Zubair

(2022b), and Uddin et al. (2023).
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TABLE 14 Base model: baseline features + individual protein biomarker.

Baseline + Aβ protein biomarker

Without imputation Imputation with mean Model imputation

Base model Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc.

LR 96.20 95.20 95.00 95.00 0.95 95.80 87.50 88.21 87.50 0.87 96.10 85.71 86.53 85.71 0.85

KNN 89.00 88.10 89.00 88.00 0.88 89.40 79.50 81.00 79.00 0.79 90.50 77.70 79.00 78.00 0.77

LDA 93.80 94.00 94.00 94.00 0.94 94.40 84.80 86.00 85.00 0.84 94.40 84.80 86.00 85.00 0.84

QDA 89.00 84.50 87.00 85.00 0.84 75.00 70.00 70.00 68.00 0.67 74.60 66.10 75.00 66.00 0.64

DT 96.40 94.05 94.42 94.05 0.94 100.00 86.00 86.00 86.00 0.86 98.20 86.00 86.00 86.00 0.85

RF 100.00 95.20 96.00 95.00 0.95 99.30 86.60 88.00 87.00 0.86 99.30 85.70 86.00 86.00 0.85

AB 100.00 95.20 96.00 95.00 0.95 99.60 88.30 90.00 89.00 0.89 99.60 88.40 89.00 88.00 0.88

PCA-LR 90.40 85.70 87.00 86.00 0.85 92.30 80.40 81.00 80.00 0.79 92.60 80.40 81.00 80.00 79.00

SVM-RBF 97.10 91.70 92.00 92.00 0.92 96.10 88.40 89.00 88.00 0.88 94.40 86.60 87.00 87.00 0.86

PC 90.00 85.70 87.00 86.00 0.85 90.80 80.40 81.00 80.00 0.80 88.70 77.70 79.00 78.00 0.77

ML-PC 48.80 45.70 24.00 49.00 0.32 60.00 57.70 79.00 59.00 0.51 62.70 57.10 47.00 57.00 0.47

EN 91.70 90.00 92.00 92.00 0.92 92.00 84.80 86.00 85.00 0.84 92.00 84.80 86.00 85.00 0.84

Baseline + Tau protein biomarker

Base model Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc.

LR 96.40 95.20 97.00 96.00 0.96 96.10 87.50 88.00 88.00 0.87 96.00 87.00 88.00 88.00 0.87

KNN 90.00 85.70 87.00 86.00 0.85 95.10 87.50 86.00 86.00 0.86 95.10 86.00 86.00 86.00 0.86

LDA 95.20 93.00 95.00 95.00 0.95 94.00 84.00 85.00 84.00 0.83 94.00 84.00 85.00 84.00 0.83

QDA 70.20 64.40 85.00 70.00 0.69 72.20 64.30 69.00 64.00 0.64 87.00 78.00 81.00 78.00 0.77

DT 96.20 95.40 94.42 94.05 0.94 96.10 85.00 86.00 85.00 0.84 96.10 85.00 86.00 85.00 0.84

RF 100.00 94.00 94.00 94.00 0.94 99.60 86.60 88.00 87.00 0.86 100.00 87.00 87.00 87.00 0.86

AB 100.00 92.00 92.00 92.00 0.92 96.50 84.00 84.00 84.00 0.83 99.60 83.00 83.00 83.00 0.82

PCA-LR 87.50 84.50 85.00 85.00 0.4 92.30 78.60 82.00 79.00 0.77 93.00 83.00 84.00 83.00 0.83

SVM-RBF 97.10 93.00 93.00 93.00 0.93 96.00 88.40 89.00 88.00 0.88 95.40 86.00 86.00 86.00 0.85

PC 91.80 89.30 90.00 89.00 0.89 90.50 86.00 86.00 86.00 0.86 89.10 79.00 79.00 79.00 0.78

ML-PC 69.20 66.00 51.00 67.00 0.58 70.10 61.60 44.00 62.00 0.51 70.40 64.30 47.00 64.00 0.54

EN 91.70 90.40 92.00 92.00 0.92 93.00 85.00 86.00 85.00 0.84 93.00 85.00 86.00 85.00 0.84

(Continued)
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TABLE 14 (Continued)

Baseline + PTau protein biomarker

Base model Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc.

