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Postoperative cognitive 
dysfunction: spotlight on light, 
circadian rhythms, and sleep
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Postoperative cognitive dysfunction (POCD) is a neurological disorder characterized 
by the emergence of cognitive impairment after surgery. A growing body of literature 
suggests that the onset of POCD is closely tied to circadian rhythm disruption (CRD). 
Circadian rhythms are patterns of behavioral and physiological change that repeat 
themselves at approximately, but not exactly, every 24 h. They are entrained to the 
24 h day by the daily light–dark cycle. Postoperative CRD affects cognitive function 
likely by disrupting sleep architecture, which in turn provokes a host of pathological 
processes including neuroinflammation, blood–brain barrier disturbances, and 
glymphatic pathway dysfunction. Therefore, to address the pathogenesis of POCD 
it is first necessary to correct the dysregulated circadian rhythms that often occur 
in surgical patients. This narrative review summarizes the evidence for CRD as a 
key contributor to POCD and concludes with a brief discussion of how circadian-
effective hospital lighting can be employed to re-entrain stable and robust circadian 
rhythms in surgical patients.
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1 Introduction

Common differential diagnoses of postoperative neurological disturbances with impaired 
cognitive performance include postoperative cognitive dysfunction (POCD), delirium, central 
anticholinergic syndrome, dementia, and akinetic crisis (Rundshagen, 2014). This narrative review 
focuses on POCD, which is a common complication of cardiac surgery, characterized by a decline 
in attention, awareness, and cognitive ability. Highly invasive procedures, such as on-pump 
coronary artery bypass grafting surgery, are typically associated with an increased risk of POCD 
(Ge et al., 2014). Up to 50% of patients experience short-term symptoms of POCD following 
cardiac surgery, and up to 30% of patients report cognitive deficits that can persist more than 
6 months after surgery (Tan and Amoako, 2013). POCD is associated with poor postoperative 
recovery, reduced health-related quality of life, and higher mortality (Rundshagen, 2014).

Advanced age is the primary risk factor for POCD. Age is a strong predictor of 
cerebrovascular disease and cognitive impairment, which are the very disorders implicated in 
postoperative neurological complications (Deiner and Silverstein, 2009). Immune priming in 
the aging brain also elevates the risk of systemic neuroinflammation (Wei et al., 2019). The 
onset of POCD often overlaps with pre-existing health vulnerabilities in elder populations, 
resulting in loss of independence and increased caregiver burden (Butz et al., 2019).
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A growing body of literature implicates circadian rhythm 
disruption (CRD) in the pathogenesis of POCD. Circadian rhythms 
are endogenously driven 24-h oscillations that regulate key 
physiological functions, such as body temperature and the sleep–wake 
cycle. These processes are generated by an internal clock located in the 
suprachiasmatic nucleus (SCN) of the hypothalamus (Herzog et al., 
2017). The SCN is entrained to the daily light–dark cycle by retinal 
light exposures that continuously reset the 24-h circadian pattern to 
synchrony with the solar day at one’s location on Earth (Duffy and 
Czeisler, 2009). Accordingly, the SCN also regulates the function of 
peripheral clocks located in various tissues throughout the body, 
which modulate the expression of circadian genes in a range of 
physiological functions (Richards and Gumz, 2012).

As a narrative review, this paper examines a subset of the literature on 
postoperative CRD and sleep disturbances and how these may be related 
to POCD. It discusses potential countermeasures, including the use of a 
modified hospital lighting system to promote circadian entrainment and 
improve postoperative sleep disturbances. Lighting installations in 
hospital units are typically designed to maximize visibility for healthcare 
workers, often at the expense of patients’ sleep quality and circadian 
stability (Albala et al., 2019). By providing a robust light–dark pattern that 
promotes entrainment of circadian rhythms, lighting shows promise for 
mitigating symptoms of POCD and accelerating the recovery of patients 
undergoing cardiac surgery. Light also has a direct effect on humans. Most 
notably, it elicits a strong alerting effect on people, like a cup of coffee. 
Light exposure during the day can not only promote entrainment, but also 
increase daytime alertness.

