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Same principle, but different
computations in representing
time and space
Sepehr Sima and Mehdi Sanayei*

School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Time and space are two intertwined contexts that frame our cognition of the

world and have shared mechanisms. A well-known theory on this case is “A

Theory of Magnitude (ATOM)” which states that the perception of these two

domains shares common mechanisms. However, evidence regarding shared

computations of time and space is intermixed. To investigate this issue, we asked

human subjects to reproduce time and distance intervals with saccadic eye

movements in similarly designed tasks. We applied an observer model to both

modalities and found underlying differences in the processing of time and space.

While time and space computations are both probabilistic, adding priors to

space perception minimally improved model performance, as opposed to time

perception which was consistently better explained by Bayesian computations.

We also showed that while both measurement and motor variability were smaller

in distance than time reproduction, only the motor variability was correlated

between them, as both tasks used saccadic eye movements for response. Our

results suggest that time and space perception abide by the same algorithm but

have different computational properties.

KEYWORDS

time, space, perception, Bayesian, spatiotemporal

1 Introduction

The study of time perception has demonstrated the complex interplay of
spatiotemporal information in the brain. As temporal processes are linked to their
embodied experience of the environment (Safaie et al., 2020), analyzing the spatial
dimension in the study of time perception can provide a powerful tool for understanding
the underlying mechanisms that allow us to comprehend the external world. Time and
space are two aspects of the physical world that frame our experience of the world. The
perception of time and space occurs in an interrelated fashion in human cognition, and
recent research shows a growing interest in understanding the underlying mechanisms
of their relationship (Goldreich, 2007; Robinson and Wiener, 2021; Schroeger et al.,
2022; Whitaker et al., 2022). It has been suggested that time perception occurs through
spatialization of time intervals in the face of movement-based events of the world (Robbe,
2023). Such spatialization could be seen in the way we have tied the perception of time to
space by devising various types of clocks to keep track of the passage of time.

In modern science, time and space have been represented with measurable proxies
imbued with operational definitions, i.e., time and distance intervals, respectively (Buzsáki
and Llinás, 2017), which provide a framework for studying and quantifying these abstract
concepts. This has made possible the study of the relationship between time and space

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1387641
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1387641&domain=pdf&date_stamp=2024-05-07
https://doi.org/10.3389/fnins.2024.1387641
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2024.1387641/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1387641 May 2, 2024 Time: 16:19 # 2

Sima and Sanayei 10.3389/fnins.2024.1387641

perception. A variety of time-space interactions in the human
perceptual system has been observed. For example, spatiotemporal
interference is one such interaction where spatial information
can distort the perception of temporal information and vice
versa (Vidaud-Laperrière et al., 2022). Peri-saccadic spatiotemporal
compression is another phenomenon that serves as evidence
of common mechanisms in the perception of time and space
(Morrone et al., 2005).

A Theory of Magnitude (ATOM) proposed by Walsh (2003)
suggests that the brain has a core common magnitude system for
time, space, and quantity. According to this theory, the neural
mechanisms underlying the perception of time, space, and quantity
are intertwined, and the brain processes these dimensions in a
unified manner. This theory has been supported by empirical
evidence from studies that have shown that the perception of
time and space share common neural substrates (Casasanto and
Boroditsky, 2008; Howard et al., 2014; Cai and Connell, 2016; Chen
et al., 2021; Cui et al., 2022; Jie and Youguo, 2023). A recent meta-
analysis of neuroimaging studies (Cona et al., 2021) has suggested
that there is a common system of brain regions that are activated
during both time and space processing, including bilateral insula,
the pre-supplementary motor area (pre-SMA), the right frontal
operculum, and intraparietal sulci. At the neuronal level, it has been
observed that spatial information could at least be partially derived
from temporal information (Burgess et al., 2011).

Despite these findings, the precise nature and the extent
to which these perceptual domains share common mechanisms
remain unknown. This has spurred several investigations into
better understanding the relationship between time and space
(Abramson et al., 2023; Schonhaut et al., 2023). Most studies to
date have approached the question in terms of the interferences
that occur between perceptual domains (Marcos and Genovesio,
2017; Martin et al., 2017; Üstün et al., 2022). We attempted to
approach this question by utilizing behavioral modeling and model
comparison.

