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Introduction: Because Alzheimer’s disease (AD) has significant heterogeneity 
in encephalatrophy and clinical manifestations, AD research faces two critical 
challenges: eliminating the impact of natural aging and extracting valuable 
clinical data for patients with AD.

Methods: This study attempted to address these challenges by developing a novel 
machine-learning model called tensorized contrastive principal component 
analysis (T-cPCA). The objectives of this study were to predict AD progression and 
identify clinical subtypes while minimizing the influence of natural aging.

Results: We leveraged a clinical variable space of 872 features, including almost all 
AD clinical examinations, which is the most comprehensive AD feature description in 
current research. T-cPCA yielded the highest accuracy in predicting AD progression 
by effectively minimizing the confounding effects of natural aging.

Discussion: The representative features and pathogenic circuits of the four 
primary AD clinical subtypes were discovered. Confirmed by clinical doctors in 
Tangdu Hospital, the plaques (18F-AV45) distribution of typical patients in the 
four clinical subtypes are consistent with representative brain regions found 
in four AD subtypes, which further offers novel insights into the underlying 
mechanisms of AD pathogenesis.
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1 Introduction

Aging and age-related chronic diseases in the elderly, including age-associated memory 
impairment, mild cognitive impairment (MCI), and Alzheimer’s disease (AD), belong to the 
aging syndrome category (Fried, 2012). It is traditionally understood that AD is the result of 
a transformation from quantitative to qualitative changes within the normal aging process, 
indicating a close correlation between AD and normal aging in terms of clinical symptoms 
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(Petersen, 2000). For instance, as an intermediate stage between 
normal aging and dementia, MCI is easily mistaken for natural aging 
because the pathological changes presented by patients in the early 
stages are not obvious, which makes it difficult to achieve precise 
treatment in the early stages of the disease (Platero and Tobar, 2020). 
Moreover, aging of the human body may lead to memory loss and a 
decline in brain function, which are considered essential factors that 
affect AD diagnosis (Tranah et al., 2012). Consequently, accurately 
distinguishing the specific symptoms of AD from those associated 
with natural aging in the early stages is essential to enhance the 
effectiveness of AD diagnosis and improve the cure rate.

Various biomarkers and clinical symptoms have been employed in 
AD correlational research, such as evaluating AD progression and 
identifying AD subtypes based on neuroimaging and biological 
detection technology. The pathophysiological changes in AD mainly 
include amyloid deposition, neurofibrillary tangles, and 
neurodegeneration (Yang et al., 2022). Nonetheless, existing biomarkers 
lack a longitudinal perspective and simultaneously combine the effects 
of natural aging owing to the complex neurodegenerative pathogenesis 
(Franzmeier et al., 2020). Additionally, there is no consensus on the 
most effective biomarker for early diagnosis because each biomarker 
differs in terms of sensitivity, specificity, and reliability. For instance, 
almost one-third of clinically diagnosed AD patients do not have an 
accumulation of Αβ  in specific brain regions, such as the hippocampus 
and frontal lobe, and many people who had Αβ  accumulation after 
death did not show cognitive impairment during their lifetime (Sekiya 
et al., 2018). Therefore, the extraction of more useful features with 
minimal interference from natural aging for subsequent AD analyses 
is a major challenge.

Research on AD has focused on featuring engineering based on 
extensive diagnostic data, driven by the high heterogeneity of disease 
progression among patients. In the early 21st century, significant 
advancements in imaging diagnosis technology and AD pathology 
research have led to the emergence of many AD progression prediction 
methods based on neuroimaging (Sarica et al., 2017), which focus on 
dimension reduction (Duchesne et  al., 2009; Zhu et  al., 2013) and 
feature selection techniques (Li et al., 2013, 2015). With the improvement 
of imaging diagnosis technology and the development of AD pathology 
research, a large number of AD process prediction methods based on 
Neuroimaging appeared at the beginning of the 21st century (Zhu et al., 
2014; Hyun et al., 2016). Chen et al. presented a model named Low-rank 
Sparse Feature Selection with Incomplete Labels (LSFSIL) for predicting 
cognitive performance and identifying informative neuroimaging 
markers with MRI data (Chen et al., 2022). Lu et al. proposed a novel 
method to learn an enriched representation for imaging biomarkers  
(Lu et  al., 2021). Jiang et  al. proposed a novel multi-task learning 
formulation, which considers a correlation-aware sparse and low-rank 
constrained regularization, for accurately predicting the cognitive scores 
and identifying the most predictive biomarkers (Jiang et al., 2018). Since 
deep learning algorithm can mine the potential features in image data, 
the method of image analysis using deep learning has become the main 
research direction of this problem (Lin et al., 2018; Jo et al., 2019; Abrol 
et al., 2020). Liu et al. proposed an ensemble learning framework based 
on artificial neural networks to create effective models for AD/MCI 
prediction from multiple modalities of neuroimaging and multiple 
baseline estimators (Liu et al., 2016). Hojjati et al. utilized unimodal/
bimodal neuroimaging measures and a non-linear regression method 
(based on artificial neural networks) to predict the neuropsychological 
scores (Hojjati et al., 2022). Hoang et al. proposed Vision Transformers 

(ViT) to make an MCI-to-AD prediction based on structural magnetic 
resonance images (Hoang et al., 2023). However, subsequent studies 
have revealed that AD is a heterogeneous disease influenced by diverse 
pathophysiological mechanisms beyond conventional understanding 
(Neff et al., 2021). Neuroimaging biomarkers only represent a portion 
of clinical manifestations of AD. Other critical indicators, such as 
cognitive evaluations, remain underutilized in subsequent analyses, thus 
failing to fully capture the development of AD.

