Skip to main content

ORIGINAL RESEARCH article

Front. Neurosci.
Sec. Visual Neuroscience
Volume 18 - 2024 | doi: 10.3389/fnins.2024.1387393

Decoding time-resolved neural representations of orientation ensemble perception

Provisionally accepted
  • Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo, Tokyo, Japan

The final, formatted version of the article will be published soon.

    The visual system can compute summary statistics of several visual elements at a glance. Numerous studies have shown that an ensemble of different visual features can be perceived over 50-200 ms; however, the time point at which the visual system forms an accurate ensemble representation associated with an individual's perception remains unclear. This is mainly because most previous studies have not fully addressed time-resolved neural representations that occur during ensemble perception, particularly those lacking in quantifying the representational strength of ensembles and their correlation with behavior. Here, we conducted orientation ensemble discrimination tasks and electroencephalogram (EEG) recordings to decode orientation representations over time while human observers discriminated an average of multiple orientations. We modeled EEG signals as a linear sum of hypothetical orientation channel responses and inverted this model to quantify the representational strength of ensemble orientation. Our analysis using this inverted encoding model revealed stronger representations of the average orientation over 400-700 ms. We also correlated the orientation representation estimated from EEG signals with the perceived average orientation reported in the ensemble discrimination task with adjustment methods. We found that the estimated orientation at approximately 600-700 ms significantly correlated with the individual differences in perceived average orientation. These results suggest that although ensembles can be quickly and roughly computed, the visual system may gradually compute an orientation ensemble over several hundred milliseconds to achieve a more accurate ensemble representation.

    Keywords: EEG, Decoding, inverted encoding models, multivariate pattern analysis, Orientation, Ensemble perception

    Received: 17 Feb 2024; Accepted: 15 Jul 2024.

    Copyright: © 2024 Yashiro, Sawayama and Amano. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Ryuto Yashiro, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo, 113-8656, Tokyo, Japan

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.