This paper focuses primarily on the entraining effects of light and 
on data collected from older adults (age ≥ 60) undergoing cardiac 
surgery; studies involving younger and/or non-cardiac patients are 
also incorporated to illustrate general trends. Searches were conducted 
on PubMed and Google Scholar, using keywords including 
“postoperative circadian rhythm disruption,” “postoperative sleep 
disruption,” “postoperative cognitive dysfunction,” “postoperative 
neuroinflammation,” and “lighting interventions for patients.”

2 The circadian system and the sleep–
wake cycle

2.1 The circadian system

Almost all organisms experience cyclic physiological and behavioral 
rhythms. These cyclic rhythms that repeat themselves at approximately 
every 24 h are regulated by the suprachiasmatic nuclei (SCN) in the 
hypothalamus (Vitaterna et al., 2001). The function of the SCN as a 
central pacemaker is well-established, as demonstrated when circadian 
rhythms were abolished in murine models with SCN lesions (Granados-
Fuentes et al., 2004). The SCN is entrained or synchronized to the local 
time by external factors, known as zeitgebers (time givers). The daily 
light–dark pattern from the retina reaching the SCN is the primary 
zeitgeber for the circadian system (Blume et al., 2019).

SCN neurons contain a network of core clock genes and their 
translated proteins, which oscillate over a 24-h period to generate 
circadian rhythms. Several positive and negative feedback loops 
regulate the function of the circadian oscillator. In particular, the 
transcription factors CLOCK and BMAL1 heterodimerize to 

activate transcription of the clock-controlled genes Period and 
Cryptochrome. Period and Cryptochrome proteins accumulate in the 
cytoplasm, form PER/CRY heterodimers, and translocate to the 
nucleus to inhibit the activity of CLOCK/BMAL1. As a result, 
Period and Cryptochrome transcription is suppressed (Cox and 
Takahashi, 2019). Clock genes are expressed not only in the SCN 
but also in peripheral organs and tissues. The SCN entrains and 
synchronizes gene expression in these peripheral clocks, primarily 
through oscillations in hormone secretion (Balsalobre, 2002).

2.2 The two-process sleep model

Humans are a diurnal species who are awake during the day and 
asleep at night. The two-process sleep model is currently the most 
widely accepted model of sleep regulation. It postulates that the sleep–
wake cycle is regulated by two key processes that act in opposition 
throughout the 24-h day: the circadian process (known as Process C) 
and the sleep–wake dependent homeostatic process (known as Process 
S). Process C is driven by the circadian system and is synchronized to 
the diurnal light–dark cycle, whereas Process S is governed by a pressure 
for sleep that builds during wakefulness and dissipates during sleep. The 
SCN generates a wake-promoting signal that becomes progressively 
stronger throughout the day, reaching a peak shortly before bedtime. 
This wakefulness signal is subsequently lost during secretion of 
nocturnal melatonin (Dijk and Archer, 2009). Consistent with the idea 
that the SCN facilitates the initiation and maintenance of wakefulness 
during the day, Edgar et al. showed that in monkeys who had their SCN 
lesioned, their total sleep time significantly increased, and sleep–wake, 
sleep stages, brain temperature, and the circadian rhythm of drinking 
were eliminated (Edgar et al., 1993).

Adenosine, a byproduct of the hydrolysis of adenosine triphosphate, 
is a key factor in sleep homeostasis. During the daytime, high levels of 
metabolic activity in the brain cause adenosine to accumulate. Adenosine 
then activates A1 and A2A receptors to inhibit arousal circuits and promote 
sleep. This mechanism allows the body to compensate for sleep 
deprivation by increasing both the duration and depth of subsequent 
periods of sleep (Deboer, 2018). These two opposing processes combine 
to regulate wakefulness and sleep propensity in organisms (Deboer, 2018). 
It should be noted that, although time of day and prior time awake are the 
two primary factors affecting sleep, other behavioral and environmental 
factors such as eating, mating, caring for offspring, and illnesses can also 
affect sleep (Duhart et al., 2023). Clock genes, particularly the PER2 gene, 
have also been associated with the homeostatic process of sleep. A 
common variant in PER2 was shown to be associated with a 20-min 
reduction in slow wave sleep, which is a marker of sleep homeostasis 
(Chang et al., 2016). Those with a polymorphism in the PER3 clock gene 
(PER3(5/5)) tend to be morning types and exhibit more rapid build-up 
of sleep pressure during sleep deprivation. These studies show the close 
link between clock genes and the sleep–wake cycle.