As a longitudinal multicenter study aimed at developing clinical, 
imaging, genetic, and biochemical biomarkers for the early detection 
and tracking of AD progression, the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) provides comprehensive clinical diagnostic data that 
offer a holistic view of AD across multiple domains (Petersen et al., 
2010). The research on AD based on time series has received attention 
from the academic community recently. Liang et al. proposed a multi-
task learning framework that can adaptively impute missing values and 
predict AD progression over time from a subject’s historical 
measurements including MRI volumetric measurements, trajectories 
of a cognitive score and clinical status (Liang et al., 2021). Ho et al. 
proposed a bidirectional progressive recurrent network with imputation 
(BiPro) that uses longitudinal data to forecast clinical diagnoses and 
phenotypic measurements (Ho et al., 2022). El-Sappagh et al. proposed 
a novel two-stage deep learning AD progression detection framework 
based on information fusion of several patient longitudinal multivariate 
modalities (El-Sappagh et  al., 2022). However, many prediction 
methods using ADNI datasets solely focus on the feature dimension of 
the AD data, disregarding the temporal dimension. This oversight leads 
to inaccurate predictions because crucial changes in the clinical features 
of temporal trends are missing. Moreover, during the aging process of 
the healthy elderly, various physical functions and conscious minds 
fluctuate or degrade relatively, interfering with the detection of various 
biomarkers (Ezzati et al., 2019). Therefore, it is challenging to predict 
AD progression based on time and feature dimensions while 
simultaneously alleviating the interference caused by natural aging to 
reliably differentiate between normal cognitive aging, MCI, and AD.

An effective algorithm is essential for analyzing AD clinical data. 
Principal component analysis (PCA) is a classical algorithm that maps 
the data points in high-dimensional space into lower-dimensional 
space to extract the main components of features and reveal their main 
characteristics, and is widely used in machine learning and data mining 
(He et al., 2021). Because of its ability to retain useful information and 
remove redundant information as much as possible from high-
dimensional data, PCA is well-suited for AD data analysis compared 
to other analytical methods because AD data have high dimensionality 
and a small number of samples. Thus, based on PCA, a novel machine 
learning approach called Tensorized contrastive PCA (T-cPCA) was 
proposed in this study to develop an AD longitudinal clinical data 
representation for AD progression prediction and AD subtype 
identification, with the advantage of eliminating the effects of natural 
aging. T-cPCA can eliminate the effects of natural aging to capture 
low-dimensional structures enriched in the target dataset relative to the 
background data, providing a more accurate analysis of AD data. Based 
on the ADNI dataset, T-cPCA was applied to obtain the fusion features 
of the time and feature dimensions and was further used for AD 
progression prediction. Moreover, as a concept focusing on the 
characteristics of the typical pathological changes in AD combined 
with multiple groups of biomarkers (Ferreira et al., 2021), AD subtypes 
have a wide range of value-in-use and prospects for clinical application. 
To overcome the current limitations of horizontal AD subtypes and 
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identify longitudinal AD subtypes with significant patterns, 
we identified four clinical AD subtypes and four representative features 
within each subtype.

In this context, this study proposed a novel multidimensional time 
series representation method termed as Tensorized contrastive 
Principal Component Analysis (T-cPCA) for predicting AD 
progression and identifying AD clinical subtypes. In AD progression 
prediction with stratified three-fold cross validation, T-cPCA delivers 
the highest ACC comparing with 6 typical PCA extension methods. 
Ablation experiments indicated the effectiveness of fusion features for 
AD progression prediction. Moreover, the identified AD clinical 
subtypes can be  further used to improve the prediction accuracy, 
which incarnates that the discovery of AD clinical subtypes is a critical 
step toward precision medicine for this devastating disease. In addition 
to the effectiveness in saliency features and pathogenic circuits, the 
clinical manifestations and targeted treatment of the AD subtypes are 
discovered for AD pathophysiological mechanism research, which 
brings new insights for understanding the mechanisms underlying the 
pathogenesis of AD and paves the way for the early diagnosis.

2 Materials and methods

2.1 Overview of T-cPCA

As an extension of contrastive PCA (cPCA), which aims to 
determine contrastive principal components (cPCs) that maximize the 
variance in the target dataset and minimize the variance in the 
background dataset (Yu et al., 2020; Yu and Liu, 2020), T-cPCA adopts 
multidimensional clinical data as tensors first. We included patients 
who had never suffered from AD in the cognitively normal (CN) 
cohort and those who had dementia in the dementia cohort. 
Considering the feature and time dimensions, we  conducted a 
comparative PCA on these two dimensions to determine the cPCs on 
each dimension. Finally, AD clinical representation was obtained by 
integrating features from two dimensions for AD progression 
prediction and clinical subtype identification (Figure 1).

The principle of T-cPCA is as follows (Equations 1–7). Suppose 
we have a multidimensional time series dataset = { } =Si i

N
1. Here Si can 

be written as tensor, the dimension of the horizontal axis represents various 
medical testing features (MRI, PET, etc.), and the dimension of the vertical 
axis represents the time span (T1, T2,…, TP), which number of features is 
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And then we  get matrix featureM , which is composed of 
eigenvectors corresponding to the top featurem  cPCs, 
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And then we get matrix M time, which is composed of eigenvectors 
corresponding to the top mtime  cPCs, where timem p≤ .

The final mapping data can be converted into:

 	 S M S Mi
change timeT

i
feature= 	 (7)

The details of T-cPCA is provided in Supplement material A.

2.2 Participants and measurements

The ADNI database was initiated in 2003 by several national 
institutes, including the Food and Drug Administration, private 
pharmaceutical companies, and nonprofit organizations in the 
United States. This longitudinal multicenter study aimed to develop 
clinical, imaging, genetic, and biochemical biomarkers for the early 
detection and tracking of AD. The ADNI dataset is updated 
regularly, and the longitudinal clinical data of 1,631 participants 
had been collected until 2022. The TADPOLE challenge provides a 
standardized dataset exported by the ADNI with the richest clinical 
features for AD research. In the experiments, we utilized the dataset 
provided by TADPOLE, which includes the following: (1) amyloid 
and CSF biomarkers of tau deposition; (2) various biomarker 
analysis methods, positron emission tomography with several 
different tracers: fluorodeoxyglucose (FDG), AV45 (amyloid), 
AV1451 (Tau proteins), and DTI; (3) cognitive evaluation 
performed in the presence of clinical experts; (4) genetic 
information extracted from DNA, such as APOE4 expression level; 
(5) demographic information, including age, gender, education 
level, race, and marital status. In this study, the dataset provided by 
the TADPOLE challenge included the clinical diagnostic data of 
1,631 participants which are divided into CN, MCI, and AD 
(Table 1).

