
Frontiers in Neuroscience 01 frontiersin.org

A practical guide for combining 
functional regions of interest and 
white matter bundles
Steven L. Meisler 1,2*†, Emily Kubota 3*†, Mareike Grotheer 4,5, 
John D. E. Gabrieli 2,6 and Kalanit Grill-Spector 3,7

1 Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, 
United States, 2 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 
Cambridge, MA, United States, 3 Department of Psychology, Stanford University, Stanford, CA, United 
States, 4 Department of Psychology, Philipps-Universität Marburg, Marburg, Germany, 5 Center for 
Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität 
Giessen, Marburg, Germany, 6 McGovern Institute for Brain Research, Massachusetts Institute of 
Technology, Cambridge, MA, United States, 7 Wu Tsai Neurosciences Institute, Stanford University, 
Stanford, CA, United States

Diffusion-weighted imaging (DWI) is the primary method to investigate 
macro- and microstructure of neural white matter in vivo. DWI can be  used 
to identify and characterize individual-specific white matter bundles, enabling 
precise analyses on hypothesis-driven connections in the brain and bridging 
the relationships between brain structure, function, and behavior. However, 
cortical endpoints of bundles may span larger areas than what a researcher 
is interested in, challenging presumptions that bundles are specifically tied to 
certain brain functions. Functional MRI (fMRI) can be integrated to further refine 
bundles such that they are restricted to functionally-defined cortical regions. 
Analyzing properties of these Functional Sub-Bundles (FSuB) increases precision 
and interpretability of results when studying neural connections supporting 
specific tasks. Several parameters of DWI and fMRI analyses, ranging from data 
acquisition to processing, can impact the efficacy of integrating functional and 
diffusion MRI. Here, we discuss the applications of the FSuB approach, suggest 
best practices for acquiring and processing neuroimaging data towards this end, 
and introduce the FSuB-Extractor, a flexible open-source software for creating 
FSuBs. We  demonstrate our processing code and the FSuB-Extractor on an 
openly-available dataset, the Natural Scenes Dataset.
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1 Introduction

White matter pathways are essential for communication among brain regions that 
orchestrate perception, cognition, and action (Fields, 2008; Filley and Fields, 2016). Functional 
relevance of white matter has been established since Carl Wernicke’s descriptions of aphasia 
in 1874 (Wernicke, 1874), in which lesions of the arcuate fasciculus led to impairments in 
speech production due to severed communication between inferior frontal and superior 
temporal regions. Beyond such clinical cases, often termed “disconnection syndromes” 
(Geschwind, 1965), variations in white matter microstructure are also reflected in individual 
differences in typical cognitive functions (Johansen-Berg, 2010; Roberts et al., 2013). Plasticity 
in white matter, which is central to learning, memory, and development (Sampaio-Baptista 
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FIGURE 1

(A) Cortical endpoints (red) of the left arcuate fasciculus (light blue), overlaid on a T1-weighted image. Data come from the first subject of the Natural 
Scenes Dataset. (B) Functional sub-bundles of the left arcuate fasciculus that are specific to math (blue) and reading (green) in a representative adult. 
Adapted with permission from Grotheer et al. (2019) (under the Creative Commons Attribution 4.0 International License: http://creativecommons.org/
licenses/by/4.0/).

and Johansen-Berg, 2017; Fandakova and Hartley, 2020; Xin and 
Chan, 2020), is thought to be regulated by neural activity (Fields, 2015; 
de Faria et al., 2021). This collectively suggests there is a dynamic and 
causal interplay between white matter structure and brain function 
underlying typical and clinical cognition.

Diffusion-weighted imaging (DWI) is the primary method for 
investigating white matter in vivo (Basser et al., 1994), and can be used 
to infer structural properties of white matter more nuanced than gross 
volumetric estimates derived from standard anatomical imaging. 
White matter is organized into short-range association fibers and 
long-range bundles or tracts (Bullock et al., 2022). Conventional DWI 
can be used to resolve long-range bundles based on the strength and 
directionality of the underlying diffusion-weighted signal, often 
coupled with bundle-specific criteria such as atlas-based inclusion/
exclusion areas or model-based clustering (Zhang et al., 2022). When 
done properly, bundle reconstruction is reliable and corresponds well 
with ground-truth white matter dissection (Schilling et al., 2020) and 
simulated phantom connectivity (Girard et al., 2023). These bundles 
connect gray matter regions and hence form the structural 
connectivity foundation for large-scale distributed neural networks 
that are associated with many cognitive functions (Bressler and 
Menon, 2010; Wang et al., 2015). By running analyses on the bundle-
level instead of the voxel-level, investigators can examine specific 
connections in participant’s native brain space to precisely study the 
role of specific connections in the brain, mitigating concerns of 
multiple-comparisons across voxels and neuroanatomical 
dissimilarities across participants that often compromise whole-brain 
analyses (Van Hecke and Emsell, 2016). Such bundle-level analyses are 
implemented in various different software packages—such as AFQ 
(Yeatman et al., 2012; Kruper et al., 2021), TRACULA (Yendiki et al., 
2011; Maffei et al., 2021), and the BUAN framework (Chandio et al., 
2020)—and have been used in numerous studies.

However, an outstanding concern for linking white matter 
bundle properties to neural function or behavior is that the areas 
of cortex that bundles connect to are often larger than the fine-
grained functional organization of the brain. As such, only a 

small sub-component of each bundle may be associated with the 
specific function or behavior being studied. For example, the 
superior longitudinal fasciculus is composed of several 
sub-bundles (Schurr et al., 2020). Similarly, separate sub-bundles 
within the arcuate fasciculus connect regions in the brain 
supporting reading and math, and, moreover, these sub-bundles 
have distinct microstructural profiles (Grotheer et  al., 2019) 
(Figure  1). That these sub-bundles exist not only provides 
valuable insight into functional neuroanatomy, but also 
introduces an important methodological consideration, in that 
properties of these sub-bundles may serve as more theoretically-
motivated metrics for gauging brain-behavior relationships. To 
resolve Functional Sub-Bundles (FSuB), one can integrate 
functional MRI (fMRI) in the bundle extraction process, 
identifying only those streamlines of a bundle that connect to the 
task-relevant functional regions of interest. This strategy has 
been used to improve the precision and interpretability of 
structure–function-behavior relationships in cognitive, 
perceptual, and clinical domains (Dougherty et al., 2005; Saygin 
et al., 2011, 2016; Reid et al., 2016; Lerma-Usabiaga et al., 2018; 
Yoshimine et al., 2018; Grotheer et al., 2019, 2022; Finzi et al., 
2021; Kubota et  al., 2023). However, it has historically been 
challenging to precisely link gray matter cortical regions with 
white matter bundles because they are comprised of separate 
tissue types that are qualified using different methods (fMRI and 
DWI respectively). Early studies that sought to link white matter 
bundles to function used approaches create spherically dilated 
regions of interest (ROIs) (Yeatman et al., 2013; Gomez et al., 
2015) to extend functional regions into the white matter. 
However, these approaches can come at a cost to anatomical 
precision, especially when ROIs are small and close together. In 
recent years, advances in surface brain mapping and tractography 
have been used to maintain the spatial precision of the white 
matter associated with ROIs by projecting ROIs along the surface 
normal and restricting ROIs to the gray-matter-white-matter 
interface, putting ROIs in close proximity with the underlying 
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white matter (Grotheer et  al., 2019; Finzi et  al., 2021; Kubota 
et al., 2023). These methods were developed and employed in the 
context of specific empirical studies, therefore, there is a need for 
an open-source software implementation for high throughput 
FSuB analysis. In addition, as detailed in this paper, several 
methodological factors relating to fMRI and DWI acquisition and 
processing are pertinent to the reliability, validity, and 
interpretation of the FSuB approach.