2.3 Effects of sleep deprivation on 
cognition

Sleep–wake disruption leading to sleep deprivation is associated 
with various cognitive symptoms that often overlap with changes in 
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brain physiology. A key characteristic of the sleep-deprived brain is a 
notable decline in attention and focus. Sleep loss has been shown to 
impair performance on tasks requiring sustained attention or the 
ability to maintain focus on stimuli presented repeatedly over a long 
period of time. When presented with such tasks, sleep-deprived 
individuals will typically display irregular and sporadic periods of 
focus punctuated by lapses in attention known as “microsleeps” 
(Massar et al., 2019). Brain imaging studies reveal that this attentional 
impairment can be attributed to reduced activity in the frontoparietal 
network (FPN), a group of brain regions involved in executive 
functioning, coupled with intermittent activation of the default mode 
network (DMN), the brain’s resting-state network (Krause et al., 2017). 
The state of imbalance between task-driven and unfocused activity in 
the sleep-deprived brain results in impaired attention during 
cognitively demanding tasks.

In addition, sleep deprivation impairs working memory, the 
ability to retain relevant information for immediate use over a short 
period of time. Working memory and attention are both key 
components of executive functioning processes and operate through 
common neural networks (Zhou et al., 2022). Similarly to attention, 
working memory is inhibited by reduced FPN activity and 
inappropriate DMN activation after sleep deprivation (Chee and 
Choo, 2004). Furthermore, sleep deprivation is associated with deficits 
in long-term memory, likely due to impaired hippocampal function 
and synaptic plasticity (Prince et al., 2014). As summarized by Lim 
and Dinges, sleep deprivation severely affects one’s ability to respond 
quickly, significantly increases the number of response lapses, and 
significantly enhances time on a test bout in a psychomotor vigilance 
task (Lim and Dinges, 2008).

Finally, sleep deprivation has been shown to induce changes in 
mood and behavior by disrupting the functional connectivity of the 
amygdala, a component of the limbic system that oversees emotional 
responses. Sleep-deprived individuals exhibit markedly reduced 
connectivity between the amygdala and ventral anterior cingulate 
cortex, resulting in heightened sensitivity to negative stimuli 
(Motomura et al., 2013). Furthermore, insufficient sleep diminishes 
the ability of the medial prefrontal cortex to regulate amygdala activity 
and stabilize emotional responses (Motomura et  al., 2017). Sleep 
deprivation therefore promotes high reactivity and emotional 
dysregulation and is thought to precipitate disorders such as anxiety 
and depression (Bauducco et al., 2016).

3 Postoperative cognitive dysfunction

3.1 Circadian and sleep disruption in 
cardiac surgery patients

Disturbances in sleep architecture are common among 
hospitalized patients and manifest as a decline in nocturnal sleep 
duration and/or quality. Ho et al. found that 36% of inpatients with no 
history of severe sleep disturbance reported insomnia during their 
stay in the general medical ward of a community hospital, with 68% 
of reports citing staff awakenings from periodic blood draws and vital 
sign checks and 23% citing environmental factors such as ambient 
noise and light intrusions (Ho et al., 2017). The physiological toll of 
cardiac surgery amplifies these effects. Liao et al. report that up to 50% 
of cardiac surgery patients experience sleep disturbance attributable 

to environmental factors and physiological symptoms such as pain 
and dyspnea. Sleep disturbance was found to persist even after 
discharge because of psychological symptoms such as anxiety and 
fluctuations in mood. For most of those patients, sleep quality did not 
return to preoperative levels for 2 months (Liao et al., 2011).