LR 96.40 95.20 97.00 96.00 0.96 96.10 88.40 89.00 88.00 0.88 96.00 86.61 87.26 86.61 0.86

KNN 90.00 84.50 86.00 85.00 0.84 90.10 81.20 82.00 81.00 0.81 90.50 81.20 82.00 81.00 0.81

LDA 94.00 92.80 94.00 94.00 0.94 94.00 84.00 85.00 84.00 0.83 94.00 84.00 85.00 84.00 0.83

QDA 93.00 91.80 93.00 93.00 0.93 64.30 59.00 75.00 64.00 0.60 75.00 73.20 75.00 73.00 0.73

DT 96.20 94.05 94.42 94.05 0.94 96.10 88.00 86.00 85.00 0.84 96.10 85.00 86.00 85.00 0.84

RF 98.10 95.20 96.00 95.00 0.95 97.20 86.00 86.00 86.00 0.85 97.50 85.00 86.00 85.00 0.84

AB 100.00 95.20 96.00 95.00 0.95 100.00 86.00 86.00 86.00 0.85 100.00 86.00 86.00 86.00 0.86

PCA-LR 88.00 84.50 85.00 85.00 0.84 93.30 83.00 83.00 83.00 0.83 92.30 83.00 83.00 83.00 0.83

SVM-RBF 97.10 93.00 93.00 93.00 0.93 95.10 87.50 88.00 88.00 0.87 96.50 91.10 91.00 91.00 0.91

PC 88.10 87.00 90.00 88.00 0.88 90.50 86.00 86.00 86.00 0.86 91.20 84.00 85.00 84.00 0.84

ML-PC 72.10 70.00 52.00 68.00 0.59 54.50 51.10 32.00 54.00 40.00 69.00 60.00 42.00 60.00 0.50

EN 92.00 90.40 92.00 92.00 0.92 93.30 85.00 86.00 85.00 0.84 93.30 86.00 86.00 85.00 0.84
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TABLE 15 Meta-model: baseline features + individual protein biomarker.

Without imputation Imputation with mean Model imputation

Train Acc. (%) Test Acc. (%) Train Acc. (%) Test Acc. (%) Train Acc. (%) Test Acc. (%)

Baseline + Aβ protein biomarker

Accuracy 97.12 96.20 96.83 89.30 97.54 89.30

Precision (%) 97.00 90.00 89.00

Recall (%) 96.00 89.00 89.00

F-measure 0.96 0.89 0.89

Hamming loss 0.06 0.13 0.14

Jaccard index 0.89 0.78 0.75

Baseline + Tau protein biomarker

Accuracy 96.15 96.40 96.50 89.30 96.50 87.50

Precision (%) 97.00 87.50 90.00

Recall (%) 97.00 86.61 89.29

F-measure 0.96 0.86 0.89

Hamming loss 0.05 0.13 0.12

Jaccard index 0.87 0.77 0.81

Baseline + PTau protein biomarker

Accuracy 96.63 96.30 95.42 89.50 96.50 88.40

Precision (%) 97.00 88.00 89.00

Recall (%) 97.00 87.50 88.00

F-measure 0.96 0.87 0.88

Hamming loss 0.05 0.12 0.13

Jaccard index 0.89 0.88 0.88

Ensuring optimal accuracy for cognitive assessments in the

context of AD continues to be a pressing challenge despite ongoing

efforts. To bridge this gap, a novel clinical-hybrid model has been

introduced to enhance the accuracy of Alzheimer’s detection. To

demonstrate the improvements and potential contributions of our

new model in making cognitive tests more accurate for individuals

with AD, Table 18 presents a comparison between our proposed

method and prior research. However, it is essential to highlight that

the datasets, the number of patients in each research, the classifiers

used, and the modeling technique are all highly distinct, making

direct comparison challenging.

Recent years have witnessed significant advances in research,

most notably the discovery of biomarkers (especially brain

imaging technologies) that enable the diagnosis and monitoring

of AD-related processes months, years, and even decades before

clinical problems appear. Alzheimer’s disease biomarkers are

divided into two types: early biomarkers, which measure amyloid

accumulation in the brain (e.g., PET imaging, CSF amyloid),

and late biomarkers, which measure neurodegeneration [e.g.,

structuralMRI, fluorodeoxyglucose-positron emission tomography

(FDG PET), CSF tau]. Few recent studies have found that

AD biomarkers are associated with cognitive decline including

Stamate et al. (2019) and Gaetani et al. (2021), as presented

in Table 18.

