
Frontiers in Neuroscience 01 frontiersin.org

Mapping intracellular NAD 
content in entire human brain 
using phosphorus-31 MR 
spectroscopic imaging at 7 Tesla
Rong Guo 1,2, Shaolin Yang 3,4, Hannes M. Wiesner 5, Yudu Li 1, 
Yibo Zhao 1,6, Zhi-Pei Liang 1,6, Wei Chen 5* and Xiao-Hong Zhu 5*
1 Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, 
Urbana, IL, United States, 2 Siemens Medical Solutions USA, Inc., Urbana, IL, United States, 
3 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States, 4 Department of 
Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States, 5 Department of Radiology, 
Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States, 
6 Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 
Urbana, IL, United States

Introduction: Nicotinamide adenine dinucleotide (NAD) is a crucial molecule in 
cellular metabolism and signaling. Mapping intracellular NAD content of human 
brain has long been of interest. However, the sub-millimolar level of cerebral 
NAD concentration poses significant challenges for in vivo measurement and 
imaging.

Methods: In this study, we demonstrated the feasibility of non-invasively 
mapping NAD contents in entire human brain by employing a phosphorus-31 
magnetic resonance spectroscopic imaging (31P-MRSI)-based NAD assay at 
ultrahigh field (7 Tesla), in combination with a probabilistic subspace-based 
processing method. 

Results: The processing method achieved about a 10-fold reduction in noise over raw 
measurements, resulting in remarkably reduced estimation errors of NAD. Quantified 
NAD levels, observed at approximately 0.4 mM, exhibited good reproducibility 
within repeated scans on the same subject and good consistency across subjects 
in group data (2.3 cc nominal resolution). One set of higher-resolution data (1.0 cc 
nominal resolution) unveiled potential for assessing tissue metabolic heterogeneity, 
showing similar NAD distributions in white and gray matter. Preliminary analysis of 
age dependence suggested that the NAD level decreases with age.

Discussion: These results illustrate favorable outcomes of our first attempt to 
use ultrahigh field 31P-MRSI and advanced processing techniques to generate a 
whole-brain map of low-concentration intracellular NAD content in the human 
brain.
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1 Introduction

Nicotinamide adenine dinucleotide (NAD) is a crucial metabolite for all living cells, 
existing in the oxidized (NAD+) and/or reduced (NADH) forms. It functions as a coenzyme 
in various cellular redox reactions and serves as a substrate for various NAD+-consuming 
enzymes (Belenky et al., 2007; Verdin, 2015). NAD has been shown to play pivotal roles in 
numerous cellular processes and functions, including energy metabolism, mitochondrial 
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function, cellular signaling, calcium homeostasis, aging, longevity, and 
cell death (Ziegler, 2000; Belenky et al., 2007; Verdin, 2015; Cuenoud 
et al., 2020). Therefore, the in vivo measurement and quantification of 
intracellular NAD levels in the human brain have attracted significant 
interest in numerous scientific investigations on brain aging (Braidy 
et  al., 2019; Lautrup et  al., 2019; Griffiths et  al., 2020), cognitive 
functions (Zhao et al., 2021; Campbell, 2022), and neurodegenerative 
diseases such as Alzheimer’s (Ruan et al., 2018; Hou et al., 2021; Wang 
et al., 2021), Parkinson’s (Pérez et al., 2021; Kriebs, 2022; Mischley 
et al., 2023), and Huntington diseases (Lautrup et al., 2019; Lundt and 
Ding, 2021).

Despite the profound importance of intracellular NAD 
metabolism in human health and disease, assessing brain intracellular 
NAD levels in-situ has been challenging. Recent advancements in in 
vivo magnetic resonance (MR) spectroscopy/spectroscopic imaging 
(MRS/MRSI)-based techniques have enabled non-invasive 
measurement of NAD levels in the human brain (Lu et al., 2014b; Zhu 
et al., 2015; Lu et al., 2016; de Graaf et al., 2017; Bagga et al., 2020; 
Skupienski et al., 2020; Dziadosz et al., 2022). However, most of the 
current studies were restricted to the examination of a small brain 
region or using averaged spectra for a few brain regions, with limited 
exploration of NAD distributions across various brain regions over the 
entire human brain (Lu et al., 2014b; Zhu et al., 2015; Das et al., 2021; 
Ren et al., 2023). These limitations stem from several long-standing 
technical hurdles. The intracellular NAD concentrations in the brain 
reside within the sub-millimolar range, yielding an exceptionally low 
signal-to-noise ratio (SNR; Lu et  al., 2014b; Zhu et  al., 2015). 
Furthermore, as a high-dimensional imaging method, MRSI typically 
demands a large number of measurements to encode both spatial and 
spectral information. Therefore, using existing MRSI methods, 
especially phosphorus-31 MRSI (31P-MRSI) to obtain high-quality 
maps of NAD concentrations throughout the entire brain could take 
prohibitively long scan times on the order of hours (Santos-Díaz and 
Noseworthy, 2020).