A Bayesian understanding of timing has revealed that the
interaction of the temporal context and the internal ongoing
processes culminates in the calibration of estimated intervals
(Sadibolova and Terhune, 2022) in the form of perceptual biases.
Such a formulation of interval timing presents us with two
stages in the process of timing, i.e., the measurement (perception)
and the reproduction (action) phases of interval timing (Jazayeri
and Shadlen, 2010). The link between the measurement and the
reproduction is actualized by an estimation function in the observer
model. Based on the nature of the observer model (ideal vs.
non-ideal), the estimation functions differ. Bayesian least squares
(BLS) and maximum likelihood estimation (MLE) estimators
have been used in the literature as prior-dependent and prior-
independent functions, respectively (Jazayeri and Shadlen, 2010).
The Bayesian perspective has also been explored in human spatial
navigation (Petzschner and Glasauer, 2011; Thurley and Schild,
2018). Thus, the probabilistic nature of spatiotemporal information
could be well captured by an optimum-seeking system which
combines experience-dependent information with contextual noisy
measurements to generate an estimate of various facets of time and
space. It remains unclear whether the perceptual biases in time and
space are both attributable to the prior information.

In this study, we compared how spatial and temporal
measurements are implemented by probing sources of variability

in the process of time and distance measurement and reproduction,
within a probabilistic framework. We used saccadic eye movement
as the effector to reproduce presented time/distance intervals.
In each block, the subjects had to reproduce the presented
time/distance interval by making a saccade to a predefined target
in case of time reproduction or to a point on a predefined
line to reproduce the presented distance. We showed that the
perceptual biases in time perception are explained by prior-
dependent computations, as previously shown in the literature.
On the other hand, we cast doubt on the contribution of prior
information to the observed perceptual biases in space perception.

2 Materials and methods

2.1 Apparatus

The experiments were carried out on a computer running
Linux operating system, on MATLAB (2016b), with Psychtoolbox
3 extension (Brainard, 1997). Stimuli were presented on a monitor
(17′′) placed ∼60 cm from the subject with a 60 Hz refresh rate.
The subject sat comfortably on a chair in a dimly lit room to
participate in this study, with the head stabilized by a head and chin
rest. An EyeLink 1000 infrared eye tracking system (SR Research,
Mississauga, Ontario) was used to record eye movements at 1 kHz.

2.2 Subjects

We enrolled 22 volunteers (12 female, range: [20, 43],
mean± SD: 26.5± 5.5). All were naïve to the purpose of the study
except 2 (subjects 1 and 2) who were the authors of this study. We
excluded 1 subject because of the troubled eye-tracker calibration
caused by her contact lens and 1 subject because of excessively
large eye-calibration errors. All subjects had normal or correct-
to-normal vision. They had signed the consent form prior to the
experiment. The experiment was approved by the ethics committee
of the School of Cognitive Sciences (IPM). We counter-balanced all
variables and blocks between participants. Half of the participants
completed the time reproduction task first. Before starting each
experiment, each participant completed a full block of training to
familiarize themselves with each task.

2.3 Experiment 1

We designed a time reproduction task in which subjects had to
reproduce perceived time intervals. At the beginning of each block,
the name of the condition (time) was displayed at the center of
the screen. The participant then pressed the space bar to start the
block. A white fixation cross with a length of 0.5◦ was presented
at the center of the screen for 1 s. After participants acquired
fixation, a black line was then presented for a variable duration
of 500–1,000 ms (uniform distribution). The participants were
instructed to keep their gaze on the fixation point (within a 4◦ × 4◦

window). The line extended from the fixation cross to one of the
four corners of the screen. The location of the line was fixed within
each block, but changed between blocks. After that, a white circle
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(“set,” diameter of 1.5◦) was flashed on the horizontal meridian,
contra-lateral to the black line. The eccentricity of the circle was
6, 8, or 12◦, randomly chosen on each trial. After a variable sample
interval of 0.4, 0.8, or 1.6 s, a white circle (“go,” diameter of 1.5◦) was
presented on the black line at the same eccentricity as the flashed
circle. Participants were then required to reproduce the duration
between the onset of the “set” stimulus and the onset of the “go”
stimulus by making a saccade to the “go” target to reproduce the
sample interval. The initiation of the saccade was defined as the
time the eye exited the fixation window (4◦ × 4◦). If the saccade was
landed within a 4◦ × 4◦ window of the “go” stimulus within 100 ms
of the saccade initiation and stayed in the window for 100 ms,
the go stimulus would turn to green (Figure 1A). The reproduced
time was calculated as the interval between the “go” presentation
and the initiation of the saccade. We did not provide any feedback
regarding the accuracy of the timing. Each block consisted of 54
trials (3 eccentricities, 3 sample interval, and 6 repetitions for each
condition) and subjects performed 8 blocks.