Anesthesia has been identified as a factor in postoperative sleep 
disturbance (Luo et al., 2020). Most general anesthetics target synaptic 
transmission in the central nervous system, depressing excitatory and 
enhancing inhibitory transmission (Platholi and Hemmings, 2022). 
Therefore, ion channel receptors for inhibitory neurotransmitters such 
as γ-amino butyric acid (GABA) are the primary targets of such 
anesthetic agents (Garcia et al., 2010). Interestingly, the pharmacologic 
“sleep” generated by anesthesia shares certain pathways with 
physiological non-rapid eye movement (NREM) sleep. The 
ventrolateral preoptic nucleus (VLPO) of the hypothalamus is highly 
active during NREM sleep and contains primarily GABAergic 
neurons. Anesthetic drugs promote GABA neuronal activity in the 
VLPO. Thus, common patterns of neural activation exist between 
physiological and pharmacologic sleep (Mashour and Hudetz, 2017). 
These interactions may explain the incidence of sleep disturbance after 
anesthesia. Anesthetic drugs have been shown to increase sleep 
fragmentation and decrease the duration of rapid eye movement 
(REM) and Stage 3 NREM sleep (Mashour and Hudetz, 2017). These 
disturbances in the sleep–wake cycle promote CRD.

Anesthesia may also contribute to circadian disruption by directly 
shifting the central pacemaker. General anesthesia has profound 
effects on the neurotransmitter systems, primarily those mediated by 
GABA, that regulate the circadian clock. Anesthetic agents such as 
isoflurane have been shown to exert a phase-shifting effect on the 
clock by activating SCN GABA receptors (Chong et  al., 2021). 
Furthermore, anesthesia alters the expression of several core clock 
genes, notably PER2. Mori et al. describe how sevoflurane anesthesia 
suppressed PER2 expression in the mouse SCN, possibly by reducing 
histone acetylation in the promoter region (Mori et  al., 2014). 
Interestingly, Gökmen et  al. found that daytime isoflurane 
administration suppressed the expression of clock genes BMAL1, 
CLOCK, and CRY2 in addition to PER2. These genes were suppressed 
in both SCN tissue and peripheral clocks located in the liver (Gökmen 
et al., 2017).

CRD can be observed in clock output rhythms, such as melatonin. 
Melatonin is a hormone produced at night and in darkness and serves 
as a nighttime messenger to the body. The SCN regulates the timing 
of melatonin secretion through a multi-synaptic pathway extending 
to the pineal gland. This signaling is dependent on photic information 
relayed to the SCN from the retina: during the biological night and in 
darkness, the SCN activates melatonin synthesis, while during the 
biological day and in light, the SCN inhibits melatonin production 
(Brown, 1994). Exposure to sufficient light at night ceases melatonin 
secretion and disrupts sleep (Rea et al., 2020). Surgery has been shown 
to alter several characteristics of the melatonin rhythm. Gögenur et al. 
report that the rhythm of the melatonin metabolite AMT6s was 
delayed after major surgery and that the magnitude of the delay was 
proportional to the duration of surgery (Gögenur, 2010). In addition, 
Cronin et  al. found that the amplitude of the melatonin rhythm 
decreased significantly on the first postoperative night (Cronin et al., 
2000) and plasma melatonin concentration has been shown to decline 
after surgery (Shen et al., 2020). Given that melatonin feeds back to 
the molecular clock by activating the MT (1) and/or MT (2) melatonin 
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receptors of the SCN (Dubocovich, 2007), melatonin rhythm 
disruption exacerbates CRD, creating a vicious cycle. Similarly, 
abnormal secretion of the hormone cortisol is highly prevalent among 
patients undergoing cardiac surgery. Lanuza found that plasma 
cortisol levels were significantly elevated after both coronary artery 
bypass grafting and defibrillator implantation surgery (Lanuza, 1995). 
McIntosh et al. report that major surgery causes a phase shift in the 
cortisol rhythm (Mcintosh et al., 1981). In some cases, the cortisol 
rhythm is abolished entirely. Gögenur et  al. found that cortisol 
secretion maintained circadian rhythmicity in 8 out of 11 patients 
before major surgery, and only 4 patients after surgery (Gögenur et al., 
2007b). These disturbances may also reflect circadian misalignment. 
Just as the SCN regulates cortisol secretion, cortisol levels in turn 
influence circadian rhythms through glucocorticoid response 
elements (GREs) located in the peripheral circadian clocks (Nicolaides 
et  al., 2014). GRE-dependent pathways allow glucocorticoids to 
temporarily phase shift the expression of various peripheral circadian 
clock genes, notably Per1 and Per2, in heart, liver, and kidney tissue. 
Dysregulation of the cortisol rhythm thus feeds back to the peripheral 
clocks, further disrupting circadian rhythms.