In recent years, a range of techniques has been developed to 
tackle these challenges and advance 31P-MRSI applications for 
mapping brain metabolites. The emergence of ultrahigh field MR 
systems has yielded significantly enhanced SNR and spectral 
resolution (Lei et al., 2003; Moser et al., 2012; Barker, 2014; Ruhm 
et al., 2021). For instance, a 2.8-fold sensitivity increase has been 
shown in 31P-MRS at 7 T compared with 3 T (Rodgers et al., 2014; Lu 
et  al., 2014a). Specialized acquisition methods such as proton 
decoupling and nuclear overhauser effect (NOE) have been utilized 
to further improve spectral quality and SNR (Luyten et al., 1989; Lei 
et al., 2003); and fast scanning trajectories like echo-planar or spiral 
trajectories have been used to enhance data acquisition speed 
(Valkovič et al., 2016; Korzowski and Bachert, 2018). Advanced post-
processing methods like low-rank denoising have further contributed 
to noise reduction (Ma et al., 2017; Clifford et al., 2020; Korzowski 
et al., 2020). Nevertheless, quantitative imaging of the intracellular 
NAD level throughout the entire human brain still remains 
challenging given its exceptionally low concentration.

The purpose of this study is to demonstrate the feasibility of 
whole-brain NAD mapping by synergistically integrating ultrahigh 
field 31P-MRSI with an advanced denoising method based on the 
probabilistic subspace model (Chen et al., 2020; Li et al., 2021a; Zhang 
et al., 2023). This method leverages ultrahigh field, spectral priors, 
spatial constraints, and statistical priors to significantly enhance the 

sensitivity of 31P-MRSI for NAD imaging. Its performance in terms of 
SNR, accuracy, and reproducibility of the resulting NAD 
measurements were evaluated. The potential of mapping tissue 
metabolic heterogeneity and revealing age dependence of NAD levels 
were also preliminarily assessed. The results indicate that this method 
holds a significant promise for mapping the NAD content in the 
human brain.

2 Materials and methods

2.1 Data acquisition

Two sets of in vivo human brain 31P-MRSI data were collected in this 
study. The first set of data was collected at the University of Minnesota 
for technical validation. The scans were performed on a 90-cm bore 7 T 
magnet (Magnex Scientific, Abingdon, United Kingdom) equipped with 
a Varian INOVA console and a 31P/1H dual-tuned TEM head volume 
coil. The scan protocol included an anatomical imaging using a 
turboFLASH sequence (repetition-time (TR)/echo-time (TE)/inversion-
time (TI) = 8.0/3.6/1,600 ms, field of view (FOV) = 20 × 20 cm2, matrix 
size = 128 × 128, slice thickness = 3 mm), and 3D 31P-MRSI using the 
chemical shift imaging (CSI) sequence with a Fourier series window 
imaging technique (Hendrich et al., 1994) (TR/TE = 500/1.0 ms, flip 
angle = 45°, bandwidth = 5 kHz, FOV = 20 × 20 × 22 cm3, matrix 
size = 15 × 15 × 13, cylindric voxel shape, nominal voxel size = 2.3 cc, total 
scan time = 51 min). Seven healthy volunteers participated in this study 
and the scan procedures were approved by the Institutional Review 
Board of the University of Minnesota. One of the subjects was scanned 
twice for the test–retest reproducibility study. The second set of data was 
collected at the University of Pittsburgh, with higher spatial resolutions 
to investigate the potential on assessing tissue metabolic heterogeneity. 
These scans (from 14 subjects) were performed on a MAGNETOM 7 T 
system (Siemens Healthcare, Erlangen, Germany) with a 31P/1H dual-
tuned birdcage head volume coil (Rapid Biomedical, Rimpar, Germany), 
under approval of the Institutional Review Board at the University of 
Pittsburgh. The scan protocol included an MPRAGE sequence (TR/TE/
TI = 3000/1.87/1,200 ms, FOV = 25.6 × 18.4 cm2, matrix size = 256 × 184, 
slice thickness = 1 mm) and a 3D 31P-CSI sequence (TR/TE = 200/1.0 ms, 
flip angle = 30°, bandwidth = 5 kHz, FOV = 22 × 22 × 10 cm3, matrix 
size = 24 × 24 × 8, cuboid voxel shape, nominal voxel size = 1.0 cc, total 
scan time = 21 min). In the 31P-CSI sequence, two 5-ms hard pulses were 
applied on the water proton resonance for NOE to gain SNR. A summary 
of the hardware and acquisition parameters according to the Minimum 
Reporting Standards for in vivo MRS (Lin et al., 2021) was included in 
Supplementary Tables S1–S3. Informed consent was collected from all 
the volunteers at both sites before the experiments. These two datasets 
are referred to as “2.3-cc data” and “1.0-cc data” in the subsequent 
sections of this paper.