2.4 Experiment 2

We designed the distance reproduction task as similar to the
time reproduction task as possible (Figure 1B). Each trial is similar
to the experiment 1 up to the presentation of the “set” stimulus
(eccentricities, 6, 8, or 12◦). Here, after passing a variable duration
(0.4, 0.8, or 1.6 s) from “set” stimulus onset, the fixation cross
turned to green (go signal). This indicated to the participants that
they should reproduce the distance between the “set” stimulus and
the fixation cross by making a saccade to a point on the black line
that had the same eccentricity as the “set” stimulus. Gaze locations
which landed within 2◦ of the black line were considered valid.
A green circle (diameter of 1.5◦) was presented at the location of
the saccade. Each block consisted of 54 trials (3 eccentricities, 3
sample interval, and 6 repetitions for each condition) and subjects
performed 8 blocks.

2.5 Data analysis

We employed the interquartile range (IQR) method as a robust
statistical technique to identify and eliminate outlier data points
(Schwertman et al., 2004). This method excludes the data that lie
outside of 1.5 IQR below the first quantile or 1.5 IQR above the
third quantile. We applied the IQR method for each subject for each
experiment. We also excluded trials with a reaction time of less than
200 ms The number of excluded trials per subject per experiment
was below 1%.

2.6 Ideal observer model

In our data, we had pairs of sample time/distance intervals
(ts, ds) and corresponding reproduced times/distances (tr , dr)
for each trial. We used an ideal observer model to relate
sample times/distances to the reproduced ones. To model these
relationships, we used two hidden variables, each of which

refers to one of the noisy stages of the process of reproducing
time/distance intervals.

In these observer models, p ( tm| ts) and p
(
dm
∣∣ ds) are modeled

as Gaussian distributions centered at ts and ds, and we assume that
their standard deviations (SD) grow linearly with their means. This
assumption is motivated by the scalar variability of timing and
distance (Jazayeri and Shadlen, 2010; Thurley and Schild, 2018).
The distribution of measurement noise is thus fully characterized
by the ratio of the SD to the mean of p ( tm| ts) and p

(
dm
∣∣ ds),

which we will refer to as the Weber fraction associated with the
measurement, wm. With the same arguments in mind, we assume
that the distributions of tr and dr conditioned on te and de,
p ( tr| te) and p

(
dr
∣∣ de), are also Gaussian, centered at te and de, and

associated with a constant Weber fraction, wr .
The model has three stages as:

Measurement stage

λxm(xs) = p (xm| xs) =
1√

25(wmxs)2
e
−(xs−xm)2

(wmxs)2

Estimation stage
f (xm) = xe

Reproduction stage

p (xr| xe) =
1√

25(wrxe)2
e
−(xr−xe)2

(wrxe)2

and then

p (xr|xs, wm, wr) =

∫
p
(
xr
∣∣ f (xm) , wr

)
p (xm|xs, wm)dxm

x stands for t (parameters from the time reproduction task) or d
(parameters from the space reproduction task).

For the time reproduction task, we have ts, sample time
interval; tm, measured time interval; tr , reproduced time interval;
te, estimated time interval; wm, measurement Weber fraction;
wr , reproduction weber fraction. For the distance reproduction
task, we have ds sample distance interval, dm, measured distance
interval, dr , reproduced distance interval, and, de, estimated
distance interval.

We used a maximum likelihood estimation (MLE) function,
which does not fuse prior information with the likelihood function,
and a Bayesian least squares (BLS) function in the estimation
stage of both tasks. For the Bayesian models, we used a uniform
distribution over the range of experimental xmin

s and xmax
s . The BLS

and MLE functions were defined as:

fBLS (xm) =

∫ xmax
s

xmin
s

xsp (xm| xs) dxs∫ xmax
s

xmin
s

p (xm| xs) dxs

fMLE (xm) = argmax
xs

λxm (xs) = xm

[
−1+

√
1+ 4wm2

2wm2

]

In the pilot data, we observed individual-specific shifts in the range
effect as represented in an overall tendency to over/under-estimate
across the whole range of intervals. These patterns were not
explained by the common observer model so we used a modified
version of these models. We introduced another free parameter (α)
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FIGURE 1

The sequence of trial events for the time reproduction task (A) and the distance reproduction task (B). (A) Participants were given a time
reproduction task in which they had to reproduce sample time intervals. After acquiring fixation and the presentation of a black line on screen, A
white circle (“set”) appeared on the horizontal meridian of the screen, and after a sample interval, another white circle (“go”) appeared on the black
line. Participants had to reproduce the sample interval by making a saccade to the “go” stimulus. Successful saccades turned the “go” stimulus green,
but no timing feedback was provided. (B) A distance reproduction task was designed similarly to the time reproduction task. It involved the same
setup until the appearance of the “set” stimulus. In this case, participants had to reproduce the distance between the “set” stimulus and the fixation
cross by making a saccade to a point on the black line at the same eccentricity as the “set” stimulus. Valid saccades were marked with a green circle,
and each block consisted of 54 trials with variations in eccentricity and sample intervals.

to the estimation stage of the model as a multiplication factor. So,
the estimation stage for these models would be:

fBLS (xm) =

∫ xmax
s

xmin
s

α.xsp (xm| xs) dxs∫ xmax
s

xmin
s

p (xm| xs) dxs

fMLE (xm) argmax
xs

λxm (xs) = α.xm

[
−1+

√
1+ 4wm2

2wm2

]

In a separate analysis, we added α to the estimation stage as an
additive parameter. The result from multiplication and addition
did not differ from each other qualitatively, so we only showed the
multiplicative modulation. We preferred the multiplication result
as it gives us a unitless α which is comparable between our tasks.