The longitudinal nature of the ADNI dataset was evident in its 
continuous collection of clinical diagnostic data for each participant 
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unless they passed away or withdrew voluntarily for other reasons. These 
long-term data provide a robust foundation for further research on AD.

2.3 Model parameter selection

In T-cPCA, increasing the values of hyperparameters α feature and 
αtime , which denote the trade-off between the dementia and CN 
cohorts, can improve the elimination of natural aging effects. 
Considering the complexity of the T-cPCA algorithm, we developed 

an intelligent evolutionary algorithm to rapidly and effectively 
determine the optimal solution for the hyperparameters. With the 
advantages of strong global and local searching capabilities, the 
firework algorithm is a swarm intelligence algorithm widely used for 
solving optimization problems in various domains, including image 
recognition and spam detection (Zheng et al., 2015). The information 
is exchanged among fireworks and is characterized by the number of 
explosion sparks and explosion radius, improving the suitability of the 
firework algorithm for the high-dimensional small-sample 
characteristics of AD data. Therefore, we  propose an improved 
extension of the traditional firework algorithm specifically tailored for 
AD data to enhance its computational efficiency. For details of the 
algorithm, please refer to Supplementary material A.

3 Results

3.1 AD progression prediction

Following the principle of preserving comprehensive information 
from feature and time dimensions, we initially aligned the data in the 
time dimension. Subsequently, missing values in the diagnostic data 
were supplemented using similar diagnostic results. We used the data 
of patients who had never suffered from AD as background data, the 
data of patients who had suffered from AD as target data, and the 
change in future disease development as the target data label, denoted 
better (1), worse (−1), and unchanged (0). The prediction time spans 
were selected as 1, 3, and 5 years, respectively (Table 2).

FIGURE 1

Modeling framework and overall strategy.

TABLE 1  Baseline characteristics of participants in TADPOLE.

CN MCI AD

Number of 

individuals
417 872 342

Age at 

baseline(years) 70≤ 72 299 80

70 age 80< ≤ 270 400 168

> 80 75 173 94

Gender % Male 50% 59% 55%

Race % White 93% 93% 93%

Marital status at 

baseline
% Married 68% 77% 84%

MMSE at baseline 29.0 ± 6.1 27.4 ± 8.4 23.1 ± 4.0
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The comparative experiments were implemented among T-cPCA 
and original multidimensional time series (OR), and the calculated 
statistical features from the time series including mean value, standard 
deviation, maximum, minimum, variance, skewness and kurtosis (SOR), 
and six typical PCA representation methods, comprising the 
two-dimensional PCA (2DPCA), kernal PCA with radial basis function 
kernel (PCA1), kernal PCA with rational quadratic kernel (PCA2), 
kernal PCA with linear kernel (PCA3), kernal PCA with polynomial 
kernel (PCA4), and kernal PCA with sigmoid kernel (PCA5), and two 
ablation models (T-cPCA only with feature representation and T-cPCA 
only with time representation) with three popular supervised machine-
learning algorithms (Multilayer Perceptron, Random Forest, and 
K-Nearest Neighbors algorithm) to verify the effectiveness of the 
proposed method. The technical details about these machine learning 
algorithms are shown in A.5 section in the Supplementary materials. The 
prediction tasks were 1-, 3-, and 5-year AD progression predictions with 
a stratified three-fold cross-validation. The evaluation indices of the 
models were the accuracy, recall value, and F1 score.

In contrast to the six typical PCA representation methods, the 
representation obtained by T-cPCA had the highest classification 
accuracy and delivered the highest specificity for progression prediction 
using three popular supervised machine-learning algorithms (Table 3). 
And the prediction results in Table 3 underwent paired sample t-tests to 
demonstrate the significance of T-cPCA. We  proposed the Null 
Hypothesis as H xd0 0: ″  (The average difference between prediction 
performance of T-cPCA and the comparison models in three evaluation 
indices ″ 0), while the Alternative Hypothesis is H xd1 0: >  (The average 
difference between prediction performance of T-cPCA and the 
comparison models in three evaluation indices > 0), and our significance 
level is α = 0 01. . As a result. we compute theT-statistic value and obtain 
the p-value. If p-value ″ 0 01.  and T-statistic value > 2, we reject H0 and 
accept H1, which means that the prediction performance of T-cPCA is 
significantly superior to that of comparison models.

Table 4 is the standard deviations of predictions Table 3, which are 
obtained from ten runs of all models.

With regard to the prediction results of different time spans, the 
AD clinical representation by T-cPCA showed the highest accuracy 
in the tasks of 1-, 3-, and 5-year prediction, suggesting that T-cPCA 
could capture the long-term change characteristics of AD 
development. Moreover, MLP is more effective in predicting AD 
progression based on T-cPCA. We infer that T-cPCA, as an extension 
of PCA series algorithms, can extract effective features that integrate 
the fusion information of the time and feature dimensions, thus 
providing novel insights for analyzing the internal trend of AD data.

To further demonstrate the effectiveness of T-cPCA, four typical 
deep neural network structures including convolutional neural network 
(CNN), Long Short Term Memory network (LSTM), gated recurrent 
neural network (GRU) and bidirectional LSTM (BiLSTM) are applied 
for AD progression prediction based on T-cPCA and original 
multidimensional time series (Table 5). The deep neural network for 
comparison is constructed as two layer typical network structure and 
four layer fully connected network structure. The experimental results 
indicate that MLP based on T-cPCA delivers the highest ACC among the 
other prediction models especially deep learning models, which means 
that deep learning is not as effective as MLP in predicting AD progression.

3.2 AD clinical subtypes identification

Many genetic, metabolic, and clinical studies have provided evidence 
for the existence of distinct AD subtypes. The identification of these 
subtypes helps improve AD biomarker identification, targeted 
pathological research, correct patient diagnosis, and efficient drug 
development. In this section, a clustering algorithm called hierarchical 
clustering is applied to the clinical representation obtained by T-cPCA to 
identify AD clinical subtypes. By maximizing the clustering effectiveness 
evaluation index called the silhouette score, we identified four clinical AD 
subtypes. For each subtype, three machine-learning algorithms with the 
same hyperparameters were used to verify the effectiveness of clustering 
results. The details are shown in Supplementary material B.