2.2 Signal denoising

Existing low-rank denoising methods for 31P-MRSI signals exploit 
the partial separability property of the spatiotemporal distributions 
(Liang, 2007), which admits the following decomposition (or low 
dimensional subspace structure) of the noise-free signal (denoted as 
ρ x t,( )) in Equation (1):
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where v t u Ll l( ){ } ( ){ }, ,x  denote the temporal basis functions, 
corresponding spatial coefficients, and the model order, respectively. 
This partial separability model implies that the actual degrees-of-
freedom needed to represent the MRSI signals can be largely reduced, 
and the Casorati matrix formed by the MRSI signals has a low-rank 
structure (Liang, 2007). Based on this property, the typical low-rank 
denoising methods perform low-rank approximation on the Casorati 
matrix for noise reduction (Nguyen et al., 2013). First, the Casorati 
matrix is constructed using the measured spatiotemporal MRSI signals. 
Then, a singular value decomposition (SVD) is performed on the 
Casorati matrix. Given a specific model order L, the singular value 
matrix from SVD is truncated by only keeping the first L values and 
setting the others to zero. Then the truncated singular value matrix is 
multiplied back with the other two decomposed matrices to generate 
the denoised Casorati matrix thus the denoised MRSI signals. Although 
its effectiveness has been demonstrated in various MRSI applications 
(Liang, 2007; Lam and Liang, 2014; Ma et al., 2017; Korzowski et al., 
2020), it may fall short in addressing the challenges posed by extremely 
low SNR scenarios, particularly in the context for mapping brain NAD.

In this study, we  used a probabilistic subspace model-based 
method for more effective denoising, which integrated the low-rank 
property with group spectral priors, spatial and statistical constraints 
(Li et al., 2021a,b). More specifically, the temporal basis functions 
v tl ( ){ } were pre-determined from a group of data (all the 31P-MRSI 

data we acquired in this study) instead of a single noisy data as spectral 
priors; the spatial coefficients were assumed to have no large spatial 
variations and follow certain statistical distribution, which were also 
pre-estimated from the group data. To incorporate these priors and 
impose these constraints, the denoising was performed by solving the 
following regularized optimization problem in Equation (2):

 
( )2 2 2

2 2
ˆ arg min logPr ,r n

U
U UV WU Uρ λ σ= − + −

 
(2)

where U , V , and ρr  are the matrix forms of u xl ( ){ } and v tl ( ){ } and 
measured noisy 31P-MRSI data, respectively. W  denotes the edge-
weighted total variation operator, λ is the weighting parameter 
(determined by the discrepancy principle (Vogel, 2002)), Pr U( ) 
denotes the probability given a specific U , and σn

2  is the variance 
of measurement noise. With the estimated Û , the denoised 31P-MRSI 
signals were generated as ˆρ =d UV .

2.3 Subspace and distribution estimation

To pre-determine the basis functions v tl ( ){ }, a spectral alignment 
step was first performed to all the 31P-MRSI data in the group. 
Specifically, the frequency of phosphocreatine (PCr) resonance peak 
in each voxel was first estimated using Hankel singular value 
decomposition (HSVD), then this frequency was used to shift the 
signals so as to align the PCr peak to 0 ppm (Barkhuijsen et al., 1987). 
This spectral alignment step removed the inter-voxel and inter-scan 
frequency variations caused by the static magnetic field (B0) 
inhomogeneity, thus promoting the low rankness of 31P-MRSI signals 

(Peng et al., 2010). After the spectral alignment, a Casorati matrix was 
formed including all the group 31P-MRSI data, with rows as the 
temporal signals of each spatial location. Then, SVD was performed 
on the Casorati matrix to derive the temporal basis functions (Liang, 
2007; Nguyen et al., 2013; Chen et al., 2020; Lam et al., 2020; Guo 
et al., 2021a,b).

To estimate the statistical distributions Pr U( ), the group 31P-MRSI 
data were first projected onto the subspace spanned by the basis 
functions derived above to generate corresponding spatial coefficients. 
This set of spatial coefficients formed the empirical distributions of 
u xl ( ){ }. In our current implementation, we used a Gaussian model to 

express these distributions: Pr /U Ae U U U( ) = − − 0 2

2 2σ . A is a 
normalization constant; the mean (U0) and variance (σU

2 ) values were 
derived from the group data in the maximum likelihood sense, as done 
in the previous works (Boldea and Magnus, 2009; Li et al., 2021a).