3.2 Circadian disruption promotes POCD

Perioperative circadian disruption is closely linked to 
POCD. Patients experiencing sleep deprivation or disruption of sleep–
wake rhythms are at significantly higher risk for POCD (Gögenur 
et  al., 2007a; Van Rompaey et  al., 2012). In addition, abnormal 
rhythms of circadian biomarkers, such as melatonin and cortisol, often 
predict the onset of POCD (Wu et al., 2014; Androsova et al., 2015). 
Conversely, the administration of melatonin to resynchronize 
circadian rhythms alleviated symptoms of POCD in murine models 
(Fan Y. et  al., 2017; Song et  al., 2018). To explain the correlation 
between circadian sleep disruption and POCD, two closely interacting 
pathways have been described in the literature: neuroinflammation 
and glymphatic dysfunction.

Sleep–wake disruption provokes neuroinflammation even in 
otherwise healthy individuals by activating microglia (Huang et al., 
2014), upregulating complement proteins (Wadhwa et al., 2019), and 
promoting cytokine production (Wang et al., 2021). This heightened 
immune activity increases blood brain barrier (BBB) permeability, 
which results in neuroinflammation and widespread neuronal 
damage (Cuddapah et  al., 2019). Similarly, several studies 
demonstrate that sleep disruption in a perioperative setting 
significantly increases levels of circulating cytokines and damages 
the BBB, causing cognitive dysfunction (Ni et al., 2019; Lu et al., 
2020). The inflammatory response to sleep deprivation is exacerbated 
by the body’s innate immune response to surgical trauma. Invasive 
cardiac surgery may be complicated by tissue damage, hemorrhage, 
or ischemia–reperfusion injury, pathological processes that activate 
inflammation. During procedures involving cardiopulmonary 
bypass (CPB), a technique that diverts blood away from the heart 
and lungs, contact between the foreign surface of the CPB circuit 
and the blood may also cause inflammation (Warltier et al., 2002). 
This peripheral immune response, coupled with the inflammatory 
burden of sleep deprivation, results in extensive postoperative 
neuroinflammation that is thought to play an essential role in the 
pathogenesis of POCD (Luo et al., 2019).

In addition, perioperative sleep–wake disruption prevents the 
glymphatic pathway from clearing potentially neurotoxic metabolic 
waste products from the interstitial space. The glymphatic system is 
highly active during sleep and suppressed during periods of 
wakefulness (Jessen et al., 2015; Hablitz et al., 2020). The clearance of 
the waste in the brain mainly occurs during slow wave sleep, and the 
influx of cerebrospinal fluid (CSF) is suppressed during wakefulness 
(Hablitz et al., 2019). Therefore, even brief periods of sleep deprivation 
can cause significant glymphatic dysfunction and promote the 
accumulation of harmful compounds in the interstitial fluid (ISF) or 
brain tissue. Indeed, Shokri-Kojori et al. found that one night of sleep 
deprivation increased amyloid-β deposition in the hippocampus 
(Shokri-Kojori et al., 2018), and Holth et al. report that chronic sleep 
deprivation increases cerebrospinal fluid (CSF) and ISF tau (Holth 
et al., 2019). Similar effects have been observed in a postoperative 
setting. Wan et al. show that major surgery is associated with the 
accumulation of amyloid-β and hyperphosphorylated tau (Wan et al., 
2010), and Evered et al. report that levels of tau protein increased 
significantly in patients after surgery (Evered et al., 2018), indicating 
glymphatic dysfunction. The abnormal aggregation and buildup of 
amyloid-β and tau is closely associated with cognitive decline and has 
been implicated in a wide range of neurodegenerative diseases, 
including Alzheimer’s disease (Bos et  al., 2018). The correlation 
between these neurotoxic proteins and POCD has been established by 
the literature: higher levels of amyloid-β (Požgain et al., 2022) and tau 
(Ramlawi et  al., 2006) after surgery have been shown to predict 
postoperative cognitive impairment. Glymphatic dysfunction 
therefore represents a viable pathway linking postoperative sleep 
disruption to POCD.