After clustering, compared with the prediction results before 
clustering, the classification results obtained by applying classifiers 
with the same parameters in each cluster showed considerable 
improvement, particularly for the key evaluation index (ACC), among 
which the one-year prediction task showed an almost 10% 
improvement in the ACC (Table 6). On the one hand, it demonstrated 
the effectiveness of the four identified AD clinical subtypes. On the 
other hand, the AD progression prediction performance can 
be  further improved by training classifiers in different clinical 
subtypes. For the five-year prediction task with the KNN classifier, the 
prediction performance of the model decreased after clustering, owing 
to the small amount of data. Overall, the experimental results show 
that the clinical representation extracted by T-cPCA is significant and 
can provide a solid foundation for future research.

4 Discussion

4.1 Horizontal characterization of AD 
clinical subtypes

The clinical features of the different AD subtypes may hold 
promise for the early diagnosis of AD. Therefore, the Gini index was 
used to calculate the importance of the features in each subtype to 

TABLE 2  Baseline characteristics of samples in experiments.

Target data Background data

1-year

Number of samples 1909 884

Time dimension 8 8

Feature dimension 872 872

Label proportion 67:198:1644(1:-1:0) –

3-year

Number of samples 1,235 506

Time dimension 8 8

Feature dimension 872 872

Label proportion 71:232:932(1:-1:0) -

5-year

Number of samples 534 196

Time dimension 8 8

Feature dimension 872 872

Label proportion 41:151:342(1:-1:0) –

https://doi.org/10.3389/fnins.2024.1388391
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Han et al.� 10.3389/fnins.2024.1388391

Frontiers in Neuroscience 06 frontiersin.org

identify the key clinical features of the four AD clinical subtypes. The 
gini index is a kind of statistical indicator to measure feature 
importance in the Random Forest (RF) algorithm, and it has been 
widely used in many fields. Suppose we use VIM j

gini  to denote the jth 
feature’s Gini index, which demonstrates the average change of node 
splitting impurity of the jth feature in all RF decision trees. GI  denotes 
the Gini index. Assuming that there are n  features x x xn1 2, , ,⊃ , The 
Gini index of node q of the ith tree is calculated as (Equations 8–11):

	
GI p p pq

i

c

C

c c
qc
i
qc
i

c

C

qc
i( )

= ≠

( ) ( )

=

( )

′
′= = − ( )∑∑ ∑

1 1

2

1

 	
(8)

Here C indicates that there are C categories, pqc  denotes the 
proportion of category c in node q. The importance of x j in node q of 
the ith tree is the change of Gini index before and after branching. The 
calculation process is as following:

TABLE 3  Performance of predictive models in the measurement of accuracy (ACC), recall value (recall), and F1 score (F1).