In the present article, we  facilitate the adoption of the FSuB 
approach in four critical ways: (1) We provide suggestions and practical 
guidance for data acquisition and processing for extracting and 
analyzing FSuBs, with accompanying code. (2) We introduce the FSuB-
Extractor, a flexible open-source software toolbox for producing and 
analyzing FSuBs. (3) We showcase a comprehensive FSuB workflow 
(beginning with raw data) and the FSuB-Extractor on a high-quality, 
publicly-available dataset, the Natural Scenes Dataset (Allen et al., 
2022). (4) We validate the FSuB-Extractor against previously reported 
findings (Kubota et al., 2023). We hope this guide will allow for more 
accessible, user-friendly, and high-throughput FSuB analyses in future 
research, and hence contribute to a finer-grained understanding of the 
link between brain structure, brain function, and behavior.

2 MRI acquisition and processing 
suggestions for FSuB purposes

We note that the following guidelines may change as MRI 
acquisition and processing techniques evolve. These suggestions are 
derived from prior empirical work on MRI methods development 
and evaluation (e.g., Glasser et al., 2013; Daducci et al., 2014; Canales-
Rodríguez et al., 2019; Esteban et al., 2019; Yeh et al., 2019; Grisot 
et al., 2021; Maffei et al., 2022). As detailed later in the text, the FSuB 
approach involves analyzing streamlines whose endpoints are 
proximal to functional ROIs in the gray matter. The following 
suggestions will help create well-made cortical surface 
reconstructions, white matter tractograms/bundles, and functional 
ROIs, which are needed to achieve optimal FSuB specificity.

2.1 Anatomical MRI acquisition

Anatomical images, such as T1- and T2-weighted images (T1w/
T2w), should cover the whole brain and have a voxel size of no more 
than 1 mm isotropic, and preferably smaller if time allows (Glasser 
et al., 2014). At the minimum, a T1w anatomical image of the entire 
brain is usually required (although studies of some special 
populations, such as infants, may instead rely primarily on T2w 
images). Additionally collecting a T2w anatomical image enables 
one to better refine cortical surfaces in software packages such as 
FreeSurfer (Dale et al., 1999). Fat-suppressed T2w images can also 
be useful in correcting for echo-planar imaging (EPI) distortions 
(Wu et al., 2008; Irfanoglu et al., 2017; Montez et al., 2023). Thus, it 
is recommended to collect both T1w and T2w images, as long as it 
is practical to do so. Sequences with built-in motion correction, such 
as volumetric navigators (Tisdall et al., 2012) can reduce motion-
related artifacts, leading to more reliable brain surface 
reconstructions, particularly in hyperkinetic populations such as 
children (Tisdall et al., 2016).

2.2 Anatomical MRI processing

FSuB extraction works best when both functional regions of 
interest (fROI) and streamline endpoints can be defined nearest to the 
gray matter white matter interface (GMWMI). This allows one to 
minimize the search distance between fROI and streamline endpoints, 
mitigating concerns of false positive streamline inclusion. Information 
from brain surface reconstruction will lead to a more accurate 
GMWMI than relying on volumetric segmentation alone. FreeSurfer 
(Fischl, 2012), through the recon-all workflow, is the most common 
software solution for reconstructing the cortical surface. Although this 
is an automatic workflow, it is recommended to visualize outputs and 
manually correct defects (e.g., holes and handles) if it is practical to do 
so. A GMWMI can then be created using MRtrix3’s (Tournier et al., 
2019) commands 5ttgen and 5tt2gmwmi (Figure 2). We recommend 
using the Hybrid Surface and Volume Segmentation (hsvs) algorithm, 
which leverages both surface and volumetric information from 
FreeSurfer (Smith et al., 2020).

2.3 DWI acquisition

DWI acquisitions should be  chosen based on the planned 
fiber tracking algorithm and microstructural measures of 
interest. While both shelled schemes (e.g., high angular resolution 
diffusion imaging—HARDI) and cartesian grid schemes (e.g., 
diffusion spectrum imaging—DSI) may be used for tractography, 
some processing techniques, software, and microstructural 
measures may be uniquely suited for specific acquisition schemes. 
For example, a workflow based on constrained spherical 
deconvolution (Tournier et al., 2008; Jeurissen et al., 2014) will 
need data collected in spherical shells. Conversely, diffusion 
spectrum imaging (Wedeen et al., 2000) requires a cartesian grid 
sampling scheme. However, many models used to infer white 
matter microstructure, including those for diffusion tensor 
imaging (Basser et al., 1994), diffusion kurtosis imaging (DKI; 
Steven et al., 2014), generalized q-sampling imaging (GQI; Yeh 
et  al., 2010), and neurite orientation dispersion and density 
indices (NODDI; Zhang et al., 2012), can be fit on either shelled 
or gridded schemes.

Regardless of one’s choice of sampling scheme, it is 
recommended to use DWI acquisitions that include both low (≤ 
1,200 s/mm2) and high (≥ 2,000 s/mm2) b-values, which 
collectively yield fiber orientation distributions that better reflect 
more complex non-gaussian and hindered diffusion patterns 
(Assaf et  al., 2004). This type of acquisition enables multi-
compartmental signal modeling of fiber orientation distribution 
functions, which ultimately leads to better differentiation 
between tissue classes and more reliable white matter signal at 
tissue boundaries (Jeurissen et al., 2014). This type of acquisition 
also allows for using nuanced microstructural models, such as 
NODDI and DKI, and has benefits for tractography (Maffei et al., 
2022). Stronger diffusion weighting emphasizes intra-axonal 
signal while attenuating extra-axonal signal (Huang et al., 2020). 
Thus, orientation distribution functions become more sharply 
tuned to better resolve crossing fibers. This leads to lower 
directional uncertainty in probabilistic tracking, and presumably 
better estimates of the primary diffusion direction in 
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deterministic tracking (Setsompop et  al., 2013). Additionally, 
acquiring a large number of DWI directions will yield a higher 
angular resolution scan for improved tractography, and we refer 
the reader to a set of recommendations for minimal number of 
diffusion directions (Schilling et al., 2022). A typical minimal 
DTI acquisition, with a single low b-value shell at few (≤ 32) 
directions, is not recommended, since it has low angular 
resolution, is unable to take advantage of multiple b-value DWI 
signal modeling, does not have high b-valued shells, and restricts 
microstructural measures primarily to DTI metrics such as 
fractional anisotropy and mean diffusivity.

Additionally, susceptibility distortion correction (SDC) should 
be applied to DWI images to correct for geometric distortion artifacts 
present in fast EPI acquisitions (Andersson et al., 2003). SDC leads to 
better anatomical correspondence not only between T1w and DWI 
images, but also between DWI and fMRI images, assuming both 
images have undergone SDC. There are multiple ways to enable SDC 
in DWI. One method is to collect a pair of DWI acquisitions that have 
opposing phase encoding directions (Andersson et al., 2003; Irfanoglu 
et  al., 2015). This option has the largest time cost, but has the 
advantage of gathering multiple data points per direction, which can 
mitigate the impact of noise. Another is to collect a dedicated field 
map before DWI scans to quantify magnetic susceptibility distortions. 
Additionally, if one is using a dataset that has missing or low-quality 
field maps, one can use field map-less distortion correction methods 
such as Synb0-DisCo (Schilling et al., 2019a).

2.4 DWI processing

2.4.1 DWI preprocessing
We recommend using automated, flexible, and robust 

preprocessing softwares, such as QSIPrep1 (Cieslak et al., 2021), for 
ease of operation and reproducibility. Regardless of what software is 
used, the following preprocessing steps are suggested as a minimum:

 1. Denoising. For example, the MRtrix3 software package 
(Tournier et al., 2019) implements Marchenko-Pastur principal 
component analysis (Veraart et al., 2016b) via dwidenoise, and 
the DIPY software package (Garyfallidis et  al., 2014) can 
perform the self-supervised patch2self method (Fadnavis 
et al., 2020).

 2. Susceptibility distortion correction, such as FSL’s (Jenkinson 
et al., 2012) topup functionality (Andersson et al., 2003). If 
using Synb0-DisCo, please refer to their GitHub repository for 
usage instructions.2

 3. Eddy current and motion correction (often done simultaneously). 
For example, FSL implements this with the eddy command 
(Andersson and Sotiropoulos, 2016), and the TORTOISE toolbox 
(Irfanoglu et al., 2017) includes this in their DIFFPREP module.