However, it should be noted that this pathway is influenced by 
additional factors, such as anesthesia. The effects of general anesthesia 
on the glymphatic system are complex and multifaceted, as different 
anesthetic agents have been shown to alternately enhance and suppress 
glymphatic activity. Several studies have found that the anesthetic 
dexmedetomidine mimics the effects of slow-wave sleep and thus 
drives glymphatic activity (Lilius et al., 2019; Persson et al., 2022). 
Other studies show that general anesthesia impairs glymphatic 
function by disrupting cerebral arterial pulsatility and respiration, 
processes that drive CSF-ISF exchange. General anesthesia alters these 
parameters by suppressing blood pressure and heart rate and 
substituting positive-pressure mechanical ventilation for spontaneous 
respiration. Indeed, isoflurane anesthesia was shown to inhibit CSF 
circulation and glymphatic activity, particularly at high doses (3%) 
(Gakuba et al., 2018). Hablitz et al. correlated influx of a CSF tracer 
with electroencephalogram (EEG) power and showed that ketamine/
xylazine (K/X) showed the highest CSF tracer influx, while alpha-
chloralose, Avertin, or pure isoflurane exhibited the lowest CSF tracer 
influx when mice were under anesthesia (Hablitz et al., 2019). Future 
research should clarify the effects of anesthesia on glymphatic function 
and explore the possibility of a common mechanism to explain these 
conflicting results.

4 Hospital light interventions for sleep 
and circadian health

Light is the primary zeitgeber for the circadian pacemaker, 
synchronizing a host of physiological processes to the external 

https://doi.org/10.3389/fnins.2024.1390216
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Campbell and Figueiro 10.3389/fnins.2024.1390216

Frontiers in Neuroscience 05 frontiersin.org

day-night cycle. Through this pathway, therapeutic light interventions 
may reset abnormal circadian rhythms in surgical patients, mitigating 
some of the symptoms associated with POCD.

While there are no formal recommendations for daytime 
circadian-effective light exposure for hospital environments, 
recommendations for day-active people have been proposed (UL 
Standards and Engagement, 2019). In general, the recommendation is 
to deliver at least 350–500 lux at the eye level during the daytime. 
Studies showed that hospital rooms or intensive care units (ICU) often 
lack a robust light–dark pattern, with lighting conditions below the 
recommended daytime light and too much evening/nighttime light. 
Tan et al. report average ambient ICU daytime light levels of 100 lux, 
significantly lower than those recommended by UL 24480 (Tan et al., 
2019). Fan et al. showed that light levels in the ICU peaked in the late 
morning, but the median level was less than 65 lux and light levels 
never exceeded 150 lux (Fan E. P. et al., 2017). Meyer et al. showed that 
light levels at night in the ICU were low for the most part, but that at 
times brief exposures to high light levels at night (>1,000 lux) occurred 
(Meyer et al., 1994). Verceles et al. measured lights near ICU patients’ 
beds and showed that light levels were between 40 lux during the 
daytime and around 2 lux during the nighttime (Verceles et al., 2012). 
This environment delivering low light levels during the day may 
prevent patients from maintaining stable circadian rhythms 
(Durrington et  al., 2017). In fact, the lack of circadian-effective 
daytime light has been shown to be  associated with decreased 
circadian rhythm amplitude (Bano-Otalora et al., 2020), poor sleep 
quality, and delayed sleep onset (Blume et al., 2019). Bernhofer et al. 
also found that low daytime light levels in hospitals predicted sleep 
fragmentation and mood disturbances among patients (Bernhofer 
et al., 2014).