OR SOR 2DPCA PCA1 PCA2 PCA3 PCA4 PCA5 TcPCA0 TcPCA1 TcPCA

1-year ACC

MLP 0.5621† 0.5867† 0.6264† 0.6389† 0.6339† 0.6201† 0.6427† 0.5396† 0.6389 0.6654 0.6716◊

RF 0.5734† 0.5981† 0.6327† 0.5748† 0.6377† 0.6805† 0.6830 0.5924† 0.6742 0.6817 0.6993◊

KNN 0.5679† 0.5263† 0.6566 0.6666† 0.5849† 0.6704 0.6679 0.6276† 0.6628 0.6679 0.6729◊

3-year

MLP 0.7062† 0.5791† 0.7469† 0.6534† 0.5665† 0.7216† 0.7040† 0.5104† 0.7117 0.7513 0.7579◊

RF 0.6270† 0.6813† 0.7106† 0.5973† 0.6666† 0.7139† 0.7062 0.5885† 0.6963 0.7150 0.7447◊

KNN 0.6567† 0.5862† 0.7315† 0.6677† 0.6765† 0.7282 0.7260 0.4950† 0.7326 0.7293 0.7425◊

5-year

MLP 0.7239† 0.6785† 0.7490† 0.4868† 0.5037† 0.6816† 0.6910† 0.4719† 0.7284 0.7453 0.7659◊

RF 0.5885† 0.6279 0.6372† 0.6391† 0.6372 0.6466† 0.6429 0.6372† 0.6429 0.6428 0.6485◊

KNN 0.6119† 0.6542† 0.6797† 0.6404† 0.6404† 0.6647 0.6685 0.5861† 0.6891 0.6872 0.6891◊

1-year Recall

MLP 0.4585† 0.4515 0.4367† 0.3550† 0.3792† 0.4300† 0.4475† 0.3205† 0.4534 0.4709 0.4634◊

RF 0.4231† 0.4654 0.3900† 0.3255† 0.3906† 0.4249† 0.4286 0.3431† 0.4228 0.4427 0.4395◊

KNN 0.4615 0.3888† 0.4118 0.3333† 0.3648† 0.4123† 0.4127 0.3440† 0.4143 0.4260 0.4226◊

3-year

MLP 0.6227 0.5161† 0.6077 0.4128† 0.4293† 0.5501† 0.5201† 0.3256† 0.5457 0.5871 0.5936◊

RF 0.4665† 0.5019 0.4569† 0.3330† 0.3333† 0.4922† 0.4722 0.3442† 0.4792 0.4839 0.5117◊

KNN 0.5485 0.4656† 0.5288† 0.3347† 0.3552† 0.5284† 0.5163† 0.3180† 0.5429 0.5317 0.5553◊

5-year

MLP 0.5485 0.5492† 0.5710 0.3594† 0.3751† 0.5091† 0.5039 0.2969† 0.5459 0.5354 0.5669◊

RF 0.4282 0.4133 0.3323† 0.3333† 0.3350† 0.3415 0.3381 0.3323† 0.3403 0.3405 0.3510◊

KNN 0.4880† 0.4607† 0.4977† 0.3833† 0.3333† 0.4440† 0.4498† 0.3203† 0.5129 0.4953 0.5129◊

1-year F1

MLP 0.4554† 0.4492 0.4313† 0.3410† 0.3734† 0.4361† 0.4548† 0.3244† 0.4520 0.4606 0.4597◊

RF 0.3910† 0.4574 0.3760† 0.3127† 0.3848† 0.4209† 0.4195 0.3290† 0.4086 0.4361 0.4342◊

KNN 0.4602 0.3701† 0.4139 0.2666† 0.3032† 0.4129† 0.4136 0.3189† 0.4177 0.4313 0.4255◊

3-year

MLP 0.6198 0.5042† 0.6073 0.4124† 0.3816† 0.5574† 0.5387† 0.3266† 0.5575 0.5963 0.6096◊

RF 0.4381† 0.5055 0.4547† 0.3150† 0.2666† 0.5032† 0.4819 0.3347† 0.4837 0.4774 0.5132◊

KNN 0.5561 0.4606† 0.5108 0.2695† 0.3120† 0.5139† 0.5046† 0.3081† 0.5254 0.5148 0.5441◊

5-year

MLP 0.6134 0.5521 0.5771† 0.3169† 0.3310† 0.5042† 0.5087 0.2929† 0.5415 0.5417 0.5605◊

RF 0.4050 0.5141 0.2594† 0.2598† 0.2679 0.2768† 0.2699† 0.2594† 0.2772 0.3428 0.2997◊

KNN 0.4905† 0.4579† 0.5092† 0.2602† 0.2602† 0.4479† 0.4689 0.2843† 0.5293 0.5094 0.5293◊

†Means that the prediction performance of the comparison models is significantly worse than that of T-cPCA (excluding ablation models). ◊means that the prediction performance of T-cPCA 
is significantly better than that of more than half of the comparison models (excluding ablation models). The bold values are the best results in each row.
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Among them, GIl  and GIr  respectively denote the Gini index of 
two new nodes after branching. If the variable x j appears m times in 
the ith tree, then the importance of feature x j in the ith tree is:
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Above all, the Gini importance of the jth feature in RF is 
defined as:
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Among them, N  is the number of trees.
Finally, we normalize all Gini importance scores.

TABLE 4  The standard deviations of the model prediction performance in Table 3.

OR SOR 2DPCA PCA1 PCA2 PCA3 PCA4 PCA5 TcPCA0 TcPCA1 TcPCA

1-year ACC

MLP 0.0338 0.0359 0.0323 0.0562 0.0718 0.0312 0.0287 0.0285 0.0243 0.0323 0.0272

RF 0.0340 0.0364 0.0339 0.0305 0.0275 0.0300 0.0303 0.0288 0.0375 0.0327 0.0391

KNN 0.0237 0.0336 0.0337 0.0330 0.0334 0.0282 0.0341 0.0314 0.0307 0.0325 0.0345

3-year

MLP 0.0273 0.0275 0.0348 0.0609 0.1066 0.0282 0.0360 0.0283 0.0264 0.0317 0.0278

RF 0.0370 0.0435 0.0325 0.0274 0.0415 0.0372 0.0448 0.0352 0.0380 0.0357 0.0318

KNN 0.0351 0.0233 0.0309 0.0291 0.1048 0.0338 0.0355 0.0308 0.0376 0.0282 0.0371

5-year

MLP 0.0376 0.0323 0.0321 0.0663 0.1017 0.0374 0.0232 0.0260 0.0334 0.0237 0.0315

RF 0.0345 0.0418 0.0345 0.0331 0.0325 0.0367 0.0332 0.0320 0.0352 0.0415 0.0340

KNN 0.0315 0.0414 0.0281 0.0306 0.0371 0.0324 0.0333 0.0302 0.0320 0.0327 0.0320

1-year Recall

MLP 0.0352 0.0353 0.0365 0.0220 0.0191 0.0378 0.0286 0.0296 0.0295 0.0337 0.0294

RF 0.0266 0.0236 0.0196 0.0098 0.0132 0.0182 0.0202 0.0086 0.0232 0.0239 0.0268

KNN 0.0221 0.0256 0.0231 0.0020 0.0168 0.0176 0.0215 0.0212 0.0183 0.0227 0.0219

3-year

MLP 0.0367 0.0361 0.0453 0.0266 0.0361 0.0306 0.0403 0.0200 0.0418 0.0328 0.0467

RF 0.0254 0.0278 0.0202 0.0110 0.0243 0.0235 0.0264 0.0163 0.0239 0.0283 0.0214

KNN 0.0379 0.0266 0.0317 0.0150 0.0364 0.0299 0.0261 0.0221 0.0316 0.0294 0.0310

5-year

MLP 0.0443 0.0344 0.0408 0.0270 0.0252 0.0499 0.0358 0.0210 0.0449 0.0388 0.0424

RF 0.0220 0.0308 0.0102 0.0020 0.0131 0.0124 0.0108 0.0053 0.0191 0.0272 0.0086

KNN 0.0283 0.0370 0.0279 0.1102 0.0183 0.0303 0.0354 0.0162 0.0352 0.0302 0.0352

1-year F1

MLP 0.0374 0.0383 0.0355 0.0309 0.0323 0.0346 0.0308 0.0297 0.0289 0.0354 0.0311

RF 0.0340 0.0258 0.0327 0.0248 0.0261 0.0310 0.0364 0.0261 0.0372 0.0328 0.0441

KNN 0.0241 0.0357 0.0286 0.0105 0.0328 0.0234 0.0257 0.0256 0.0215 0.0275 0.0258

3-year

MLP 0.0293 0.0381 0.0455 0.0412 0.0535 0.0325 0.0411 0.0266 0.0378 0.0303 0.0439

RF 0.0249 0.0284 0.0317 0.0263 0.0383 0.0347 0.0366 0.0307 0.0315 0.0286 0.0279

KNN 0.0391 0.0325 0.0347 0.0309 0.0766 0.0387 0.0286 0.0306 0.0343 0.0328 0.0362

5-year

MLP 0.0453 0.0396 0.0451 0.0328 0.0455 0.0455 0.0359 0.0219 0.0448 0.0389 0.0426

RF 0.0321 0.0407 0.0238 0.0106 0.0267 0.0282 0.0240 0.0151 0.0379 0.0475 0.0238

KNN 0.0322 0.0402 0.0322 0.0075 0.0196 0.0363 0.0427 0.0248 0.0425 0.0345 0.0425
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We selected features with a Gini index higher than 0 02.  as the 
representative features of the different subtypes. The salient brain 
regions affected by the four clinical AD subtypes are shown in 
Figure 2. The details of the top 10 important features of four subtypes 
are provided in Supplementary material B.