 4. Gibbs deringing (Veraart et al., 2016a), which will mitigate DWI 
artifacts at the interfaces between white matter and other neural 
compartments. This can be  implemented in MRtrix3 with 

1 https://github.com/PennLINC/qsiprep

2 https://github.com/MASILab/Synb0-DISCO

mrdegibbs, which is based on a local sub-voxel shift approach 
(Kellner et al., 2016) and is well-suited for full Fourier acquisitions. 
TORTOISE includes a Gibbs deringing method that is better 
suited for partial Fourier acquisitions (Lee et al., 2021).

Additionally, the DWI image and T1w image need to be aligned 
to one another. While reorienting DWI images should be minimized 
and done in a single step due to concerns of data interpolation and the 
need to correct the gradient table (Leemans and Jones, 2009), we note 
that it is common in image preprocessing pipelines to rotate 
derivatives such that the anterior and posterior commissures are at the 
same level (commonly referred to as ACPC alignment). This 
reorientation enforces common image orientations and origins across 
subjects, which benefits downstream quality control and image 
registration if needed. In ACPC-aligned DWI images for example, a 
directionally-colored FA map should always indicate left-to-right 
orientation (typically bright red) in the corpus callosum, and 
visualizing these maps is a quick quality assurance check that the 
gradient table is valid. The same map in an image with rotational bias 
not ACPC aligned might not have as distinctive of a color in the 
corpus callosum, which could confound quality control. As long as 
SDC is applied to the DWI image, only linear warping should 
be necessary to make this alignment (Chen et al., 2019).

Upsampling the DWI image to 1.25 mm isotropic voxels, if 
needed, e.g., with MRtrix3’s mrresize, can be useful creating a more 
resolvable border between gray and white matter (Dyrby et al., 2014). 
However, this may only provide meaningful benefits if the images 
were acquired with only slightly larger voxels (e.g., 1.5 mm), and may 
otherwise increase computational burden with trivial benefits. For 
FSuB purposes, in which regions of interest may be  defined on 
anatomical surfaces, upsampling beyond the resolution of the T1w 
image will provide diminishing returns.

2.4.2 DWI postprocessing
After preprocessing, steps should be taken towards producing a 

whole-brain tractogram and/or bundle segmentations. Some bundle 
segmentation algorithms will operate on a whole-brain tractogram 
based on streamline clustering, such as Recobundles (Garyfallidis et al., 
2018), or anatomical waypoint criteria, such as PyAFQ (Yeatman et al., 
2012; Kruper et al., 2021). Other segmentation algorithms, including 
TractSeg (Wasserthal et al., 2018) and DSI-Studio’s AutoTrack (Yeh 
et al., 2018), can directly segment bundles using the DWI signal or 
modeled signal without starting from a whole-brain tractogram. The 
precise steps one may take to identify bundles may vary based on one’s 
software preference and acquisition scheme. For example, TractSeg 
and many of MRtrix3’s tractography implementations require 
derivatives from constrained spherical deconvolution, which 
necessitates a shelled acquisition.

Regardless of which method is chosen, it is important that the 
resulting streamlines reach the GMWMI to minimize the distance 
between streamline endpoints and gray matter ROIs. Minimizing the 
search distance between streamline endpoints and fROIs mitigates 
concerns of false positive streamline inclusion when defining FSuBs. 
To this end, MRtrix3 can implement anatomically constrained whole-
brain tractography (Smith et  al., 2012), which enables precise 
streamline cropping at the GMWMI, seeding on the GMWMI, as well 
as backtracking which removes streamlines with anatomically 
implausible ends (i.e., within non-superficial white matter). A similar 
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technique that can be run in DIPY is imposing a Continuous Map 
Criterion (CMC) based on tissue probability maps (Girard et  al., 
2014). Surface tractography, or seeding directly on the surface meshes, 
can also be  achieved through DIPY through surface-enhanced 
tragography (St-Onge et al., 2018) and FSL (Jenkinson et al., 2012; 
Warrington et al., 2020). Visualizing the streamlines over the T1w 
image is recommended for quality assurance.

Since cortical regions of interest may be small, we recommend 
that tractograms and bundles be  sufficiently dense, e.g., 5-10 
million streamlines for whole-brain coverage. Although such 
dense whole-brain tractograms are prone to false positives 
(Maier-Hein et al., 2017), strategies exist to mitigate this. These 
mechanisms use the underlying DWI signal or fiber orientation 
distributions to make judgements about streamline validity. This 
can result in streamlines being removed if they are redundant or 
biologically implausible (Smith et al., 2013), or alternatively given 
weights corresponding to their estimated contributions to the 
DWI signal (Pestilli et al., 2014; Daducci et al., 2015; Smith et al., 
2015). Both of these strategies have their own advantages and use 
cases. Removing streamlines can increase computational 
efficiency and be a valid approach if one’s downstream analyses 
cannot incorporate streamline weights. Using streamline weights 
can allow one to analyze a sufficiently dense tractogram while 
biasing against implausible streamlines, and summation of these 
weights in bundles can be an informative measure of structural 
connectivity (Smith et al., 2022). Note that these strategies are 
only valid when applied to a whole-brain tractogram.

An alternative strategy is to create FSuBs by only seeding and 
terminating streamlines between a pair of ROIs. Advantages of this 
approach are that it can be less computationally intensive compared 
to generating a whole-brain tractogram, and it allows one to explicitly 
control the number of final streamlines in the FSuB (which we note 
is not the same as tract volume). However, we do not recommend this 
approach, as this method does not ensure that the resulting FSuB are 
derived from a canonical bundle (additional waypoints or exclusion 
masks could help in this regard, however). Additionally, streamline 
algorithms that detect false positives require a whole-brain 
tractogram to reliably estimate streamline contributions to the 
underlying DWI signal (Smith et al., 2022). So, FSuBs created by 
directly seeding between fROIs cannot take advantage of 
these mechanisms.

2.5 fMRI acquisition

Although the FSuB-Extractor can accept gray matter ROIs defined 
by any criteria, we anticipate the most common use case will be to 
input fROIs that are defined from task-based fMRI analyses (e.g., areas 
of high activation from a statistical parametric map). Due to the 
variable nature of fMRI tasks, it is difficult to prescribe best guidelines 
for fMRI acquisitions, as these could vary based on the task and the 
effect one is trying to resolve. However, in general for FSuB purposes 
it is best to strive for the smallest voxel resolution one can achieve 
while maintaining an acceptable signal-to-noise ratio (SNR), which 
will increase the anatomical precision of functional clusters. Since 
higher voxel resolutions and shorter TRs come at the expense of lower 
SNR, number of TRs and acquisition parameters should ultimately 
be decided based on the SNR, the size of fROIs, and the expected task 
effect size (Murphy et al., 2007). Similar to DWI acquisitions, field 
maps should be collected before fMRI scans to perform SDC, and field 
map-less distortion methods are available as well (for example, 
SynBOLD-DisCo; Yu et al., 2023).

To ensure that the FSuBs are specific to the function being studied, 
a well-designed localizer task should be used. Localizers typically aim 
to identify regions of the brain that are active during a target condition/
task compared to control conditions/tasks. For example, a language 
localizer focused on semantic processing may contrast perceiving 
intact vs. degraded speech (Scott et al., 2017), and a localizer identifying 
high-level visual areas might contrast responses to one category of 
stimuli (e.g., faces) compared to many others (e.g., words, places, 
bodies, objects) (Stigliani et al., 2015). Note that in both cases, low-level 
features of the stimuli (speech sounds and visually-presented images) 
are held constant, so that it is possible to identify neural responses that 
are specific to the manipulation of interest (in this case, language 
comprehension or face perception). Regardless of the task being 
studied, it is important to consider both the target and control 
conditions. A localizer that contrasts responses to faces compared to 
checkerboards, for example, may result in a broader and less 
functionally precise region than a localizer that contrasts responses to 
faces with a variety of other visual categories. It is also important to 
consider the limitations of interpreting localizer results. Just because a 
region responds more to faces compared to other stimuli included in 
the localizer does not mean that the region is not responsive to other 
categories or conditions that were not included in the experiment.