2.4 Quantification

After denoising, the spectral quantification was performed using 
a time-domain fitting method to generate the signal intensity of each 
separate metabolite (Ratiney et al., 2005; Li et al., 2017). The basis set 
used for spectral fitting included 11 resonance structures of the 
measurable 31P metabolites in the human brain: PCr, α-adenosine 
triphosphate (αATP), γATP, βATP, (intracellular) inorganic 
phosphate (Pi), extracellular Pi (ePi), glycerophosphoethanolamine 
(GPE), glycerophosphocholine (GPC), phosphoethanolamine (PE), 
phosphocholine (PC), and NAD combining NAD+ and NADH. Given 
the linewidth broadening for the in vivo 31P-MRSI data and 
disappearing of doublets or triplets at ultrahigh field of 7 Tesla, the 
31P signals of these metabolites were modeled as singlet resonances 
with Lorentzian line shape. After spectral fitting, the quantitative 
metabolite concentrations were calculated using γATP resonance 
signal as an internal reference, as in Equation (3):
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where C S E N, , ,  are the concentration (mM), fitted signals intensity, 
longitudinal relaxation time (T1) saturation factor, and number of 
31P spins in each metabolite, respectively. C ATPγ  was set as 2.8 mM 
(Zhu et  al., 2015). The T1 saturation factor was calculated as in 
Equation (4):
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where α  is the RF pulse flip angle, and T m1,  the longitudinal relaxation 
time of a metabolite, whose values from the previous reports were 
used (Ren et al., 2015).

2.5 Performance evaluation

Performance of the presented method for NAD mapping was 
evaluated in multiple aspects. First, using one “2.3-cc data,” the SNR 
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enhancement by the denoising method was calculated and compared 
with the original measurements and the typical low-rank approximation 
method. The SNR was calculated as the PCr peak height divided by the 
noise standard deviation estimated from the last one hundred time 
points of spectroscopic signals. Mean values and standard deviation of 
the resulting NAD concentrations were also computed and compared. 
Second, the accuracy of the NAD measurements was assessed via 
computational simulation. One high SNR 31P-MRSI data was created 
by averaging the eight “2.3-cc data” as ground truth, and Gaussian 
noise was added to mimic the actual measurements. Then, NAD 
concentrations were obtained using the processing methods mentioned 
above, and the relative root-mean-square-error (rRMSE) with ground 
truth was quantified. Detailed setup of the simulation was described in 
the next section. Third, the test–retest “2.3-cc data” was used to evaluate 
the reproducibility. NAD concentrations obtained from two scans on 
the same subject were compared; and Pearson’s correlation coefficient 
as well as coefficient of variation (CoV) were reported. Fourth, the 
“1.0-cc data” was used to assess the metabolic heterogeneity between 
the gray and white matter. More specifically, a linear regression analysis 
was performed on metabolite signal intensities against corresponding 
gray matter fractions. In this analysis, gray matter fractions were 
calculated from tissue segments derived from the anatomical image 
using SPM12 (Penny et al., 2007). Only voxels totally within the brain 
and with a cerebrospinal fluid (CSF) fraction less than 30% were 
included. Fifth, the correlation between NAD levels in the “1.0-cc data” 
and the subject ages were analyzed to assess the age dependence. The 
average NAD level over the brain was calculated for each subject and a 
linear regression analysis was performed to show the trend of NAD 
level changing with their age.

2.6 Computational simulation

The generation of ground truth for computational simulation 
based on real 31P-MRSI data included the following steps. First, all the 
eight “2.3-cc data” were spatially registered together using affine 
transformation. Second, the spectral alignment step was performed to 
all the 31P-MRSI data to align their PCr peaks to 0 ppm. Third, the 
phase differences between different 31P-MRSI data were estimated 
using their first temporal points and then they were corrected to 
match the first data. Fourth, these 31P-MRSI data of different subjects 
were averaged, and one Hamming window was applied in the slice 
direction of the average 31P-MRSI data (in k-space) to gain SNR as the 
ground truth. After the high SNR ground truth was created, Gaussian 
noise with the same variance level as in practically measured data was 
added, generating the noisy raw data. Then, signal denoising and 
spectral quantification as mentioned above were applied to generate 
NAD estimates for further evaluation.

3 Results

Figure 1 shows a comparison of resulting 31P-MRSI spectra, SNR 
maps, and metabolite maps (on one set of “2.3-cc data”) using different 
processing methods to illustrate the denoising efficacy of the presented 
method. On the representative spectra from a selected voxel, we can 
see many metabolite peaks other than PCr and ATPs were buried 
under the noise level in the raw 31P-MRSI data; the basic low-rank 

denoising method performed well in noise reduction but the NAD 
peak was still difficult to be distinguished from noise; while the results 
from the proposed method achieved a better noise reduction and the 
NAD peak became clearly above the noise level. The SNR maps also 
affirmed the significant improvement in SNR compared with original 
data and basic low-rank denoising. The mean SNRs over the brain 
were 12.65 ± 1.91 dB, 17.05 ± 1.67 dB, and 22.49 ± 1.48 dB for raw MRSI 
data, low-rank denoising, and the proposed method, respectively. 
Compared with the original noisy data, the presented method almost 
provided an around 10-fold sensitivity enhancement, which might 
make it possible for reliable detection of NAD signals in the voxel 
base. As shown in Figure 1, given the relatively high concentration of 
PCr, its spatial intensity maps were of good quality and consistent 
using different methods. But the spatial maps of low-concentration 
metabolites like GPC and NAD were heavily contaminated by noise 
without denoising. The NAD maps using basic low-rank denoising 
showed significant noise reduction but there were still noticeable 
spatial variations induced by noise. In contrast, the results produced 
using the proposed method showed further reduced noise fluctuations 
and a relatively homogenous distribution of NAD within the human 
brain. The signal intensities of NAD over the brain were 0.52 ± 0.18, 
0.49 ± 0.11, and 0.42 ± 0.08 (in institutional unit) for these three 
methods, respectively. As expected, the proposed method produced 
the smallest spatial variations.