In the first clinical AD subtype, the salient-affected brain regions 
were located in the corpus callosum, right cuneus, left inferior 
temporal gyrus, left superior frontal gyrus, left transverse temporal 
gyrus, left middle temporal gyrus, left superior frontal gyrus, and left 
hippocampus (Figure 2A). Alterations in the corpus callosum emerged 
as an early manifestation of this AD subtype progression. As the 
largest white matter structure, the corpus callosum receives blood 

from several major arterial systems and plays a critical role in the 
onset of AD (Das et al., 2021). Accumulation of amyloid-beta peptide 
(Αβ ) is related to callosal myelination, leading to an imbalance in glial 
cells, an increased presence of phagocytic microglia and reactive 
astrocytes, and reduced numbers of oligodendrocyte progenitor cells 
(Aires et  al., 2022). The mean diffusivity of the corpus callosum 
measured using DTI showed a significant decrease in fractional 
anisotropy among patients with AD (Xiao et  al., 2022). MRI has 
revealed that atrophy of the posterior corpus callosum is positively 
associated with apathy in patients with AD (Yu et  al., 2020). 
Additionally, the compromised white matter microstructure in the 
posterior section of the corpus callosum is associated with poorer 
semantic fluency (Sánchez et al., 2020). Furthermore, combination 
therapy by Donepezil and Rivastigmine has demonstrated significant 
improvements in the size of the corpus callosum in patients with 
severe Alzheimer’s disease (Khasawneh et al., 2022).

In the second clinical AD subtype, prominent changes were 
observed in specific brain regions, including the left anterior cingulate 
gyrus, left supramarginal gyrus, right precentral gyrus, and right 
precentral gyrus (Figure 2B). The affected areas primarily involve the 
cingulate gyrus and supramarginal gyrus, which are crucial hubs for 
information processing and regulation within the brain (Yuan et al., 
2022). Research has demonstrated that a higher tau signal (CSF Αβ  
42/40 ratio) and reduced gray matter density in the posterior 
cingulate cortex and angular gyrus are associated with decreased 
parietal functional connectivity in individual patients (Berron et al., 
2020), leading to memory decline (Yasar et  al., 2020). Blood 
oxygenation level-dependent signals measured using resting-state 
functional magnetic resonance imaging have been associated with 
AD development (Zheng et al., 2020). In patients with AD, cerebral 
blood flow (CBF) decreases from the early stages as processes 
preceding and following the onset of cerebrovascular risk factors, or 
stroke may trigger amyloid-beta deposition in the precuneus/
posterior cingulate cortex. The epsilon 4 allele of the apolipoprotein 
E (APOE) gene may accelerate age-related cortical thickening and 
reduction in CBF in the anterior cingulate cortex (Hays et al., 2020). 
In addition, the posterior cingulate gyrus is particularly activated 
during the recollection of personal events and inference of others’ 
mental states, and dysfunction in this area contributes to cognitive 

TABLE 5  Performance of MLP and four typical deep neural networks based on T-cPCA and original multidimensional time series in the measurement of 
accuracy (ACC), recall value (recall), and F1 score (F1).

1-year 3-year 5-year

ACC Recall F1 ACC Recall F1 ACC Recall F1

OR + CNN 0.4877 0.5091 0.4855 0.5355 0.5615 0.5308 0.6503 0.5812 0.6022

TcPCA + CNN 0.4307 0.4321 0.4265 0.5326 0.5267 0.5135 0.5098 0.4974 0.4917

OR + LSTM 0.4723 0.5071 0.4724 0.5967 0.5717 0.5740 0.5681 0.5708 0.5623

TcPCA + LSTM 0.4801 0.4765 0.4757 0.6272 0.6166 0.6167 0.4958 0.5158 0.4969

OR + GRU 0.4693 0.4795 0.4644 0.6380 0.6062 0.6008 0.6647 0.5768 0.5725

TcPCA+ GRU 0.4621 0.4649 0.4593 0.6371 0.6053 0.6137 0.5514 0.5805 0.5468

OR + BiLSTM 0.5027 0.5025 0.4620 0.6882 0.6327 0.6509 0.5317 0.5756 0.5437

TcPCA + BiLSTM 0.4617 0.4599 0.4572 0.6584 0.6446 0.6404 0.6219 0.5770 0.5880

OR + MLP 0.5621 0.4585 0.4554 0.7062 0.6227 0.6198 0.7239 0.6085 0.6134

TcPCA + MLP 0.6716 0.4634 0.4597 0.7579 0.5936 0.6096 0.7659 0.5669 0.5605

The bold values are the best results in each column.

TABLE 6  Comparison of performance in task of AD progression 
prediction before and after clustering.

Classifier Before cluster (best) After cluster

ACC Recall F1 ACC Recall F1

1-year

MLP 0.6716 0.4634 0.4597 0.8197 0.4518 0.4502

RF 0.6993 0.4395 0.4342 0.8501 0.4043 0.4091

KNN 0.6729 0.4226 0.4255 0.8417 0.4323 0.4308

3-year

MLP 0.7579 0.5936 0.6096 0.7797 0.5717 0.5721

RF 0.7447 0.5117 0.5132 0.7676 0.4723 0.4663

KNN 0.7425 0.5553 0.5441 0.7920 0.5139 0.5170

5-year

MLP 0.7659 0.5669 0.5605 0.7856 0.6439 0.6519

RF 0.6485 0.351 0.2997 0.6639 0.4196 0.4016

KNN 0.6891 0.5129 0.5293 0.6671 0.4514 0.4312

The bold values are the best results in the comparison between Before cluster (best) and 
After cluster.
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decline in tasks involving verbal information storage, drawing 
abilities, and nonverbal abstract reasoning among individuals with 
AD (Takenoshita et  al., 2020). Significant correlations have been 
observed between the functional connectivity of the anterior 
cingulate cortex and episodic memory dysfunction and executive 
function impairments. Evidence suggests that angiotensin II type-1 
receptor blockers may protect against memory decline by reducing 
the rates of amyloid-beta accumulation in this AD subtype (Ouk 
et al., 2021).