FIGURE 2

Simplified DWI (top) and anatomical (bottom) processing workflows implemented by the code in this article (Code Blocks 1 and 2). The result of these 
workflows is a set of bundle segmentations with streamlines reaching the gray matter white matter interface (GMWMI). Text in consolas font represents 
commands used in processing.
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2.6 fMRI processing

2.6.1 fMRI preprocessing
We similarly recommend using automated, flexible and robust 

preprocessing software, such as fMRIPrep3 (Esteban et al., 2019) for 
ease of operation and reproducibility. Regardless of what software is 
used, the following preprocessing steps are suggested as a minimum:

 1. Motion correction
 2. Susceptibility Distortion Correction (SDC)
 3. Alignment to T1w image

There are several reasons to prefer conducting fROI analyses 
on the cortical surface of the brain, as opposed to volumetric 
analysis. Surface-based analysis has the advantage of producing 
statistical maps that are specifically conformed to the brain’s 
geometry. In volumetric analysis, there is often a temptation to 
dilate fROIs to project them into white matter, which sacrifices 
anatomical specificity. For example, dilating a fROI may extend 
the fROI to include a sulcus that is nearby in volumetric, but not 
surface space. Therefore, for FSuB analysis, we  strongly 
recommend using surface-based methods. Surface-based 
methods are not as ubiquitous or as standardized as volumetric 
analyses though, further warranting increased documentation. 
For these reasons, the code examples below are particularly 
tailored towards working with surface data. However, we include 
volumetric analysis code in Supplementary material S4, and the 
FSuB-Extractor is compatible with both volumetric and surface-
based fROIs. Many of the methodological considerations 
discussed below also apply to volumetric analysis.

2.6.2 The decision to smooth
After preprocessing, steps should be  taken towards running 

general linear models (GLM) to produce statistical maps that highlight 
where the brain is specialized for the task (Friston et al., 1994). A user 
must decide whether to smooth their data. Smoothing data increases 
SNR at the expense of anatomical specificity. We  advise against 
smoothing data in volumetric space for FSuB analysis, as neighboring 
voxels can include relatively distant regions on the cortical surface due 
to complexities of cortical folding patterns (Weiner and Grill-Spector, 
2013; Brodoehl et al., 2020). Whether one should smooth data for 
surface-based analysis is dependent on a few factors of the analysis. If 
one is interested in small fROIs, smoothing may overly blur statistical 
maps, confounding localization of fROIs. Another important 
consideration in the decision to smooth is if fROIs will be identified 
automatically or manually, as described in more detail in the following 
sections. Smoothing data may be  more appropriate when using 
automated statistical thresholding to define fROIs. The smoothed 
statistical maps will tend to have higher more-distributed effect sizes 
so the resulting masks could be more continuous, leading to a more 
contiguous FSuB bundle core. However, smoothing is not necessary, 
and is more likely detrimental, when manually drawing fROIs due to 
blurring of precise functional boundaries. Most of the extant FSuB 

3 https://github.com/nipreps/fmriprep

literature does not smooth fMRI images (Grotheer et al., 2019; Kubota 
et al., 2023).

2.6.3 Running a surface-based GLM
GLMs can be used to produce statistical maps for one’s functional 

contrast of interest, as well as denoise data (by including nuisance 
regressors). There is no standard recommendation on what 
regressors to choose for denoising the data (Mayer et al., 2019). An 
example regression basis may include head-motion parameters 
(rotation and translation in the X, Y, and Z directions), some 
physiological noise regressor [e.g., mean signal outside of gray matter 
or ACompCor components (Behzadi et  al., 2007)], and frame 
censoring for non-steady state volumes. Regressors should be chosen 
based on factors such as the quality of the data, as well as the 
temporal degrees of freedom one is comfortable with sacrificing 
(Mayer et al., 2019).

2.6.4 Identifying functional regions of interest 
(fROI)

Manually drawing masks involves having a user outline fROIs 
on the brain based on visualizing statistical maps, while 
automated statistical methods will create fROIs based on 
thresholding statistical maps. In either case, fROIs should come 
from a pre-defined search space that is consistent across subjects 
(Figure 3). This may be defined anatomically, for example by a 
given landmark such as a specific sulcus (Weiner et al., 2014). A 
functionally-specific alternative (albeit not mutually exclusive) is 
to define search spaces based on group-level contrast maps 
(Nieto-Castañón and Fedorenko, 2012). This approach requires 
two runs of a localizer task (one that is used on the group-level 
to define the search space, and one to find each subject’s fROI 
within that search space). This approach also necessitates data 
first being warped to a standard space, after which the resulting 
search space should be brought back to subject space. In surface-
based analyses, this space could be FreeSurfer’s fsaverage space, 
or the fsLR space that is used by projects such as the Human 
Connectome Project (Glasser et al., 2013), while MNI space is the 
most common standard space for volumetric data. We note that 
one should only move to a common space if necessary, and all 
pertinent transformations should be combined and applied in a 
single step to minimize data interpolation (Wang et al., 2022). 
Otherwise, fROI determination should remain in subject-space 
to minimize data interpolation and ensure better anatomical 
correspondence to DWI derivatives.

It is important that criteria for defining neural selectivity is 
consistent across subjects. This may be defined as everywhere in 
a search-space where a contrast test statistic is greater than some 
value [e.g., t-value >3 (Nordt et al., 2021), or p-value less than 
0.001 (Kanwisher et  al., 1997)], or the top X% area with the 
highest effect sizes [e.g., top 10% of t-values (Scott et al., 2017)]. 
One should be  cognizant of the biases these thresholding 
methods can introduce (Nieto-Castañón and Fedorenko, 2012). 
For example, if one defines an fROI as all voxels or vertices in a 
given space that exceed a particular t-statistic, subjects will likely 
have different sized masks, regardless of whether you  are 
automating fROI definition, or drawing ROIs. Thus, an FSuB 
summary metric such as streamline count or volume would 
be affected by size biases, as a larger ROI inherently has more 
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connected streamlines. One could control for this post-hoc by 
normalizing metrics by fROI volume, although consideration 
should be given as to how this changes the interpretation of the 
results. While the alternative automated strategy of selecting the 
top X% area controls for fROI size, it introduces the possibility 
of including areas that are not particularly active for the contrast 
if the threshold is defined too liberally. Careful exploration 
should be  used to determine the best fROI determination 
strategies for addressing the given hypothesis. In general, if it is 
practical to do so and does not create critical biases, 
we  recommend identifying fROIs by manually drawing over 
unsmoothed statistical maps for the highest degree of functional 
and anatomical precision. We present a guide to drawing fROIs 
in Freeview (the image viewer included with FreeSurfer) in 
Supplementary material S5.

3 FSuB workflow tutorial and software

For succinctness and generalizability, our processing code 
examples are based primarily on the Brain Imaging Data 
Structure (BIDS) standard and BIDS applications (Gorgolewski 
et  al., 2016, 2017), though other software and pipelines may 
be suitable as well. After minimal changes to the code examples 
below, processing should work on most BIDS-valid neuroimaging 
datasets. The FSuB-Extractor is not limited to working with 
preprocessed derivatives from BIDS applications, and as the BIDS 
standard changes and software are updated, the following code 
may need to be modified accordingly. Arguments in the code may 
have to be added or altered for specific use cases, so we encourage 
readers to explore the documentation of the software we discuss 
here. Our examples use Unix-like syntax, which is standard on 
Linux and Macintosh machines as some dependencies of the 

software used are not officially supported by Windows. Paths to 
files or directories will have to be changed to match the user’s 
filesystem. Many workflows described below are executed in 
software containers. We  present the syntax for Singularity/
Apptainer (Kurtzer et al., 2017), since it is standard for research-
grade high-performance computer clusters, but Docker (Merkel, 
2014) can also be used after making minimal adjustments to the 
syntax (see Supplementary material S1). Singularity/Apptainer 
containers can be  built using this example command:  
singularity build fmriprep_23.2.0a2.img docker://nipreps/
fmriprep:23.2.0a2, where repository, software, and version 
names are derived from the software’s DockerHub web page.