One complete set of whole-brain metabolite intensity maps (4 
representative 31P-MRSI slices from another set of “2.3-cc data”) is 
shown in Figure 2, including PCr, αATP, γATP, βATP, Pi, GPE, GPC, 
PE, PC, and NAD. Most of the intensity maps, including NAD, were 
of high quality with very minor effects of noise, except PC, which had 
the lowest signal intensity in the acquired 31P-MRSI data (as shown in 
the spectra in Figure 1). The NAD map suggested that intracellular 
NAD concentrations appeared to have a relatively homogeneous 
distribution over the brain, with only slight enhancements in midbrain 
or thalamic regions. It is worth noting that PCr had high signals in 
some subcutaneous regions, but other metabolites did not, which was 
suspected due to the scalp muscles with a higher PCr concentration.

Figure 3 shows results of the computational simulation to illustrate 
accuracy of the proposed method. Representative spectra and NAD 
estimates using different processing methods were compared. Similar 
to the observations in Figure 1, raw measurements without denoising 
had very noisy estimates of NAD intensity, the low-rank denoising 
provided a reduced noise level, while the proposed method offered the 
best SNR. With a significant noise reduction, the NAD intensity map 
and localized spectrum produced using the proposed method were very 
close to the ground truth. Quantitatively, rRMSEs of NAD estimates 
referring to the ground truth were 48.7, 20.5, and 12.4% for the raw data, 
low-rank denoising, and the proposed method, respectively. In this 
realization of noise simulation, SNR enhancement of the proposed 
method led to an improved accuracy on NAD estimation by around 
six-fold, and the resulting relative errors were around 12%.

Figure 4A displays the quantified NAD concentration maps (in 
the unit as mM) from all seven subjects in the “2.3-cc data.” These 
NAD concentrations are displayed in tripolar views and show 
similar spatial distributions in the brain. A summary of the NAD 
concentrations across these subjects is shown in Figure  4B. The 
mean NAD concentration of each subject was around 0.4 mM, and 
the standard deviation was around 0.1 mM. These statistics were 
reasonably consistent among these seven subjects studied to date. 
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Figure 4 also includes the reproducibility results from two repeated 
scans on the same subject. One pair of spectra in the same spatial 
voxel from these two measurements were displayed and compared 
in Figure 4C. A good agreement was observed between these two 
spectra, including the small NAD peaks, as indicated in the zoom-in 
regions between −5 and −10 ppm. The R2-plot in Figure  4D 
includes quantitative NAD concentrations of all voxels within the 
brain. Compared with the identical line, there was no significant 
bias between these two NAD measurements, and the NAD 
concentrations were mostly distributed from 0.30 mM to 
0.50 mM. Additionally, the Pearson’s correlation coefficient between 
these two measurements was 0.72 and the averaged coefficient of 
variation was 6.1%, further suggesting an excellent reproducibility 
between these two scans, even though the NAD concentration is 
very low.

Figure 5 presents the SNR analysis on one high-resolution “1.0-cc 
data” using different processing methods. Compared with the “2.3-cc 
data,” this set of data was acquired with higher resolution and a shorter 
scan time, thus intrinsically having a lower SNR. The SNR differences 
with the “2.3-cc data” could be noticed from the representative spectra 
and SNR maps compared with Figure 1. But similarly, the proposed 
method still outperformed the raw MRSI data and basic low-rank 
denoising method and produced spectra of a largely improved quality, 
with the NAD resonance visible above the noise level. The calculated 
SNRs over the brain were 9.65 ± 3.06 dB and 18.22 ± 2.61 dB before and 
after denoising, approximately one half and one third of the “2.3-cc 
data,” respectively.

Figure 6 shows the high-resolution metabolite maps obtained 
from one set of “1.0-cc data,” including intensity maps of PCr, αATP, 
GPC, and NAD. With the degraded SNR compared with the “2.3-cc 

FIGURE 1

Representative spectra, SNR maps, and metabolite maps (signal intensities after spectral fitting, including PCr, αATP, GPC, and NAD) of results (from one 
2.3  cc data) using different processing methods: (A) raw in vivo 31P-MRSI data without denoising; (B) 31P-MRSI data using basic low-rank denoising; 
(C) 31P-MRSI data using the probabilistic subspace-based denoising method. Spectra were displayed on the same horizontal scale. The displayed 
spectra were from the single voxel labeled on the SNR maps and they were displayed in absolute mode.