2.7 Model fitting

We maximized the likelihood of model parameters wm, wr , and
α (when applicable) across all xs and xr values. Maximum likelihood
estimation was performed with the minimize function in SciPy
library, using the Nelder–Mead downhill simplex optimization
method. We evaluated the success of the fitting procedure by
repeating the search with several different initial values.

2.8 Model comparison

In order to compare modified models (with α) with the
previous models (without α), we used Akaike information criterion
(AIC), Bayesian information criterion (BIC), and cross-validated
log-likelihoods (CLL) as our quantitative criteria. We also plotted
the averaged result of 50 simulations of tasks with the best fitted
models over the data. We compared plots to make sure there are

visible differences between the models. We also wanted to check
that the best model actually captures the pattern of the data well.
We considered differences bigger than 5 in each criterion (i.e., AIC,
BIC, and CLL) between different models, as an indicator of better
model performance (Ma et al., 2023). We also used the highest CLL
values among the models as an absolute measure of goodness-of-fit.
We performed comparisons between the modified and the classic
models, separately for fBLS and fMLE estimators, to choose the best
model for time and space reproduction, again separately.

2.9 Difference between model
parameters of time and space

We employed Wilcoxon signed-rank test to detect possible
differences between model parameters (α, wm, and wr) obtained
from the best fitted BLS3p model between time and space.
We considered p-values of less than 0.05 as an indication of
statistical significance.

2.10 Correlation between time and space

We calculated Pearson correlation between the best fitted
model parameters for the time and distance reproduction tasks
to measure the degree of potential overlap between time and
distance perception.

2.11 Effects of a perceptual domain on
the other

First, we performed a two-way ANOVA on the reproduced
time (dependent variable) for different presented time intervals
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(factor 1) and different eccentricities (factor 2). We did the
same analysis for reproduced distance (dependent variable) for
different presented distance intervals (factor 1) and for different
GO delays (factor 2). For performing ANOVAs, we pooled data
from all subjects.

To further investigate time-space interference, we fitted BLS3p
on the time and distance data across stimulus eccentricity
and fixation to GO delay, respectively. We computed R2 score
to assess the goodness-of-fit of a model fitted to the data
in one eccentricity/delay and used to predict data in other
eccentricities/delays. Since we wanted to see how the overall
performance of our model in capturing the mean and SD of data
across different eccentricities/delays changes, we used the mean
predicted values and the true values across time and distance
intervals to calculate R2 for each subject. With this approach we had
the problem of small number of sample points (3 in each domain)
which resulted in negative R2 values in some of the fitted-predicted
combinations in time domain for 5 subjects. We excluded these 5
subjects from this analysis in time domain.

3 Results

3.1 Bayesian observer modeling of time
and distance reproduction tasks

We calculated Akaike information criterion (AIC), Bayesian
information criterion (BIC), and cross-validated log likelihood
(CLL) across subjects for each model. We considered a value of 5 in
“2× difference in CLL” as the cutoff point in model comparison for
each pair as was previously suggested. In the time domain, we found
that the BLS3p model is a better fit for 11/20 subjects compared
to the other three models (for CLL values, and summary of result,
see Table 1). To further investigate the validity of such results, we
ran pairwise comparisons of models’ CLL values for each subject.
These analyses revealed that in the time perception domain, BLS2p
is a better fit than MLE2p in 17/20 subjects (Figure 2A), BLS3p is a
better fit than MLE3p in 19/20 subjects (Figure 2B), and BLS3p is
a better fit than BLS2p in 10/20 subjects (Figure 2C). These results
are plotted as a histogram in Supplementary Figures 1A–C as well.

In the distance domain, in 55% of subjects, BLS3p was the best
fit among our four models as well (11/20, Table 2). In the pairwise
comparisons across models, we observed that in only 2/20 subjects
BLS2p was a better fit that MLE2p while in 8/20 subjects, MLE2p was
a better fit than BLS2p (Figure 2D). Comparing BLS3p and MLE3p
did not reveal a conclusive picture (Figure 2E), while BLS3p is a
better fit than BLS2p in 11/20 subjects (Figure 2F). These results
are plotted as a histogram in Supplementary Figures 1D–F as well.
We replicated all of these analyses based on AIC and BIC, and
the results were qualitatively similar to CLL data presented here.
It seems that both prior-dependent and prior-independent models
are capturing the data pattern in space reproduction.