Below, we use data from the Natural Scenes Dataset (NSD) 
(Allen et al., 2022), which is openly accessible through http://
naturalscenesdataset.org/ and has a BIDS-valid distribution. This 
dataset includes high quality anatomical scans, high angular 
resolution DWI, field maps, and high-resolution fMRI data in 
eight participants. The functional visual category localizer task 
(“floc”) presents participants with different visual stimulus 
categories including characters, bodies, faces, places, and objects 
(Stigliani et al., 2015), and is widely used to identify functional 
regions selective to different categories in individual subjects’ 
brains (Stigliani et al., 2015; Margalit et al., 2020; Finzi et al., 
2021). More detailed acquisition parameters may be found in the 
dataset descriptor publication (Allen et  al., 2022). We  share a 
minimal BIDS-valid dataset which contains one subject’s data. 
This, along with code and derivatives for the processes below, 
may be  found at https://osf.io/zf5q7/. We  note that the NSD 
dataset includes preprocessed derivatives, which may 
be otherwise preferred if analyzing NSD data for consistency with 
other studies. From the preprocessed data, we  only use their 
precomputed cortical surface reconstructions, since they have 
been manually corrected by experts. All figures within this 

FIGURE 3

Simplified functional MRI processing workflow implemented by the code in this article (Code Block 3). The result of this workflow is a set of 
functional ROIs (fROIs) that are used in the FSuB extraction process. The statistical parametric map and fROIs in this figure are derived from 
a contrast comparing responses to character vs. all other stimuli categories. Two fROIs are drawn for character-selective regions in the 
mid-occipitotemporal sulcus (red) and posterior occipitotemporal sulcus (yellow), within the larger occipitotemporal sulcus (light blue).
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manuscript, unless otherwise noted, depict derivatives from the 
first subject of the NSD dataset (“sub-01”) as processed by the 
code presented in this guide.

3.1 MRI processing example

3.1.1 Anatomical preprocessing
The code in Code Block 1 invoke sMRIPrep (Esteban et al., 

2023)4, a structural MRI preprocessing BIDS application which 
includes recon-all in the pipeline. The proceeding code will also 
create the GMWMI from the FreeSurfer outputs. However, 
we  note that these processes can also be  performed as part  
of the fMRI and DWI workflows described later (as well as  
part of FSuB-Extractor), so it is not necessary to run 
this separately.

3.1.2 DWI processing
After installation, the QSIPrep (Cieslak et al., 2021) command 

Code Block 2 (based off of version 0.19.1) will perform all of the 
recommended DWI preprocessing steps, presuming one is 
working with a BIDS-valid dataset with files needed to run SDC 
as described earlier. It then creates an anatomically-constrained 
tractogram with 10 million streamlines which is subsequently 
segmented into bundles with PyAFQ (Yeatman et  al., 2012; 
Kruper et  al., 2021) (Figure  2). Metrics from NODDI and 
diffusion kurtosis imaging are also calculated. The 

4 https://www.nipreps.org/smriprep/

post-processing reconstruction specification can be found in the 
associated OSF repository. Additional pre-defined post-
processing pipelines are available in QSIPrep as well.5 We refer 
the reader to item S6  in Supplementary materials for a full 
description of processing steps performed by QSIPrep.

While this software is comprehensive and convenient, 
we  note that QSIPrep will rotate its derivatives such that the 
anterior and posterior commissures are at the same level 
(commonly referred to as ACPC aligned). Therefore, an fROI 
derived from a different anatomical space (e.g., FreeSurfer surface 
or native T1w space) will need to be  aligned to the DWI  
image. The transformation from volumetric native-to-ACPC 
space is saved by QSIPrep by default. Additionally, in 
Supplementary materials we  share code to calculate the 
registration between FreeSurfer and QSIPrep-derived anatomical 
images (Supplementary material S2). The FSuB-Extractor also has 
the functionality to perform this registration, when provided 
with a T1w image and brain mask aligned to the DWI  
derivatives.

3.1.3 fMRI processing
After installation, the example fMRIPrep (Esteban et  al., 

2019) command in Code Block 3 based off of version 23.2.0a2, 
will perform recommended fMRI preprocessing steps, presuming 
one is working with a BIDS-valid dataset with files needed to run 
SDC as described earlier. We  refer the reader to item S6  in 

5 https://qsiprep.readthedocs.io/en/latest/reconstruction.html

Code Block 1: Code for preprocessing structural MRI data with FreeSurfer and MRtrix3.

#!/bin/bash -l
## Define important paths and names
 bids="/path/to/nsd_bids/" # Or replace with your own BIDS dataset
workdir="/path/to/scratch/space/" # e.g., /tmp
 smriprep_IMG="/path/to/smriprep_container.img" # Software container
fs_license="/path/to/freesurfer/license.txt" # FreeSurfer license
subject="sub-01" # Or replace with your own subject ID

## Run sMRIPrep
singularity run --containall -e \ # Can also use Docker
  -B ${bids},${workdir},${fs_license} \
  ${smriprep_IMG} ${bids} ${bids}/derivatives participant \
  -w ${workdir} \ # Scratch directory
  --participant-label ${subject} \ # Remove argument to process everyone in data set
  --fs-license-file ${fs_license} # FreeSurfer license file

 ## Make the GMWMI using MRtrix3
 export SUBJECTS_DIR="${bids}/derivatives/freesurfer/" # Where to find FS outputs
 gmwmi_outdir="${bids}/derivatives/gmwmi_example/${subject}/"
mkdir -p ${gmwmi_outdir}
 5ttgen hsvs ${SUBJECTS_DIR}/${subject}/ ${gmwmi_outdir}/${subject}_desc-5tt.nii.gz \
    -scratch ${workdir} # Generate a 5-tissue-type segmentation image
5tt2gmwmi ${gmwmi_outdir}/${subject}_desc-5tt.nii.gz \
    ${gmwmi_outdir}/${subject}_desc-5tt.nii.gz # Make GMWMI

https://doi.org/10.3389/fnins.2024.1385847
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.nipreps.org/smriprep/
https://qsiprep.readthedocs.io/en/latest/reconstruction.html


Meisler et al. 10.3389/fnins.2024.1385847

Frontiers in Neuroscience 09 frontiersin.org

Supplementary materials for a full description of processing steps 
performed by fMRIPrep.

If one chooses to smooth the data, the code in Code Block 4 will 
smooth the BOLD surface outputs at a specified gaussian kernel size.

We present a code example that uses Nilearn (Abraham et al., 
2014) to run GLMs on multiple runs of surface data, producing 
run-specific and session-averaged statistical maps. Due to its 
length, this function is not presented in the main text but can 
be  found in Supplementary material S3 and the associated 
OSF repository.

As an example of an automated thresholding workflow, which 
numerically thresholds a statistical map to determine fROIs, the code 
in Code Block 5 extracts the 10% of vertices with the highest 
character-selective contrast z-score in the left mid-occipitotemporal 
sulcus (mOTS). This can be  adapted for other search spaces and 
threshold values. This code requires FreeSurfer and Connectome 
Workbench6 to be installed.

6 https://www.humanconnectome.org/software/connectome-workbench

Code Block 3: Code for fMRI preprocessing with fMRIPrep.

#!/bin/bash -l
## Define important paths
 bids="/path/to/nsd_bids/" # Or replace with your own BIDS dataset
workdir="/path/to/scratch/space/" # e.g., /tmp
 fs_license="/path/to/freesurfer/license.txt" # FreeSurfer license
 fmriprep_IMG="/path/to/fmriprep_container.img" # Software container
subject="sub-01" # Or replace with your own subject ID

singularity run --containall -e \ # Can also use Docker
   -B ${bids},${workdir},${fs_license} \
   ${fmriprep_IMG} ${bids} ${bids}/derivatives participant \
    --participant-label ${subject} \ # Remove argument to process everyone in data set
   -w ${workdir} \ # Scratch / working directory
   --fs-license-file ${fs_license} \ # FreeSurfer license file
    --fs-subjects-dir ${bids}/derivatives/freesurfer \ # Where to look for and store FreeSurfer recon-all outputs
    --output-spaces T1w fsnative MNI152NLin2009cAsym \ # Native space volumetric and surface outputs, but MNI can be useful 

for quality assurance and visualization
    --slice-time-ref 0 \ # Some software assume slice time is corrected to TR start
    --cifti-output 91k \ # If you want common-space surface outputs
    --project-goodvoxels \ # Don’t project high-variance voxels to surface

Code Block 2: Code for pre- and postprocessing DWI data with QSIPrep.