FIGURE 2

A representative set of human brain metabolite maps (signal intensities after spectral fitting) obtained using the proposed method, including PCr, αATP, 
γATP, βATP, Pi, GPE, GPC, PE, PC, and NAD. Nominal spatial resolution was 2.3  cc, acquisition time was 51  min.
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data,” the proposed method still produced reasonable although 
relatively noisier NAD estimates. Nevertheless, benefitting from the 
higher resolution, the heterogeneity of metabolite distributions 
between brain tissues became more visible. More specifically, PCr 
exhibited a clear higher concentration in gray matter than white 
matter, while the ATPs and NAD showed relatively uniform 
distributions between brain tissues. The regression analysis results of 
this data are shown in Figure 7. From the plots and regression curves, 
we found that higher gray matter fractions were associated with higher 
PCr levels, lower GPC levels, uniform ATP distributions, and similar 
NAD levels, which matched the observations in literature reports 
(Ruhm et al., 2021).

The age dependence of NAD level was revealed using the “1.0-cc 
data.” The NAD levels, which were signal intensities of NAD over the 
brain, of the 14 subjects and their ages were displayed in Figure 8. As 
we can see, cluster of the data with ages below 30 showed the highest 
overall NAD levels, and the NAD levels declined with ages above 30. 
The linear regression curve also confirmed this trend of NAD decline 
as age increases. The whole brain averaged spectra before and after 
denoising of these subjects were displayed in Supplementary Figure S5. 
This NAD decline with aging matched the biological expectation (Zhu 
et al., 2015), and could serve as strong indirect evidence to further 
support the feasibility of our 31P-MRSI method in mapping brain 
NAD content.

4 Discussion

Using 31P-MRSI techniques, the feasibility for mapping 
phosphorus metabolite distributions over the human brain with 
reasonable sensitivity and resolution has been demonstrated 
previously (Korzowski and Bachert, 2018; Korzowski et al., 2020, 2021; 
Rowland et  al., 2020; Ruhm et  al., 2021). However, for 
low-concentration metabolite signals such as NAD, it is still very 
challenging to measure and quantify due to the limited SNR in 

individual voxels. In this study, we applied a probabilistic subspace-
based approach to process the 31P-MRSI data acquired at ultrahigh 
field and achieved significant noise reduction, which made it possible 
to reliably map and quantify the low-level NAD content across the 
entire human brain at 7 Tesla. Computational simulation and in vivo 
experiments were carried out to evaluate the SNR performance, 
accuracy, and reproducibility of the imaging method in NAD 
measurement. From the in vivo results, brain NAD concentrations 
around 0.4 mM were consistently found among multiple subjects. This 
averaged NAD level over the brain is in good agreement with the 
reported values obtained from human occipital and other brain 
regions (Zhu et al., 2015; Ruhm et al., 2021).

This feasibility study showed a relatively homogenous distribution 
of NAD levels over the brain. On the one hand, in the “2.3-cc data,” 
the spatial resolution is limited. Even though no hamming window 
was applied in processing to preserve spatial resolutions, partial 
volume effects could still partly contribute to the homogenous 
distribution we observed. On the other hand, the contrast analysis on 
the “1.0-cc data” also implied an insignificant NAD contrast between 
gray matter and white matter, especially compared with PCr and 
GPC. Even though only a small cohort was included in this analysis 
and further studies will be  needed to confirm, the experimental 
evidence on the current data we have up to now consistently suggested 
such a homogenous distribution of brain NAD concentrations. This 
homogenous distribution of NAD might indicate a potentially 
uniform need for maintaining NAD homeostasis across the brain as 
ATP does, and might suggest that NAD plays a consistent role in 
supporting cellular functions throughout the entire brain.

This study showed a noticeable decline of brain NAD levels with 
aging (see Figure 8). This trend aligned with previous ex vivo studies 
and in vivo reports focusing on occipital and frontal lobes (Gomes 
et al., 2013; Zhu et al., 2015; Kim et al., 2017), suggesting a decline in 
mitochondrial metabolism efficiency and functionality during aging 
process. Successful reveal on the age dependence of NAD supported 
the feasibility of our method in measuring NAD changes under 

FIGURE 3

Computational simulation of 31P-MRSI for comparison of different methods: (A) ground truth (generated by averaging eight 31P-MRSI data); (B) raw data 
without denoising; (C) basic low-rank denoising; (D) probabilistic subspace-based denoising method. NAD maps (signal intensities after spectral fitting) 
were displayed on the left and the localized spectra of selected point (as labeled on the NAD maps) were displayed on the right. The spectra were 
displayed in absolute mode.
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different biological conditions, which may have many potential 
applications in neurodegenerative diseases and aging-related 
disorders. But one limitation of this set of data is the limited size of 
cohort. Only 14 data were included for now and only three of them 
have an age above 30. In the future, including more subjects, especially 
more elderly volunteers, will strengthen the observations and 
evidence. In addition, more data in a wider age range may make it 
possible to understand better the age dependency of NAD 
concentration, even its variations in different age stages. It should also 
be noted that only the signal intensities after spectral fitting instead of 

quantified NAD concentrations were analyzed for the “1.0-cc data.” 
This is because NOE was employed in this dataset, which made the 
absolute quantification of metabolites challenging. In order to achieve 
absolute quantification, additional calibration scans and systematic 
studies will be needed, which is beyond the scope of this paper.