We plotted subjects’ reproduced time and distance as a function
of the presented duration and distance (Figure 3). In both time and
distance, we observed that reproduced time and distance roughly
followed the presented time and distance, respectively. In order to
observe the goodness-of-fit across our four models (BLS2p, BLS3p,
MLE2p, MLE3p), we fitted these models to our data, separately,

and plotted simulations from the best fitted models on our data.
As it is visually evident, the BLS models outperformed MLE
models in the time domain (Figure 3A). In the distance domain
(Figure 3B), MLE and BLS models were very similar. So, the
results implicate that both prior-dependent models outperformed
the prior-independent models in the time perception domain.

3.2 Comparison of model parameters
between time and space

Given our results so far, we compared the best fitted free
parameters from BLS3p model between time and space. In the case
of α we did not find neither correlation (r = −0.11, p = 0.64,
Figure 4A), nor difference between time (mean± SD: 1.01± 0.21)
and space (0.93 ± 0.11; W = 70, p = 0.2, Wilcoxson Rank Sum).
We calculated the measurement (wm) and the reproduction (wr)
noise parameters of space and time models (Figure 4B). wm in
space domain (0.05 ± 0.03) was lower than wm in time domain
(0.30 ± 0.07; W = 210, p < 0.0001). We also found that wr in
space domain (0.23 ± 0.02) was smaller than wr in time domain
(0.29 ± 0.07; W = 185, p < 0.001). We found that although
there was no correlation between wm in space and time domain
(r = 0.4, p = 0.08, Figure 4C), there was a positive and significant
correlation between wr in time and space domain (r = 0.45,
p < 0.05, Figure 4D). These results show that time and space differ
in terms of measurement noise while share similar noise profile in
reproduction.

3.3 Effect of eccentricities/delays on the
perception of time/distance intervals

We plotted the reproduced time intervals across different
eccentricities (Figure 5A). In order to see whether time perception
was dependent on distance, we performed a two-way ANOVA
on the reproduced time intervals as a dependent variable (factor
1: eccentricity, factor 2: time interval). We found that both time
interval (as expected, F = 1,961.0, df = 2, p< 0.001) and eccentricity
(F = 26.1, df = 2, p < 0.001) had a significant effect on the
reproduced time interval. The interaction between eccentricity and
time interval did not reach a significant level (F = 0.5, df = 4,
p = 0.7). This means that as the eccentricity of the stimulus
increases, subjects’ perceived time increases as well.

For the distance reproduction task, we plotted the reproduced
distance intervals across different delays (Figure 5B). In order to
see whether space perception was dependent on time, we performed
a two-way ANOVA on the reproduced distance intervals as a
dependent variable (factor 1: delay, factor 2: distance interval).
We found that while distance had a significant effect (as expected,
F = 4,073.9, df = 2, p < 0.001), delay did not have any significant
effect on the reproduced distance intervals (F = 2.2, df = 2, p = 0.1).
The interaction between delay and distance interval did not reach
a significant level (F = 0.3, df = 4, p = 0.8). This means that
the increase in the delay before response did not affect subjects’
perceived distance.

To further investigate these observations, we took a modeling
approach. We fitted BLS3p on the timing data as a function of
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TABLE 1 Cross-validated log-likelihoods (CLL) computed for models with BLS3p, MLE3p, BLS2p, and MLE2p estimators in time perception domain for all
subjects.

Subject ID BLS3p CLL MLE3p CLL BLS2p CLL MLE2p CLL

1 −3.15 −18.11 −3.18 −13.04

2 −2.25 −12.43 −3.29 −13.98

3 −10.25 −22.42 −27.13 −29.24

4 −12.78 −24.46 −12.80 −28.80

5 −9.62 −11.66 −10.92 −15.25

6 −3.98 −16.92 −4.65 −20.13

7 −9.22 −14.75 −10.41 −20.36

8 −6.99 −16.43 −12.85 −20.84

9 −23.69 −30.02 −28.00 −35.54

11 13.18 −0.13 3.67 −0.12

12 −21.10 −30.93 −21.68 −38.66

13 −0.74 −15.14 −0.99 −18.87

14 −22.69 −37.52 −25.97 −46.03

15 14.81 3.78 −4.38 0.70

16 −11.70 −23.43 −15.21 −24.95

17 −3.50 −18.55 −6.61 −20.16

18 −0.01 −4.06 −12.73 −5.64

19 8.84 −5.20 8.54 −11.45

21 −16.23 −24.39 −16.18 −28.24

22 −15.24 −23.37 −26.14 −36.31

Bold values represent the highest value among the 4 models.