#!/bin/bash -l
## Define important paths
 bids="/path/to/nsd_bids/" # Or replace with your own BIDS dataset
workdir="/path/to/scratch/space/" # e.g., /tmp
 qsiprep_IMG="/path/to/qsiprep_container.img" # Software container
subject="sub-01" # Or replace with your own subject ID
 recon_spec="${bids}/code/qsiprep/recon_spec.json" # Post-processing pipeline json specification

## Run QSIPrep
singularity run --containall -e \ # Can also use Docker
   -B ${bids},${workdir} \
    ${qsiprep_IMG} ${bids} ${bids}/derivatives participant \
    --participant-label ${subject} \ # Remove argument to process everyone in data set
     -w ${workdir} --output_resolution 1.25 \ # Upsample data to 1.25mm
     --unringing-method mrdegibbs \ # Can also choose rpg from TORTOISE
    --pepolar-method DRBUDDI \ # Can also choose TOPUP from FSL
    --denoise_method patch2self \ # Can also choose dwidenoise from MRtrix3
    --freesurfer-input ${bids}/derivatives/freesurfer \ # FreeSurfer outputs
   --fs-license-file ${fs_license} \ # FreeSurfer license file
    --recon-spec ${recon_spec} # Reconstruction pipeline name/JSON file
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3.2 The FSuB-Extractor

The FSuB-Extractor7 is a flexible open-source toolbox for 
extracting and analyzing FSuBs. By the time one is ready to run the 
software, one should have at least the following data, which can 
be produced following the instructions above:

 1. FreeSurfer recon-all outputs derived from the subject’s 
anatomical image(s).

 2. A tractogram object (either a specific bundle or whole-brain) 
in .tck or .trk format.

 3. One or two fROIs in .nii.gz or FreeSurfer .gii/.label/.annot formats.

The software provides a general framework to identify the white matter 
connections of a given gray matter region, while also providing flexibility 
for different analysis paths. For example, users can decide how to define 
their fROIs and also which software to use when segmenting bundles [e.g., 
AFQ, TractSeg, XTRACT, DSI-Studio (Wasserthal et al., 2018; Warrington 

7 https://github.com/smeisler/fsub_extractor

et al., 2020; Kruper et al., 2021)]. By default, all inputs are presumed to 
be aligned to one another, but one can optionally supply a registration 
between the FreeSurfer outputs and DWI outputs if they have different 
alignments (QSIPrep aligns outputs to the ACPC line, for example).

Full installation, usage instructions, and documentation of inputs 
and outputs can be found on the wiki in the GitHub repository.8 Any 
bugs or questions can be addressed by posting an issue in the software 
repository.9 Below, we  outline the primary workflow of the FSuB-
Extractor and provide example code (Code Block 6) to work with outputs 
of the processes detailed above. Additionally, in Supplementary materials, 
we validate our software by showing how it achieves comparable results 
to custom in-house FSuB code used in Kubota et  al. (2023) 
(Supplementary material S5).

The FSuB-Extractor automates the following steps (Figure 4):

 1. Gray Matter White Matter Interface (GMWMI) Creation: The 
GMWMI represents the border between white and gray matter. 

8 https://github.com/smeisler/fsub_extractor/wiki

9 https://github.com/smeisler/fsub_extractor/issues

Code Block 4: Code for smoothing surface fMRI data.

#!/bin/bash -l
 bids="/path/to/nsd_bids/" # Or replace with your own BIDS dataset
subject="sub-01" # Or replace with your own subject ID
task="floc" # Which task to process
declare -a hemis=("L" "R") # Which hemispheres to process
declare -a runs=("1" "2" "3" "4" "5" "6") # Which runs to process
space="fsnative" # Using native space surface outputs
fwhm="4" # Desired smoothing kernel size (mm FWHM)
 # Where to find data
fmriprep_dir=${bids}/derivatives/fmriprep/
freesurfer_dir=${bids}/derivatives/freesurfer/
 export SUBJECTS_DIR=${freesurfer_dir} # Tell FreeSurfer where subjects live

# Loop over hemispheres
for hemi in ${hemis[@]}; do
  if ["$hemi" == "L" ];
        then hemi_fs="lh"; # Hemi name in FreeSurfer conventions; "lh" or "rh"
  elif [ "$hemi" == "R" ];
        then hemi_fs="rh"; # Hemi name in FreeSurfer conventions; "lh" or "rh"
  fi;  

   # Loop over runs   for run in ${runs[@]}; do
      # Define input and output names
 gii_in="${fmriprep_dir}/${subject}/func/${subject}_task-${task}_run-${run}_hemi-${hemi}_space-${space}_bold.func.gii" # Input 
file name
       gii_out=${gii_in/_bold/_desc-smoothed_bold} # Add smoothed label for output name

    # Perform the smoothing
    mris_fwhm --i ${gii_in} --o ${gii_out} --so \
       --fwhm ${fwhm} --subject ${subject} --hemi ${hemi_fs}
  done
done
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To make a GMWMI, a 5 tissue-type (5tt) image is first created 
with MRtrix3’s 5ttgen using the Hybrid Surface Volume 
Segmentation algorithm (Smith et  al., 2020), which 

incorporates FreeSurfer surface reconstructions. From this 
image, a probabilistic GMWMI is extracted with 5tt2gmwmi, 
which is binarized at an adjustable threshold. A separately 

Code Block 5: Workflow for statistically thresholding functional ROIs.

#!/bin/bash -l
## Define important paths and parameters
bids="/path/to/nsd_bids/" # Replace with your BIDS directory
freesurfer_dir=${bids}/derivatives/freesurfer/ # FreeSurfer outputs
 export SUBJECTS_DIR=${freesurfer_dir} # Tell FreeSurfer where subjects live
l1_gifti=${bids}/derivatives/l1_gifti/ # Where statmaps from surface GLM code are
subject="sub-01" # Subject name
hemi="L" # Hemisphere name in fMRIPrep naming convention
space="fsnative" # Space of statmaps
contrast="chratactersGTother" # GLM contrast name
stat="z" # Which stat to threshold
smoothed_label="desc-smoothed_" # (leave blank if not smoothing)
outdir=${bids}/derivatives/threshold_fROIs/${subject} # Where outputs will go
mkdir -p ${outdir} # Make the output directory
region_label="/path/to/lh.ots.label" # A FS label file that defines the searchspace
label_name="ots" # A descriptive name for the label
value_percentile="90" # Percentile to threshold statistic

# Locate the statistical map
 statmap=${l1_gifti}/${subject}/${subject}_hemi-${hemi}_space-${space}_contrast-${contrast}_stat-${stat}_${smoothed_label}
statmap.func.gii # Path to statmap

## Get hemisphere name in FreeSurfer naming convention
if [ "$hemi" == "L" ];
then hemi_fs="lh"; # Hemi name in FreeSurfer conventions; "lh" or "rh"
elif [ "$hemi" == "R" ];
then hemi_fs="rh"; # Hemi name in FreeSurfer conventions; "lh" or "rh"

fi;

## Convert FS label to GIFTI
region_gii=${outdir}/${subject}_hemi-${hemi}_space-${space}_desc-${label_name}_roi.func.gii
mris_convert --label ${region_label} ${label_name} \
    ${freesurfer_dir}/${subject}/surf/${hemi_fs}.white ${region_gii}

 ## Mask statmap by label
masked_statmap=${outdir}/${subject}_hemi-${hemi}_space-${space}_contrast-${contrast}_stat-${stat}_desc-${label_name}_desc-

masked_roi.func.gii # Output variable for next command
wb_command -metric-mask ${statmap} ${region_gii} ${masked_statmap}

 ## Find threshold corresponding to top X% of values in ROI, save value as "thresh"
wb_command -metric-stats ${statmap} -roi ${region_gii} -percentile ${value_percentile} | read thresh
echo "${value_percentile} percentile of ${stat} statistic within ${hemi} ${label_name} is ${thresh}"

 ## Make a binary mask of values above that threshold 
# Output variable for next command
 thresholded_statmap=${outdir}/${subject}_hemi-${hemi}_space-${space}_contrast-${contrast}_stat-${stat}_desc-${label_name}_
desc-masked_desc-thresholded_roi.func.gii
# Binarize and threshold the statmap
wb_command -metric-math "(statmap > ${thresh})" ${thresholded_statmap} \
    -var statmap ${masked_statmap}
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Code Block 6: Example FSuB-Extractor command.