The partial separability model-based method has been widely 
used for noise reduction in not only 31P-MRSI, but also MRSI of other 
nuclei including 1H, 13C, 2H, etc. (Liang, 2007; Nguyen et al., 2013; 
Lam and Liang, 2014; Li et al., 2017; Guo et al., 2019). Compared with 
the basic low-rank approximation method used in previous 31P-MRSI 

FIGURE 4

(A) Quantified whole-brain NAD concentration maps (in mM, overlaid on anatomical MRI images) of seven subjects (the subject 7 was scanned twice, 
labeled as Sub. 7a and Sub. 7b). (B) Boxplots of the NAD concentrations of these seven subjects with the mean and standard deviations. Red lines 
indicate the median while blue boxes cover the 25%–75% percentiles. (C) Spectra of the same selected voxel (as labeled on the NAD maps) from Sub. 
7a and Sub. 7b datasets. (D) R2-plot of the NAD concentrations from Sub. 7a and Sub. 7b datasets, with the Pearson’s correlation coefficient as 0.72 
and the coefficient of variation as 6.1%. Red dot line is the identical line. For all these scans, nominal spatial resolution was 2.3  cc, acquisition time was 
51  min. The spectra were displayed in absolute mode.
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studies (Korzowski et al., 2020; Ruhm et al., 2021), the probabilistic 
subspace method used in this work has several key features for 
enhanced noise reduction. First, the presented method pre-determined 
the temporal basis functions from the group data, in contrast to the 
low-rank approximation method which only depends on a single 
noisy data. One set of representative spectra of these basis functions 

was displayed in Supplementary Figure S4. This strategy leverages 
signal correlations across all the collected data to improve the SNR for 
subspace estimation, thus improving accuracy. Second, the presented 
method imposed two additional constraints on the spatial coefficients, 
including a total variation regularization and a statistical distribution 
constraint. The spatial regularization imposes anatomically weighted 
spatial smoothness on the coefficients, which has been widely used in 
various imaging reconstruction applications (Haldar et al., 2008; Lam 
and Liang, 2014; Zhao et al., 2015; Liu et al., 2018; Wang et al., 2020). 
The statistical distributions absorb prior information from the group 
data, which provide soft boundary constraints on the spatial 
coefficients to prevent them from going outside of the feasible 
distributions due to noise. These statistical constraints have been 
applied and proved effective for reliable estimations of myelin water 
components and B1 (radiofrequency magnetic field) mapping (Li 
et al., 2021a; Zhang et al., 2023).

The noise reduction provided by the probabilistic subspace model 
can be utilized in many applications of 31P-MRSI techniques. On the 
one hand, the SNR enhancement can benefit the imaging resolution 
and/or speed, especially for those metabolites with relatively high 
concentrations (e.g., >1 mM). The “1.0-cc data” in this study has 
shown the potential in increasing spatial resolution, even for 
low-concentration metabolites like NAD. For applications where high-
concentration metabolites are of interest or high resolutions are not 
required, the scan time can be significantly reduced, possibly to the 
level close to typical MR imaging scans. On the other hand, the SNR 
benefits can be  applied to measure metabolites with even lower 
concentrations. For example, a spectrum averaging 9 adjacent voxels 
in the “2.3-cc data” is displayed in Figure 9. With the improved SNR, 
the doublet of NAD+ (which should be a doublet of doublet, but it is 
only visible as doublet in in vivo data due to wide linewidth) plus the 
singlet of NADH result in an apparent triplet, interestingly, similar 

FIGURE 5

SNR analysis of one high-resolution “1.0-cc data” (age 22, male), including representative spectra, SNR maps, and SNR boxplots of results using 
different processing methods: (A) raw in vivo 31P-MRSI data without denoising; (B) 31P-MRSI data using basic low-rank denoising; (C) 31P-MRSI data 
using the probabilistic subspace-based denoising method. The displayed spectra were from the single voxel labeled on the SNR maps. The spectra 
were displayed in absolute mode.