stimulus eccentricity and used the fitted parameters for simulation
across the three eccentricities (6, 8, and 12◦). We computed R2

score to assess the goodness-of-fit of a model trained on one
eccentricity and tested on other eccentricities. The mean of R2

values is shown in Figure 6A. As can be seen, although each model
from any eccentricities can predict data from other eccentricities
well (R2s > 0.83), data from each eccentricity predicted the
same eccentricity better than others (the rightward diagonal in
Figure 6A). Similarly in the space domain, we fitted BLS3p on the
space data as a function of delay and used the fitted parameters
for simulation across the three delays. We computed R2 score to
assess the goodness-of-fit of a model trained on one delay and tested
on other delays (R2s > 0.93). The mean of R2 values is shown
in Figure 6B. We did not find any systematic difference between
models and data as a function of eccentricity. The modeling
approach confirmed the ANOVA results.

4 Discussion

We investigated the similarities and differences in the
perception of time and space, as two components of the “A Theory
of Magnitude” (ATOM) proposal (Walsh, 2003). Our investigation
was motivated by the evidence regarding various encoding schemes
that are recruited for time and space across different parts of
the brain (Kraus et al., 2013; Marcos et al., 2017; Abramson
et al., 2023). To achieve this goal, we designed two magnitude

reproduction tasks and made them as much similar in terms of
stimuli and procedure as possible. We used the observer model,
which (Jazayeri and Shadlen, 2010) had used, with two different
estimators [Bayesian least square (BLS) vs. maximum likelihood
estimator (MLE)] to our behavioral data. We showed that adding
another parameter (α) to the classic Bayesian observer model
(Jazayeri and Shadlen, 2010) resulted in better fits regardless of the
estimator used. We added α to the ideal observer model in order
to capture the heterogeneity of perception of time and space in
population (Matthews and Meck, 2014).

We showed that in the time domain, models that take priors
into account (i.e., BLS2p and BLS3p) outperformed those that do
not (i.e., MLE2p and MLE3p). In the space domain, it remains
inconclusive whether MLE3p or BLS3p better captures our data.
Since both of these two models in the space domain fitted data
well, we chose BLS3p to compare the time and space with the
same model. Given that a probabilistic framework explained both
time and space, we believe there is a general computation principle
in both domains. Although time and space perception abide
by shared principles, based on our observation, we believe that
this probabilistic computation is applied differently in these two
domains: time perception is prior-dependent, while we cannot say
the same for space perception.

Our results are corroborated by studies that have shown an
effect of global context in time. We provide evidence of the effect
of global context on space perception in line with previous works
as well (Martin et al., 2017; Sadibolova and Terhune, 2022; Wang
et al., 2023). However, we also show that not taking into account
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A B C

D E F

FIGURE 2

Pair-wise comparisons of observer models with different estimators in time and space. (A,B) Cross-validated log-likelihoods (CLL) were multiplied by
2 and the relative differences of BLS2p (light green) and BLS3p (dark green) models to MLE2p (light pink) and MLE3p (dark pink) models in time domain
are plotted, respectively, in (A,B). (C) CLLs were multiplied by 2 and the relative differences of BLS3p (dark green) model to BLS2p (light green) model
in time domain is plotted. (D,E) CLLs were multiplied by 2 and the relative differences of BLS2p (light green) and BLS3p (dark green) models to MLE2p

(light pink) and MLE3p (dark pink) models in space domain are plotted, respectively, in (D,E). (F) CLLs were multiplied by 2 and the relative differences
of BLS3p (dark green) model to BLS2p (light green) model in space domain is plotted. Ordinate represents subject’s ID in each subplot.

the prior would also describe the data equally well. The lack of
difference between prior-dependent and prior-independent models
in explaining the data in space perception points out to a new
challenge in the study of space perception. Space takes different
meanings in cognitive experiments (eccentricity in the retinotopic
map, surface, distance in navigation, etc.). It may be that priors
have an effect on some measures of space and not on the other. Or
maybe, the degree of effect varies in different spatial contexts.

Our results are supported by biological evidence as well.
A recent meta-analysis has shown that although time and space
perception share common regions in the brain, their processing
might be separated by an anatomical anterior-posterior gradient
(Cona et al., 2021). Dissociable neural indices for time and space
have also been found in human electroencephalography (EEG) data
(Robinson and Wiener, 2021). Neural recordings from prefrontal
cortex (PFC) and temporal lobe in epileptic patients found neurons
that encode time-only, space-only or both time and space. In non-
human primates, researchers found that neurons in the PFC that
encode time and space have a small overlap with each other (Marcos
et al., 2017) and the commonality may be at the level of goal coding.
These results can be explained by the recent proposal that the
brain uses distinct mechanisms to measure temporal and spatial
magnitudes and combines them in a unimodal estimate through
another mechanism (Gladhill et al., 2022).