Biomarkers are widely exploited in the diagnostic framework

and help in designing appropriate therapy (when available), albeit

these are largely intended for research use. There are two types

of biomarkers: those that directly influence the pathology of AD,

like the A beta-amyloid (Aβ) and tau proteins; and those that

provide an indirect or non-specific indication of the disorder by

locating indices of neuronal damage, which are considered to be

the main cause of AD. While these indicators are generally related

to Alzheimer’s disease, they have been related to other types of

illnesses as well. The concomitant presence of both proteins in an

individual indicates a strong case of AD.

In the present circumstances, both advanced-stage AD and

dementia are considered incurable. It could be attributed to the

failure in the early stage of the disease. Currently, the goal

of treatment is to reduce the course of the disease and also

to control its symptoms. While this is extremely difficult, it is

achievable to some extent if the disease is detected reasonably early.

Treatments focus on symptom management, such as cognitive

and psychological difficulties, as well as behavioral difficulties;

environmental alteration to enable patients to do everyday activities

more effectively; and caregiver support, such as family and friends.

The CSF analysis also provides information regarding blood-

brain barrier damage and inflammatory diseases that resemble

or make a contribution to dementia (Blennow et al., 2010).
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TABLE 16 Performance result on base model for C = 4.

Without imputation Imputation with mean Model imputation

Base model Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc. Train
Acc.
(%)

Test
Acc.
(%)

Pr. (%) Rec.
(%)

F1-sc.

LR 98.10 95.20 95.00 95.00 0.95 98.00 87.50 88.00 88.00 0.88 97.50 88.40 89.00 88.00 0.88

KNN 87.00 82.10 83.00 82.00 0.82 88.00 80.00 82.00 79.00 0.79 87.30 78.60 80.00 79.00 0.78

LDA 95.20 94.00 94.00 94.00 0.94 97.00 83.00 85.00 83.00 0.83 97.00 82.10 83.00 82.00 0.82

QDA 58.70 53.60 68.00 54.00 0.44 55.00 54.00 54.00 54.00 0.45 55.00 54.50 58.00 54.00 0.46

DT 96.40 94.05 94.42 94.05 0.94 96.10 85.00 86.00 85.00 0.84 98.00 85.00 86.00 85.00 0.84

RF 100.00 95.20 96.00 95.00 0.95 100.00 85.00 85.00 85.00 0.84 100.00 87.50 88.00 87.50 0.87

AB 96.40 94.05 94.42 94.05 0.94 100.00 87.50 88.00 88.00 0.88 100.00 87.00 87.00 87.00 0.86

PCA-LR 91.70 91.00 92.00 92.00 0.92 96.10 84.80 85.00 85.00 0.84 92.30 82.10 83.00 82.00 0.82

SVM-RBF 100.00 88.10 88.00 88.00 0.88 96.10 86.60 87.00 87.00 0.86 99.30 88.40 88.00 88.00 0.88

PC 91.80 89.30 90.00 89.00 0.89 92.30 82.10 83.00 82.00 0.82 92.30 78.00 81.00 78.00 0.76

ML-PC 70.20 70.00 55.00 68.00 0.60 60.00 55.40 50.00 45.00 46.00 73.00 60.00 43.00 59.00 0.49

EN 94.70 90.50 92.00 90.00 0.91 93.70 85.70 86.00 86.00 0.85 94.40 84.80 85.00 85.00 0.84
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TABLE 17 Result: meta-model (C = 4).

Without imputation Imputation with mean Model imputation

Train Acc. (%) Test Acc. (%) Train Acc. (%) Test Acc. (%) Train Acc. (%) Test Acc. (%)

Accuracy 98.00 96.20 97.53 88.40 98.24 89.30

Precision (%) 97.00 88.21 90.00

Recall (%) 96.00 88.00 89.00

F-measure 0.96 0.87 0.89

Hamming loss 0.05 0.12 0.12

Jaccard index 0.90 0.78 0.79

FIGURE 6

Comparative analysis of meta-models.

Nonetheless, more recently, approaches used in determining levels

of biomarkers such as Aβ1-42, pTau, and total tau (tTau) have been

established in investigating essential Alzheimer’s disease pathology.

The levels of Aβ1-42 are decreased in AD, although tTau (a more

general sign of neuronal degeneration) and pTau (a more specific

diagnostic for AD) have been found to get elevated during the

progression of AD. Current research suggests that a low Aβ1-

42 value combined with a high pTau or tTau value provides the

most diagnostic specificity (Hansson et al., 2006). In the absence

of established pathology, it is difficult to define reference ranges

as well as cut points for these parameters. A lack of uniformity in

CSF gathering and processing has been reported to make it more

difficult (Mattsson et al., 2009; Bartlett et al., 2012). However, efforts

are beingmade to resolve these concerns, and CSF analysis has been

inducted into Alzheimer’s disease research diagnostic guidelines

(Dubois et al., 2014).