For the third clinical AD subtype, the salient-affected brain 
regions were located in left temporal lobe, left supramarginal gyrus, 
right occipital lobe, right superior temporal gyrus, left anterior 
cingulate gyrus, and right paracentral lobule (Figure 2C). The affected 
brain regions were primarily located in the temporal lobe. Seizures 
that occur early in the course of AD are likely to originate from the 
mesial temporal lobe, which is one of the first structures affected by 
Alzheimer’s pathology and one of the most epileptogenic regions in 
the brain. Genetic mutations associated with AD increase the tau 
levels, and the accumulation of tau linearly increases neuronal 
hyperexcitability, leading to seizures (Zawar and Kapur, 2023). The 
presence of baseline CSF Ptau is related to the loss of structural 
stability in connectivity within the medial temporal lobe (Chen et al., 
2020). During the early stages of MCI, hyperconnectivity within the 

ventral medial temporal lobe structures and hypoconnectivity 
between the dorsal medial temporal lobe regions and the anterior/
posterior midline default-mode network nodes are crucial biomarkers 
for early AD diagnosis, which can further progress to cortical atrophy 
in the occipital temporal lobe (Sintini et  al., 2020). The clinical 
symptoms include temporal lobe epilepsy, situational amnesia, and 
worse executive functioning, language, and attention (Visser et al., 
2020). The entrainment of neural oscillations in the occipital cortices 
through external rhythmic visual stimuli shows promise as a novel 
therapy for AD patients with this subtype (Wiesman et al., 2021). 
Rapamycin, an immune system inhibitor and a longevity drug, may 
be a potential treatment for this AD subtype by rescuing proteins in 
the temporal lobe (Wang et al., 2019).

For the fourth clinical AD subtype, the salient-affected brain 
regions were located in the left entorhinal cortex, left middle 
temporal gyrus, right cingulate gyrus, right transverse temporal 
gyrus, right bankssts, left parietal lobe, and right middle temporal 
gyrus (Figure 2D). As one of the earliest sites showing pathological 
changes, the entorhinal cortex plays a critical role in the 
development of this AD subtype. Aging of the entorhinal cortex is 
associated with increased expression levels of APP genes and MAPT 
genes, resulting in significant accumulation of β-amyloid (Aβ) and 
neurofibrillary tangles during the amnestic MCI phase of AD (Li 

FIGURE 2

Salient-affected brain regions for four clinical subtypes. Salient-affected brain regions in (A) first, (B) second, (C) third, and (D) fourth clinical AD 
subtypes. For each figure, the first row from left to right are the lateral views of the left hemisphere, topside, and lateral view of the right hemisphere. 
The second row from left to right are medial views of the left hemisphere, bottom side, and medial view of the right hemisphere. The third row shows 
the frontal side and backside.
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et  al., 2022). Additionally, a decrease in CBF in the entorhinal 
cortex precedes tau deposition and contributes to memory 
impairment and spatial navigation deficit, leading to disorientation 
and wandering behavior. Neuronal loss is considered the primary 
manifestation of AD development, accompanied by a decrease in 
microglia and proliferation of astrogliosis in this subtype (Astillero-
Lopez et al., 2022). The grid-cell network of the entorhinal cortex, 
which is considered one of the earliest neurodegenerative regions, 
is crucial for path integration in humans and rodents (Segen et al., 
2022). The anterolateral entorhinal cortex plays a significant role in 
memory retention, and differences in its volume are associated with 
the performance on neuropsychological tests for AD (Yeung et al., 
2021). Deep brain stimulation has shown promise in improving the 
cognitive function and has prompted clinical trials for the early 
treatment of AD (Yu et al., 2019). Chemical-protein interaction 
analysis has revealed that valproic acid is a potential therapeutic 
agent that can prevent AD progression in this subtype (Bottero 
et al., 2021).

We have demonstrated that the unique characteristics of the four 
AD clinical subtypes can effectively reveal multiple mechanisms and 
heterogeneous clinical manifestations (Table 7). This explains why AD 
is a syndrome with multiple coexisting mechanisms, providing a 
favorable basis for further research on multitarget drug interventions 
in clinical practice. On the one hand, our data validated the 
effectiveness of the proposed method. On the other hand, our method 
provides an important basis for early diagnosis and appropriate 
treatment of AD.

4.2 Longitudinal characterization of AD 
clinical subtypes

Discoveries of temporal changes and patterns exhibited by 
representative features within each AD clinical subtype may provide 
novel insights into disease pathogenesis. By examining the time 
dimension, the pathogenic circuits specific to each subtype were 
identified, providing valuable insights for precision medicine. 
We employed the Gini index to evaluate the importance of features for 
the samples in the four subtypes at different time points. The detailed 

calculations and results of the Gini index can be  found in 
Supplementary material B.

Distinct change patterns of representative features in the time 
dimension were observed in the four clinical AD subtypes (Figure 3). 
In the first subtype, AD primarily affects the corpus callosum and 
right cuneus, followed by the right inferior temporal gyrus, left 
transverse temporal gyri, and left superior frontal gyrus. Ultimately, it 
affects the left hippocampus, a critical brain region associated with the 
onset of AD. In the second subtype, AD initially acts on the left 
anterior cingulate gyrus, primarily progressing to the left 
supramarginal gyrus. This eventually affects the right precentral gyrus 
and right postcentral gyrus, potentially leading to a final stage of 
general paralysis. In the third subtype, AD initially affects the left 
temporal lobe, followed by significant involvement of the left 
supramarginal gyrus and the right occipital lobe. Subsequently, it 
affects the right superior temporal gyrus, right paracentral lobule, left 
anterior cingulate gyrus, and right occipital lobe. In the fourth 
subtype, AD first affects the left entorhinal cortex, followed by the left 
middle temporal gyrus and right cingulate. Finally, it affects the right 
transverse temporal gyri, right banks, left parietal cortex, and right 
middle temporal gyrus. Notably, the pathogenic circuits of the four 
clinical AD subtypes exhibit distinct patterns. The corpus callosum, 
cingulate gyrus, temporal lobe, and entorhinal cortex serve as the 
initial sites for the four subtypes, with subsequent overall brain 
atrophy occurring over time. These different pathogenic circuits result 
in diverse clinical manifestations influenced by each patient’s unique 
physical condition. The discovery of these pathogenic circuits will help 
clarify the mechanisms underlying the development of AD.