In the time domain, we observed in subjects with the lowest
and the highest α values, α captured the overall overestimation
(Subject No. 3, Supplementary Figure 2) and underestimation
(Subject No. 17, Supplementary Figure 3) in time reproduction
behavior, respectively. We suggest that α represents the speed of
an internal clock (Meck, 1983). Research has shown that people
experience the passage of time in different ways and the speed
of the internal clock varies in population (Wearden et al., 1999;
Allman et al., 2014). Some attempts have been made to use drift
diffusion models (DDM) to describe data from timing tasks (Simen
et al., 2011). In line with this view, we can reformulate time
reproduction as a decision of when to act. The timing of a decision
has been studied extensively in the decision-making literature
by incorporating an evidence-independent urgency signal to the
accumulation of evidence (Cisek et al., 2009; Carland et al., 2016;
Ferrucci et al., 2021). An alternative interpretation of α in the
perception time is that α could be representative of an urgency
signal. The heterogeneity that we found in the performance of our
subjects in time reproduction might be linked to their different
levels of urgency to act.

In the space domain, we made the same observation regarding
α. However, the majority of subjects had α values under 1
(median of 0.9 for the distribution of α) which translates into an
overall underestimation tendency in distance reproduction. This
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TABLE 2 Cross-validated log-likelihoods (CLL) computed for models with BLS3p, MLE3p, BLS2p, and MLE2p estimators in space perception domain for
all subjects.

Subject ID BLS3p CLL MLE3p CLL BLS2p CLL MLE2p CLL

1 −78.00 −78.68 −86.05 −81.82

2 −88.40 −87.93 −89.34 −88.96

3 −83.91 −83.95 −89.30 −89.21

4 −65.21 −66.82 −68.74 −67.30

5 −71.45 −71.98 −79.79 −75.68

6 −87.20 −87.36 −89.35 −89.77

7 −74.52 −74.70 −86.35 −80.89

8 −73.72 −73.43 −84.51 −79.44

9 −84.95 −85.72 −86.78 −85.73

11 −76.33 −77.00 −89.62 −83.65

12 −78.45 −77.45 −82.12 −78.78

13 −68.91 −69.53 −70.23 −69.40

14 −82.18 −85.35 −82.21 −85.96

15 −66.76 −66.51 −67.17 −67.13

16 −73.24 −73.11 −82.57 −77.87

17 −80.69 −81.06 −81.30 −81.90

18 −90.48 −89.11 −90.48 −88.98

19 −81.45 −83.86 −83.51 −87.70

21 −78.63 −77.78 −81.33 −78.79

22 −74.77 −74.36 −93.85 −84.76

Bold values represent the highest value among the 4 models.

a1 a2

a3 a4

b1 b2

b3 b4

A B

FIGURE 3

Subjects and observer model behavior in time reproduction (A) and distance reproduction tasks (B). (a1–a4) Black circles and the error bar show the
mean ± SD of subjects’ reproduced times across three sample intervals. The colored circles and the dotted error bar indicate the mean ± SD of the
Bayesian observer model reproduced times computed from simulations of the best-fitted models with 4 estimators (BLS3p, BLS2p, MLE3p, MLE2p,
respectively). (b1–b4) Black circles and the error bar show the mean ± SD of subjects’ reproduced distances across three sample intervals. The
colored circles and the dotted error bar indicate the mean ± SD of the Bayesian observer model reproduced distances computed from simulations
of the best-fitted models with 4 estimators, BLS2p, BLS3p, MLE2p, and MLE3p, respectively. The inset in (a2, a4, b2, b4) shows the distribution of
alpha values for all subjects. The dotted line represents the median of alpha distribution.
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A

C

B

D

FIGURE 4

Comparison of and correlation between best fitted model parameters computed in time and space. (A) The correlation (r = –0.11, p = 0.64) between
alpha computed from the BLS3p model in time and space. (B) Box plot comparing the distribution of best-fitted model noise parameters between
time and space. The line inside the box represents the median, and the whiskers extend to the most extreme data points within 1.5 times the
inter-quartile range (IQR). The Wilcoxon signed rank test was conducted to assess the statistical significance of the differences between best-fitted
model noise parameters in time and space. p < 0.001***, p < 0.0001****. (C) The correlation (r = 0.40, p = 0.08) between wm computed from the
BLS3p model in time and space. (D) The correlation (r = 0.45, p < 0.05) between wr computed from the BLS3p model in time and space.

observation is in line with previous report of an average undershoot
of about 10% of target eccentricity in peripheral saccades
(Vitu et al., 2017).