Life has evolved around the 24-h cycle of robust light and darkness 
that constitutes Earth’s solar day. Hospital lighting should therefore 
mirror this robust light–dark cycle, creating a clear distinction 
between day and night. Daylight is the ideal light source for the 
circadian system and can be delivered to hospital rooms via windows 
or skylights. However, this option is not always possible in hospital 
facilities. When that is the case, electric lighting to deliver circadian-
effective light during the day can be used (Knoop et al., 2020; Münch 
et al., 2020; Wirz-Justice et al., 2021). A general model or “target” for 
circadian-effective lighting has been established in the literature (Rea 
and Figueiro, 2018; UL Standards and Engagement, 2019; Rea et al., 
2021a,b). Lighting interventions providing circadian-effective light 
exposures have shown great promise as a nonpharmacological 
treatment to help regulate sleep in populations at risk for circadian 
rhythm disruption, such as persons living with Alzheimer’s disease 
and related dementias. Studies have demonstrated that daytime light 
exposure can consolidate and increase nighttime sleep efficiency, 
while increasing daytime wakefulness and reducing evening agitation 
in this population (Figueiro et  al., 2014, 2015, 2016, 2019, 2020; 
Figueiro, 2017; Rubiño et  al., 2017, 2020). Similar light therapy 
approaches have been shown to improve mood outcomes, perhaps via 
improved circadian entrainment, in patients undergoing autologous 
stem cell transplantation hospitalization for the treatment of multiple 
myeloma (Valdimarsdottir et al., 2018). Light therapy has also shown 
promise as a means for improving circadian entrainment and 
outcomes in the clinical management of genitourinary cancers (Kaur 
et al., 2022). There is no reason to presume that light therapy could not 
also be  used to improve outcomes in patients experiencing 

perioperative circadian disruption and POCD resulting from 
cardiac surgery.

Indeed, the implementation of circadian-effective lighting in 
hospitals has been shown to improve sleep quality and reduce the 
incidence of cognitive dysfunction. Wakamura and Tokura found that 
5 h of daytime exposure to bright light significantly increased both 
sleep duration and melatonin secretion among hospitalized patients 
(Wakamura and Tokura, 2001). In addition, bright light therapy was 
associated with reduced risk of delirium among surgical ICU patients 
(Potharajaroen et  al., 2018). Decreased nocturnal light levels had 
similar effects on circadian rhythmicity. Patel et al. found that reducing 
ambient light and noise at night improved patients’ sleep quality and 
decreased delirium incidence in the ICU (Patel et al., 2014). Circadian-
effective lighting has been established as an effective tool to 
re-synchronize abnormal rhythms to the natural day-night cycle, thus 
preventing sleep disruption and cognitive decline.

5 Discussion

In an environment where numerous factors threaten the stability 
and rhythmicity of the circadian clock, lighting interventions represent 
a route toward reducing CRD and cognitive dysfunction in cardiac 
surgery patients. Circadian disruption is common among patients 
undergoing cardiac surgery due to sleep deprivation, inflammation, and 
the suppressive effects of anesthesia on several clock genes. These 
disturbances manifest as changes in the rhythmic secretion of circadian 
markers, such as melatonin and cortisol, and feed back to exacerbate 
sleep–wake disruption (Gögenur et al., 2007b). Circadian misalignment 
has immediate and profound consequences for cognitive function in 
surgical patients. On a molecular level, sleep deprivation incites harmful 
neuroinflammation and oxidative stress, resulting in tissue damage (Lu 
et  al., 2020; Wang et  al., 2021). On a broader physiological level, 
circadian disruption reduces hippocampal volume, disturbs the 
structural integrity of the BBB, and impairs glymphatic system function 
(Ni et al., 2019). These neurocognitive complications may cause long-
term damage and slow the postoperative recovery process for patients. 
Therefore, re-synchronizing abnormal circadian rhythms to the natural 
day-night cycle may help address the pathogenesis of POCD. Because 
the circadian pacemaker is directly regulated by photic information 
emanating from retinal photoreceptors, therapeutic lighting 
interventions provide a non-invasive, non-pharmacological means of 
entraining circadian rhythms in surgical patients. There is growing 
evidence that circadian-effective lighting, characterized by bright 
daytime and dim nighttime light, effectively restores normal rhythms of 
circadian markers and corrects the sleep–wake cycle. These effects may 
extend beyond the circadian pacemaker to reduce the delirium burden 
in patients undergoing major surgery (Potharajaroen et  al., 2018). 
Future research should focus on establishing optimal parameters for 
circadian-effective lighting while navigating the need for visibility in a 
hospital setting.
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