The National Institute of Aging-Alzheimer’s Association 
(NIA-AA) proposed a biological classification standard for AD 
according to the ATN  classification system, where A denotes Αβ , T  
denotes tau protein, and N  denotes neurodegeneration (Jack et al., 
2018). Although ATN  biomarkers provide insights into the early-
stage neuropathological processes of AD, they do not rely on clinical 
diagnostic or phenotypic data, and thus, only reflect the 
pathophysiological changes of the disease. Despite the widespread 
use of ATN  biomarkers for early detection of AD, they have 
limitations in explaining the heterogeneity of individual clinical 
manifestations and predicting the degree of cognitive decline or 

TABLE 7  Difference among four clinical subtypes.

Affected brain regions Clinical manifestations Treatment

Subtype 1

corpus callosum, right cuneus, left inferior temporal gyrus, left superior 

frontal gyrus, left transverse temporal gyrus, left middle temporal gyrus, left 

superior frontal gyrus and left hippocampus

poorer semantic fluency, apathy Donepezil and rivastigmine

Subtype 2
left anterior cingulate gyrus, left supramarginal gyrus, right precentral gyrus 

and right precentral gyrus

episodic memory dysfunction, 

executive function impairments, 

storage of verbal information, drawing 

abilities, and non-verbal abstract 

reasoning

Angiotensin II type 1

Subtype 3

left temporal lobe, left supramarginal gyrus, right occipital lobe, right 

superior temporal gyrus, left anterior cingulate gyrus and right paracentral 

lobule

temporal lobe epilepsy, situational 

amnesia, and worse executive 

functioning, language and attention

External rhythmic visual 

stimuli, rapamycin

Subtype 4

left entorhinal cortex, left middle temporal gyrus, right cingulate gyrus, 

right transverse temporal, right bankssts, left parietal lobe and right middle 

temporal gyrus

memory impairments, spatial 

navigation deficits, disorientation, 

wandering behavior

Deep brain stimulation 

(DBS), valproic acid
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disease progression. The representative features identified in this 
study offer a more concise and effective approach than traditional 
classification methods. Our findings have significant implications for 
clinical AD research, aiding in identifying individuals at risk of 
progression and evaluating therapeutic interventions for future 
cognitive decline. Specifically, the observed changes in the volume 
(WM Parcellation) of the corpus callosum (Figure  4A), cortical 
thickness standard deviation of the left anterior cingulate 
(Figure  4B), volume of the left temporal lobe (Figure  4C), and 
cortical thickness standard deviation of the left entorhinal 
(Figure 4D) served as critical longitudinal features for distinguishing 
the four subtypes. Moreover, confirmed by clinical doctors in Tangdu 
Hospital, the distribution of plaques (18F-AV45) in the found 
specific areas of typical patients in the four clinical subtypes are 
consistent with our conclusion, which further confirms the validity 

of this discovery. These findings contribute to revealing AD 
pathogenesis and paving the way for the early diagnosis of 
the disease.

In this study, we proposed a novel approach called T-cPCA to 
clinically represent AD by incorporating both the time and feature 
dimensions of multidimensional AD clinical data. T-cPCA has the 
advantage of extracting clinical representations from longitudinal AD 
diagnostic data, considering the evolving nature of AD development 
over time. To optimize the T-cPCA hyperparameters, we developed 
an efficient firework algorithm to obtain the optimal hyperparameters 
that denote the trade-off of natural aging effect elimination. The 
results of three popular supervised machine-learning algorithms 
(MLP, RF, and KNN) implemented on ADNI dataset unanimously 
shows that T-cPCA can make information fusion on time and feature 
dimensions to improve the efficiency of AD progression prediction 

FIGURE 3

Longitudinal change in the salient-affected brain regions for four clinical subtypes. Each row shows the key brain regions affected by AD in different 
subtypes over time.
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models. T-cPCA can enhance our understanding of the disease and 
improve the accuracy of AD prognosis.

A clustering algorithm called hierarchical clustering was employed 
to identify AD subtypes for the clinical representation obtained using 
T-cPCA to cluster the data into four clusters. Subsequently, three 
popular supervised machine-learning algorithms with consistent 
parameters were used in these clusters to assess their prediction 
performance. The results showed varying degrees of improvement in 
AD progression prediction after clustering, indicating the effectiveness 
of the identified subtypes and the potential enhancement in the overall 

prediction accuracy by training prediction models within each 
subtype. Furthermore, we conducted feature analysis to validate the 
significance of the four subtypes. Based on the p-value test, 
we identified several longitudinal features that served as distinguishing 
factors for the four subtypes, including the volume (WM Parcellation) 
of the corpus callosum, cortical thickness standard deviation of the 
left anterior cingulate, volume of the left temporal lobe, and cortical 
thickness standard deviation of the left entorhinal. These findings 
reveal the specific pathogenic circuits and clinical manifestations of 
each subtype and offer insights into the early diagnosis of AD.

FIGURE 4 (Continued)
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5 Limitations of the study

This is a longitudinal study based on the principle of preserving 
the richness of data on feature and time dimensions, the analyses lack 
available data. We are collecting clinical data to extend the existing 
longitudinal AD dataset together with the Tangdu Hospital. For 
instance, to predict five-year AD progression, we collected clinical data 
from participants who have been in continuous research for 
approximately 10 years, which was challenging. The expanded dataset 
will provide data support for further research on AD in the future.
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