FIGURE 6

Resulting metabolite maps (signal intensities after spectral fitting, 
including PCr, αATP, GPC, and NAD) of one high-resolution 31P-MRSI 
data (age 22, male). Nominal spatial resolution was 1.0  cc, acquisition 
time was 21  min.
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with the 31P MRS acquired in the human occipital lobe with 
1H-decoupling at 4 Tesla (Lu et al., 2014b). This result indicates great 
promise to separate these two metabolites on the voxel base, thus, to 
estimate and imaging the NAD redox ratio (=[NAD+]/[NADH]) in 
human brain (Lu et al., 2014b). Moreover, the Uridine Diphosphate 
Glucose (UDPG) resonance peaks at around −9.8 ppm were also 
above the noise level, whose concentrations were reported as around 
0.1 mM (Ren et  al., 2015). These observations demonstrated the 
potential of mapping the [NAD+]/[NADH] ratio and/or [UDPG] in 
the entire brain, possibly with a relatively lower resolution. This is one 
important direction of our future work.

The computation simulation study in Figure  3 used a group 
averaged 31P-MRSI data as the ground truth. This provided a good 
reference with realistic spectral lineshapes and allowed for quantitative 
evaluation on the performance of different processing methods. But 
using group-averaged spectra could potentially average out subtle 
variations of individual data. Therefore, we performed an additional 
comparison using the individual data. Specifically, one of the raw 
“2.3-cc data” was used, and every 24 voxels of the data were averaged 
to generate a large-voxel data with a relatively good SNR in each voxel. 
The proposed denoising method was applied on the raw small-voxel 
data and the same voxel-averaging was performed to generate the 

FIGURE 7

Regression analysis of the metabolite signal intensities over the gray matter fraction (in percentage), including PCr, GPC, NAD, αATP, γATP, and βATP. 
Red lines are linear regression curves.

FIGURE 8

Correlation between the average brain NAD levels and age. The red 
line is the linear regression curve.

FIGURE 9

Representative spectrum (averaged from 9 adjacent voxels as 
indicated in the anatomical image, displayed in absolute mode) 
(A) with its spectral fitting (B) and residue (C). Zoom-in region shows 
the spectral range covering the NADH/NAD+ and UDPG signals.
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large-voxel data for comparison. The NAD estimates and localized 
spectra from these two data are shown in Figure 10. The results were 
reasonably consistent between the large-voxel raw data and denoised 
data, and the rRMSE on NAD estimates was 5.7%. This also supports 
the feasibility of the denoising method.

There are several potential improvements that can be  made to 
achieve a more accurate quantification of NAD concentration. First, the 
excitation RF profile has not been corrected in the NAD quantification 
due to its small impact. For the “2.3 cc” data, the excitation hard pulse 
was centered in the middle of the αATP and γATP peaks. Therefore, the 
correcting factors of excitation profile for γATP and NAD are 1.038 and 
1.071, respectively. Correcting this factor could slightly improve 
accuracy of NAD quantification. Second, the current spectral 
quantification model assumed a singlet resonance for the NAD peak, 
while the NAD peak should include NAD+, NADH, and several UDPG 
components (Ren et al., 2020; Ren and Sherry, 2021). Separating these 
components requires exceptional SNR and more complicated signal 
modeling. Being able to separate these components will further improve 
the accuracy of NAD quantification.

The technical advancements in MR hardware and systems could 
further improve the sensitivity of such 31P-MRSI methods. The 
ultrahigh field systems used in this study were 7 T scanners, while 
there are several MR human systems with higher field strength, such 
as 9.4 and 10.5 T. Higher field strength could further boost the SNR, 
thus enhancing the imaging capability of 31P-MRSI techniques. 
We used volume 31P RF coils in this study. It is well known that 31P RF 
array coil with multiple receive channels could provide better SNR 
than the volume coil (van Uden et al., 2019; Rowland et al., 2020; 
Peeters et al., 2021). Combined with a higher field strength, better RF 
coils, and the advanced processing methods used in this work, the 
31P-MRSI technology has the potential to provide sufficient resolution 
and speed for practical applications in research and clinical settings.

The presented capability of non-invasively mapping NAD levels 
in entire human brain is expected to be highly valuable and have 

broad implications in many biomedical and clinical research fields. It 
will also allow evaluation of the alteration of NAD levels in diseased 
brain regions due to neurological disorders, neurodegenerative 
diseases, or age-related cognitive decline. Mapping NAD contents in 
these conditions may uncover specific patterns of regional 
NAD-related metabolic dysregulation associated with disease 
progression, potentially opening avenues for targeted interventions 
and therapeutic strategies. In addition to its impact on disease 
research, this technique could serve as a powerful imaging tool for 
neurodevelopmental studies, which allows for the exploration of how 
brain NAD dynamics contribute to the maturation and developmental 
progression of the brain.

5 Conclusion

In conclusion, by combining the ultrahigh field 3D 31P-MRSI with 
advanced probabilistic subspace-model based post-processing 
method, we demonstrated for the first time the feasibility of whole-
brain NAD mapping in healthy human subjects at 7 T. This approach 
would allow non-invasively monitoring cerebral NAD and its changes 
in brain regions under various brain conditions.
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