#!/bin/bash -l
## Define important paths and parameters
bids="/path/to/nsd_bids/" # Replace with your BIDS directory
 subject="sub-01" # Subject name as found in FreeSurfer subjects directory
 freesurfer_dir=${bids}/derivatives/freesurfer/ # FreeSurfer outputs
 qsirecon_dir=${bids}/derivatives/qsirecon/ # DWI post-processing outputs
 tract="${qsirecon_dir}/${subject}/dwi/${subject}_space-T1w_desc-preproc/clean_bundles/${subject}_space-T1w_desc-preproc_dwi_
space-RASMM_model-probCSD_algo-AFQ_desc-ARCL_tractography.trk"# PyAFQ Left Arcuate Fasciculus, in this example
 tract_name="LeftArcuate" # Descriptive tract name for file output names
drawn_fROIs_dir=${bids}/derivatives/drawn_fROIs/
 roi1="${drawn_fROIs_dir}/${subject}/${subject}_hemi-L_space-fsnative_contrast-charactersGTother_desc-mOTSwords_roi.func.gii" 
# A binary fROI on the FreeSurfer surface
 roi1_name="mOTS-words" # A descriptive ROI name for file output names
hemi="lh" # FreeSurfer hemi name corresponding to the ROI
out_dir=${bids}/derivatives/fsub_extractor/
 xform_file="/path/to/sub-01_from-FS_to-T1wACPC_mode-image_xfm.txt" # Transformation matrix from Freesurfer to DWI data 
(from script in supplementary materials S2)

### Run the FSuB-Extractor
extractor \

--subject $subject \
--tract $tract \
--tract-name $tract_name \
--roi1 $roi1 \
--roi1-name $roi1_name \
--hemi $hemi \
--out-dir $out_dir \
--fs-dir $freesurfer_dir \
--fs2dwi $xform_file

made 5tt image may also be  passed into the function to 
expedite this process.

 2. fROI Projection: In order to intersect fROIs in the gray matter 
and white matter endpoints, fROIs are projected onto the 
GMWMI. While one could simply dilate fROIs until they reach 
the GMWMI, such radial expansion will overestimate the size 
of the fROI. Projection to the cortical surface is done with 
FreeSurfer’s mri_vol2surf (this is only applied for volumetric 
fROIs and is skipped for surface-based fROIs). The resulting 
mask is projected into the GMWMI and converted back to a 
NIFTI file for streamline matching with mri_surf2vol. 
Parameters of projection can be set in the command line.

 3. fROI-GMWMI Intersection. The streamline search space is 
defined as the intersection of the projected fROIs and 
GMWMI. This process is performed by MRtrix3’s mrcalc by 
multiplying the two masks together.

 4. Converting .trk Streamlines to .tck (as needed): For compatibility 
with MRtrix3 tools, input streamlines are converted to .tck.

 5. Streamline-fROI matching: A combination of MRtrix3 commands, 
tck2connectome and connectome2tck, are used for streamline 
filtering and creating the FSuB. All of the streamline matching 
criteria options that MRtrix3 provides (e.g., a radial search from 
the streamline endpoint or a forward search) can be used, with 
parameters that can be  defined in the command line. 
Considerations for these options are discussed in (Yeh et al., 2019), 

and our default value of a 2 mm radial search is adopted from that 
article. The streamlines matched to the fROI(s) are saved out as the 
FSuB. If two fROIs are input to the FSuB-Extractor, streamlines 
that connect the two fROIs are saved out as the FSuB.

 6. Visualization: A visualization of the fROI(s), original bundle, 
and FSuB, can be saved out, with image parameters (e.g., fROI 
and bundle colors) adjustable at the command line. This 
visualization can also be  interactive, enabling the user to 
examine the results from all angles.

All primary outputs and intermediate files are saved out in a 
BIDS-like style, which will evolve as connectivity derivatives naming 
conventions are codified.

The following code will run the FSuB-Extractor on data produced 
by code in this manuscript. Here, we use FSuB-Extractor to identify 
the sub-bundle of the arcuate fasciculus that connects to mOTS-
words, a region that responds more to words compared to other 
categories of stimuli (defined in Section 2.7.4).

3.3 Validation

To validate the FSuB-Extractor, we reproduced the analysis 
pipeline from a previous study (Kubota et al., 2023), that used the 
FSuB approach with a custom MATLAB-based implementation 
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that was originally presented in Grotheer et al. (2019). The study 
identified word and face-selective fROIs in individual children 
(n = 27) and adult (n = 28) participants and identified connections 
of each of these regions. To validate the software package, 
we  used the same bundles, functional ROIs, and streamline-
to-ROI association parameters (radial search with a search 
distance of 3 mm) that were defined in the original paper, and 
then used FSuB-Extractor to identify the connections of each of 
the functional ROIs.

We used FSuB-Extractor to identify the connections of each 
functional ROI and then defined the connections of each 
functional ROI as a “connectivity profile” or the percentage of 

streamlines associated with five bundles (the left arcuate, 
posterior arcuate, ventral occipital, inferior longitudinal, and 
inferior fronto-occipital fasciuli), as was done in the original 
paper. The original paper tested whether white matter 
connections of high-level visual areas were organized by 
stimulus-selective category or anatomical cytoarchitecture. In 
high-level visual cortex, there is not a one-to-one mapping 
between cytoarchitecture and category-selectivity (Weiner et al., 
2017). mFus-faces and pFus-faces are both selective for faces, but 
located in different cytoarchitectonic areas (fusiform gyrus 4 
(FG4) and fusiform gyrus 2 (FG2) respectively). Similarly, 
mOTS-words and pOTS-words are both selective for words and 

FIGURE 4

FSuB-Extractor workflow (Code Block 6). The left, middle, and right columns track how DWI, fMRI, and anatomical data are used in the workflow, 
respectively. The depicted workflow showcases the most basic functionality of the software. The final FSuB is denoted by the white streamlines, within 
the larger original bundle in red.
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are located in different cytoarchitectonic areas (FG4 and FG2 
respectively). Cytoarchitectonic area FG4 contains both a face- 
and a word-selective region (mFus-faces and mOTS-words), and 
cytoarchitectonic area FG2 contains both a face- and a word-
selective region (pFus-faces and pOTS-words). In the original 
paper, it was found that white matter connections are more 
similar for regions located in the same cytoarchitectonic area, 
compared to regions with the same category selectivity. The 
connectivity profiles generated with FSuB-Extractor (Figure 5, 
left) reproduce these results (Figure 5, right). To quantify the 
similarity between connectivity profiles, we then calculated the 
correlation between the original connectivity profile and that 
generated using FSuB-Extractor for each fROI and each 
participant. We  found that connectivity profiles were highly 
correlated using the two methods (mean correlation r = 0.99, 
standard deviation = 0.003). These results suggest that FSuB-
Extractor is able to reproduce previous findings using the FSuB 
approach, and provides improvements as the code is open source, 
flexible, and easy to use.

4 Discussion

The present article suggests best practices for collecting and 
processing neuroimaging data for FSuB extraction, as well as 
provides a walkthrough of how to use a dedicated FSuB extraction 
software toolbox. Our toolbox is flexible, accepting multiple file 
types for gray matter fROIs and white matter tractograms. By not 
presuming any explicit organization for inputs, the user is not 
restricted to certain processing tools and can feasibly use their 
own data or publicly available preprocessed data. Over the past 
two decades, fMRI studies have identified regions in the cortex 
specialized for various cognitive functions (Kanwisher, 2010). 
Individual fascicles of the brain, on the other hand, are large and 
likely span multiple functional networks. The FSuB method will 
enable researchers to gain increased spatial precision in 
identifying the white matter involved in particular functional 
tasks (for a review see Grotheer et al., 2022). We hope our guide 
and software will facilitate the adoption of this approach, leading 
to new advances in precision neuroscience.