Moreover, the imminent application of plasma biomarkers,

including plasma Aβ and tau, holds promise for enhancing AD

diagnosis (Sun et al., 2022). With advancements in research

and the potential approval of disease-modifying therapies

targeting MCI-AD or AD-dementia, the imperative for earlier

and more accurate diagnosis of AD becomes increasingly

critical (Cummings, 2019; Arafah et al., 2023). The advent

of disease-modifying drugs highlights the importance of

identifying individuals at risk of developing AD in preclinical

stages, paving the way for proactive interventions aimed at

delaying or preventing disease progression (Crous-Bou et al.,

2017).

5 Conclusion

This study presents a notable improvement in early AD

detection through the integration of machine learning, statistical

modeling, and biomarker indicators. The optimized predictive

models demonstrate a robust diagnostic framework that takes

into account various factors, including patient drugs, protein
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TABLE 18 Comparison with the state-of-the-art approaches.

Author(s) Proposed method Dataset Performance

Proposed approach Hybrid-clinical model (majority voting
and majority stacking)

ADNI 97.60% accuracy

Uddin et al. (2023) Voting method (Models comprising: GaussianNB, Decision

Tree, Random Forest, XGBoost, Voting Classifier, and

GradientBoost)

OASIS 96% accuracy

Kavitha et al. (2022) Decision Tree, Random Forest, Support Vector Machine,

Gradient Boosting, and Voting

OASIS 83%

Diogo et al. (2022) Linear Support Vector Machine, Decision Tree, Random

Forest, Extremely Randomized Tree, Linear Discriminant

Analysis, Logistic Regression, Logistic Regression Classifier

with Stochastic Gradient Descent Learning

ADNI and OASIS 90.6% balanced accuracy

Khan and Zubair (2022a,b) Hybrid Model (Models comprising: Logistic Regression,

GaussianNB, Support Vector Machine, Decision Trees,

Random Forest, Extreme Gradient Boosting)

ADNI 95.12% accuracy

Gaetani et al. (2021) LASSO-based logistic model Laboratory of Clinical

Neurochemistry, Department

of Medicine and Surgery,

University of Perugia

(Perugia, Italy)

AUC score: 0.906

Khan and Zubair (2020) Random Forest, Extra Trees, Decision Trees, NuSVC,

Logistic RegressionCV, AdaBoost, Gradient Boosting,

GaussianNB, RidgeClassifierCV, KNN

OASIS 87% accuracy

Liu et al. (2020) Logistic RegressionCV, Linear SVC, Decision Tree, Bagging,

MLP

Dem@Care FP7 project

(Speech data)

86.1% accuracy

Gopi et al. (2020) Pruned decision trees (J48) OASIS 88.7% accuracy

Stamate et al. (2019) Deep Learning (DL), Extreme Gradient Boosting (XGBoost)

and Random Forest (RF)

European Medical

Information Framework for

Alzheimer’s Disease

Biomarker Discovery

Cohort

AUC score: 0.87

biomarkers, and baseline features. The proposed hybrid-

clinical model and the in-depth analysis of the correlations

between demographic, clinical, and biomarker variables

and AD diagnosis underscore its potential to revolutionize

clinical detection. The high level of accuracy obtained with

both baseline and protein data serves as validation for the

efficacy of the developed models. The comprehensive pipeline

and Meta-Models designed for various diagnostic criteria,

offer a versatile approach for clinicians. Additionally, the

comparative analysis with existing studies highlights the

novel contributions of this research while acknowledging the

challenges in direct comparisons due to variations in datasets

and methodologies. Overall, this study not only provides

valuable insights into Alzheimer’s diagnosis but also sets a

basis for future research into neurodegenerative disorders,

emphasizing the essential role of advanced technologies in

transforming diagnostic approaches. It could be hypothesized

that incorporating patients’ drugs or protein biomarkers

into an ML model to supplement clinical diagnoses could

enhance diagnostic accuracy. Our improved model with

drug features could mitigate the challenge of diagnosing the

early stages of AD when other symptoms are not as easily

observable, which remains a pervasive issue for both clinical and

research professionals.
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