We observed that wm and wr , model parameters representing
the level of variability, were lower in space than in time models.
We also found that wm was not correlated between time and space
which hints at the possibility of different measurement mechanisms
in the two domains. One explanation for the observed difference
in wm between the two domains could be that there are various
sources of variability for time and space, and the measurement and
reproduction of space goes under less noisy stages (or processed
further). This difference between time and space can be due to
how these dimensions are represented in the brain. We believe
that given that brain has many retinotopic maps in which spatial
relations such as eccentricity, and distance are coded (Felleman and
Van Essen, 1991), it has the power to reduce noise at the level of
measurement. On the other hand, time has very few chronotopic
maps (Protopapa et al., 2019), so the perception of time would
be subject to more noise than space. At the motor level, it has

long been known that the primate brain has a dedicated system for
saccadic eye movement that direct eyes to different locations (Rucci
et al., 2007). This system is very precise in transforming static visual
scenes into spatiotemporal signals for the brain to structure the
spatial maps of the environment (Rucci and Poletti, 2015). We
believe that that is the reason why where to look is less noisy than
when to look.

We can compute distance based on information from
both egocentric cues (i.e., navigation) and distance from fovea
(allocentric, i.e., making a saccade) (Feigenbaum and Rolls, 1991;
Sabes et al., 2002; Olson, 2003). Distance reproduction tasks so far
have mostly focused on egocentric representation as studies have
been conducted in virtual reality settings (Maruhn et al., 2019;
Zhang et al., 2021). We used a task design in which the perceived
and reproduced distances represent the allocentric mapping of
spatial information. In recent years, research has found that there
are neurons that encode egocentric spatial representations and
also represent allocentric spatial relations in primate hippocampal
formation (Baraduc et al., 2019; Courellis et al., 2019) driven by
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A B

FIGURE 5

Time-space interference. (A) Circles and the error bar show the mean ± SD of subjects’ reproduced times across three sample intervals for
eccentricities of 6 (gray), 8 (green), 12◦ (cyan). (B) Circles and the error bar show the mean ± SD of subjects’ reproduced distances across three
delays of 400 (gray), 800 (green), 1,600 ms (cyan).
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FIGURE 6

Prediction of a perceptual domain as a function of another one. (A) Heatmap shows R2 values for the simulated Bayesian observer model (BLS3p) for
time domain fitted on trials with short (6◦), inter (8◦), and long (12◦) stimulus eccentricity and tested on trials with these eccentricities. (B) Heatmap
shows R2 values for the simulated Bayesian observer model (BLS3p) for distance fitted on trials with short (0.4 s), inter (0.8 s), and long (1.6 s) fixation
to GO delays and tested on trials with these delays.

saccadic eye movements during visual exploration of environment
(Killian et al., 2012). Because of this similarity, we believe our
results could generalize to tasks that measure the egocentric
encoding of distance.

We observed that as the eccentricity of stimulus increased, the
subjects overestimated time intervals, as represented in different
(not statistically though) α values obtained from models fitted
based on eccentricities we had in our task. We also showed that
the fitted parameters to timing data in different eccentricities
are not generalizable to other eccentricities, as shown in the
deterioration of the goodness-of-fit metric. This finding is in
line with the previous observations that as the distance between
two visual stimuli, with a constant stimulus onset asynchrony,
increases, the perceived duration between these two stimuli also

increases. This effect is known as Kappa (Jones and Huang,
1982; Vidaud-Laperrière et al., 2022). On the other hand, the
reproduced distances as a function of delay were not different.
This observation is unexpected given the literature on the relation
of working memory and the anti-saccade task which shows
the deterioration of task performance as a function of delay
interval (Munoz and Everling, 2004; Meier et al., 2018). We
think that the maximum delay duration that we used (1.6 s) is
not long enough to manifest the interference effect of time on
space.

We do not know that if BLS3p would be a better fit than BLS2p

to previously reported data in time domain like the ones from
Jazayeri and Shadlen (2010). But although they trained subjects to
have a stable performance before their main task, we did not have
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that training. They also provided feedback regarding the precision
of performance to their subjects on each trial, which we did not
have that either. So, although we cannot extend our modeling
works to theirs, our model is more powerful in dealing with
not giving feedback and also not requiring subjects to be heavily
trained. Given that our model can accommodate data collection
with minimum training, we believe it can be applied more easily
in populations for which data collection is an obstacle, like children
or people with neurological or psychiatric disorders. Meanwhile,
note that we only used three intervals for both time and space
(nine conditions) to keep the duration for completing both tasks
manageable. We are aware that three intervals might not be enough
to generalize our results to larger range of time or space, or other
models, that we have not used here, might explain these data
more comprehensively. Given the literature on time and space
perception, we think this possibility is not likely, but needs further
investigation.
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