FIGURE 5

Validation of FSuB-Extractor. The FSuB-Extractor was used to reproduce findings from Kubota et al. (2023), looking at connectivity profiles of 
functionally defined sub-bundles in the human ventral visual stream among children and adults. The left half shows the results of the FSub-Extractor 
automated pipeline. The right half shows the original published data from Kubota et al. (2023). The brains depict FSuBs in a representative 6-year-old 
child participant for four functional fROIs (face selective: mFus-faces and pFus-faces; Word-selective: mOTS-words and pOTS-words). Acronyms: AF, 
Arcuate fasciculus; pAF, Posterior arcuate fasciculus; IFOF, Inferior fronto-occipital fasciculus; ILF, Inferior longitudinal fasciculus; VOF, ventral occipital 
fasciculus; mFus-faces, Mid-fusiform face-selective region; mOTS-words, mid-occipitotemporal sulcus word-selective region; pFus-faces, posterior 
fusiform face-selective region; pOTS-words, posterior occipitotemporal sulcus word-selective region.
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Aside from the inherent limitations of tractography (Bastiani et al., 
2012; Thomas et al., 2014; Reveley et al., 2015; Maier-Hein et al., 2017) 
and fMRI (Logothetis, 2008), the practice of identifying FSuBs requires 
additional consideration because it relies on good registration between 
functional and diffusion data, sufficiently dense tractograms, and spatial 
proximity between functional regions and streamline endpoints. The 
suggestions in the present article will help optimize the approach. 
However, it is still essential that users have checks for quality assurance at 
each stage in their pipeline. In addition, users must take caution in their 
interpretation of results. For example, it is unlikely that very small FSuBs 
(e.g., a single streamline) should be interpreted as meaningful. Currently, 
the FSuB approach and the code in the present guide are best suited to 
cases where participants have high-quality diffusion and task-based 
functional MRI and a good surface reconstruction using FreeSurfer. This 
means that the software is suitable to use in typical, developmental, and 
clinical cohorts. However, in cases of lesions or atypical tissue, automatic 
segmentation methods may fail, which can hinder the validity of results. 
Due to the current state of the art of surface-based approaches in fMRI 
and DWI, the FSuB-Extractor is primarily limited to cortical applications. 
We hope to provide support for cerebellar and subcortical regions in the 
future. As the BIDS standards for derivatives change, we also plan to adapt 
our output naming conventions accordingly. We encourage any interested 
practitioners to contribute bug reports, feature requests, and code to help 
the FSuB-Extractor become more robust.

We note that our suggestions for handling data are summarized from 
prior empirical work that rigorously examined the impact of analysis 
parameters on processing outcomes (Glasser et al., 2013; Daducci et al., 
2014; Canales-Rodríguez et al., 2019; Esteban et al., 2019; Yeh et al., 2019; 
Grisot et al., 2021; Maffei et al., 2022). Future work should examine the 
specific impacts of MRI acquisition and processing choices on FSuB 
outcomes. We hope that high-throughput analyses enabled by the FSuB-
Extractor, coupled with future large datasets with sufficiently high-quality 
multimodal data and specific functional localization, will enable this kind 
of comprehensive parameter analysis.

Throughout the present article, fMRI has been the method to 
probe function in the brain. While fMRI is a ubiquitous tool in 
cognitive and perceptual neuroscience, other tools, such as 
positron emission tomography (PET), magnetoencephalography 
(MEG), and electroencephalography (EEG) are also commonly 
used. Although it has not been used for a FSuB purposes yet, an 
fROI derived from PET should work as long as the PET image can 
be  successfully coregistered to a T1w image. MEG and EEG 
would not be recommended, as an fROI is hard to anatomically 
define due to ambiguous source localization.

An interesting potential application of the FSuB approach is in 
clinical practice. Functional neuroanatomy is an important 
consideration in surgical planning (that is, to target or preserve specific 
connections) and deep brain stimulation (modulating a behavior by 
stimulating a relevant bundle) (Essayed et  al., 2017). However, 
functional MRI is rarely collected in pre-surgical patients, and DWI 
protocols often fall below the standards suggested in the present 
manuscript, which limits tractography’s utility (Essayed et al., 2017). 
Future work should evaluate the effectiveness of the FSuB approach on 
routine clinical data, with the ultimate goal of increasing the precision 
of surgical or stimulation targets or informing standards of clinical 
MRI collection.

One may also want to use the FSuB approach to identify the 
functional sub-bundles longitudinally. Importantly, FSuBs can 

be affected by both changes in a fROI location and changes in the 
white matter architecture. Therefore, it may be difficult to ascribe 
precise causes to observed changes in a FSuB over time. One 
remedy is to align longitudinal data to a within-subject template 
(Reuter et al., 2012). Using the functional data alone, it is possible 
to see whether the fROI is changing in size or location across 
timepoints. If the fROI is changing over time, it may result in 
differences in the underlying FSuB (and such developmental 
changes may be of interest by themselves without considering 
white matter). In order to identify changes in the white matter 
alone, it may be useful to hold the fROI constant, using a fROI 
from a single time point and combining it with diffusion data 
across sessions. For example, using a fROI from the final 
acquisition it is possible to “look back in time” and see how the 
white matter connections of this given region change across 
the study.

We clarify that our software is not the first or only way to 
combine DWI and fMRI images. Other approaches, such as 
track-weighted functional connectivity (Calamante et al., 2013) 
and the Functionnectome (Nozais et al., 2021, 2023), integrate 
fMRI derivatives with the underlying white matter architecture 
to draw valuable statistical inferences about functional 
neuroanatomy. Since these tools are primarily used for voxel- or 
region-wise between-subject inferences, these approaches 
necessitate data being in a common space or using a single 
normative set of white matter anatomical priors for inter-subject 
validity. What makes the FSuB approach unique in this respect is 
that each individual’s output is informed by participant-specific 
functional and anatomical patterns. The FSuB approach is 
particularly well suited for investigating functionally-targeted 
white matter micro- and macrostructural properties at the bundle 
level, while the aforementioned alternatives could be  more 
appropriate for voxel-by-voxel inferences.

A topic that has been garnering increasing attention in the 
field of functional neuroanatomy is the white matter BOLD 
signal (for reviews, see Gawryluk et al., 2014; Gore et al., 2019). 
Despite this signal often being considered noise and regressed 
out during fMRI modeling, studies have suggested that the white 
matter BOLD signal is similarly time-locked to stimulus within 
task-relevant white matter pathways (Wu et al., 2017; Ding et al., 
2018). Additionally, similar to DWI signal, white matter BOLD 
correlation patterns are anisotropic, in that a voxel’s BOLD time 
series will correlate more with an adjacent voxel in the same 
white matter pathway compare to an adjacent voxel in a different 
pathway (Ding et al., 2013). This pattern has been used to create 
BOLD directionality tensors (Ding et al., 2013), analogous to the 
diffusion tensor, and has even been extended to more complex 
models (Schilling et  al., 2019b), analogous to how fiber 
orientation distributions are derived. These anisotropic 
representations of white matter BOLD have been used to re 
create white matter pathways, with modest validity compared to 
conventional DWI tractography (Schilling et al., 2019b). Further 
methodological exploration into the white matter BOLD signal is 
warranted to characterize functional and anatomical specificity, 
and widespread adoption of white matter BOLD as a tool may 
be  predicated on technological advances to effectively resolve  
the noisy signal. However, this approach has the potential to 
directly define FSuBs in white matter using fMRI, obviating the 
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assumption that white matter pathways connecting to fROIs on 
the cortical surface must support the given task.

5 Conclusion

A better understanding of functional neuroanatomy can shed insights 
into large-scale neural networks and fine-grained cortical specialization 
that collectively orchestrate cognitive and perceptual processes in the 
brain. Multimodal neuroimaging can be used to resolve white matter at 
the level of functional sub-components, improving the anatomical and 
conceptual precision of brain structure–function-behavior studies. 
Researchers should be aware of methodological choices that impact the 
feasibility of this approach. We hope our guide, tutorial, and software will 
facilitate adoption of FSuB analyses.
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