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Background: MicroRNAs (miRNAs) have pivotal roles in gene regulation. 
Circulating miRNAs have been developed as novel candidate non-invasive 
biomarkers for diagnosis, prognosis, and treatment response for diseases. 
However, miRNAs that have causal effects on Parkinson’s Disease (PD) remain 
largely unknown. To investigate the causal relationships between miRNAs and 
PD, here we conduct a Mendelian randomization (MR) study.

Methods: This study utilized the summary-level data of respective genome-wide 
association studies (GWAS) for 2083 miRNAs and seven PD-related outcomes to 
comprehensively reveal the causal associations between the circulating miRNAs 
and PD. Two-sample MR design was deployed and the causal effects were 
estimated with inverse variance weighted, MR-Egger, and weighted median. 
Comprehensively sensitive analyses were followed, including Cochran’s Q test, 
MR-Egger intercept test, MR-PRESSO, and leave-one-out analysis, to validate 
the robustness of our results. Finally, we investigated the potential role of the MR 
significant miRNAs by predicting their target genes and functional enrichment 
analysis.

Results: Inverse variance weighted estimates suggested that two miRNAs, miR-
205-5p (β  =  −0.46, 95%CI: −0.690 to −0.229, p  =  9.3  ×  10−5) and miR-6800-5p 
(β  =  −0.389, 95%CI: −0.575 to −0.202, p  =  4.32  ×  10−5), significantly decreased 
the rate of cognitive decline among PD patients. In addition, eight miRNAs were 
nominally associated with more than three PD-related outcomes each. No 
significant heterogeneity of instrumental variables or horizontal pleiotropy was 
found. Gene Ontology (GO) analysis showed that the targets of these causal 
miRNAs were significantly enriched in cell cycle, apoptotic, and aging pathways.

Conclusion: This MR study identified two miRNAs whose genetically regulated 
expression might have a causal role in the development of PD dementia. 
Our findings provided potential miRNA biomarkers to make better and early 
diagnoses and risk assessments of PD.
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Introduction

Parkinson’s disease (PD) is the second most common 
neurodegenerative disease with a global prevalence of more than 6 
million individuals. This number has been projected to double over 
the next generation, making PD one of the leading causes of 
neurological disability (Dorsey et al., 2018; Feigin et al., 2019). Its 
main neuropathological hallmarks are the degeneration of 
dopaminergic neurons in the substantia nigra and alpha-synuclein-
containing protein inclusions, called Lewy Bodies (Poewe et al., 2017). 
Due to the lack of a reliable objective biomarker, the diagnosis of 
idiopathic PD is still based on the assessment of clinical criteria, 
leading to insufficient diagnostic accuracy, especially in the early 
stages of the disease (Rizzo et al., 2016; Tolosa et al., 2021). Therefore, 
more biomarkers are needed to further enhance diagnostic accuracy 
and sensitivity for early or prodromal disease stages. Genome-wide 
association studies (GWAS) have reported multiple risk variants for 
PD (Nalls et al., 2019), and the vast majority of risk variants reside in 
the non-coding region, indicating the important roles of non-coding 
regions in the development of PD. However, most of the published 
integrative studies on PD focused on mRNA or proteins, potentially 
missing important biological functions of non-coding transcripts, 
such as miRNAs.

MiRNAs are small (about 22 nucleotides) non-coding RNAs 
involved in the regulation of gene expression (Bartel, 2018) and play 
key roles in different biological processes, including cell fate 
determination, embryonic development, cell proliferation, 
differentiation, and apoptosis (Satterlee et  al., 2007). MiRNA is a 
useful biomarker in some pathologies, such as cancer (Jamali et al., 
2018) and cardiovascular disease (de Gonzalo-Calvo et al., 2019). 
Mounting evidence has also shown that extracellular circulating 
miRNAs can be detected in biological fluids such as blood, urine, 
serum, plasma, and cerebrospinal fluid and have a proven high 
chemical stability (Chen et al., 2008; Gallo et al., 2012). Therefore, 
miRNAs have emerged as novel candidate non-invasive biomarkers 
for diagnosis, prognosis, and treatment response for diseases 
(Danborg et al., 2014). Considering the important roles of miRNAs in 
physiology and disease, some studies were performed to identify 
different expression miRNAs between PD patients and healthy control 
(Oliveira et al., 2020; Soto et al., 2023). Owing to the inherent defects 
of conventional designs, previous PD studies on miRNAs are unable 
to entirely exclude the possibility of reverse causality and confounding 
factors, which potentially results in biased associations and 
conclusions (Sekula et  al., 2016). Besides, the results of previous 
studies usually implicate association, but not causality. These 
conditions limit the reliability of certain miRNAs as biomarkers of PD.

Mendelian Randomization (MR) is a powerful approach that uses 
genetic variants as instrumental variables (IVs) to estimate the causal 
effect of exposure on outcome (Richmond and Smith, 2022). 

Confounding bias can be minimized in MR studies because genetic 
variants are randomly assigned to the individual at birth. Similarly, 
reverse causation can be avoided because genetic variants are assigned 
before the development of the disease (Davey Smith and Hemani, 
2014). MR has been widely used to explore the causality between 
miRNAs and diseases, such as COVID-19 (Li et  al., 2021), 
schizophrenia (Mu et al., 2023), lung cancer (Huang et al., 2020), 
incident acute coronary syndrome (Shen et  al., 2021), and type 2 
diabetes (Mens et al., 2021).

In this study, to investigate the potential of miRNAs in predicting 
and treating PD cases, we adopted the summary statistics of miRNA 
expression quantitative trait loci (miR-eQTL) data for 2083 mature 
human miRNAs in blood samples as exposure and seven PD-related 
phenotypes as the outcome to explore the causal relationship between 
circulating miRNAs and PD. Identifying the causal mechanisms will 
be an important step in the diagnosis and treatment of PD.

Materials and methods

Study design

To explore the causal relationships of miRNAs on PD, a two-sample 
MR was performed using instrumental variables (IVs) extracted from 
the largest investigation of the genetics of miRNAs (Nikpay et  al., 
2019). seven PD-related phenotypes GWAS were used as outcome. MR 
design is based on three assumptions: (1) genetic variants are robustly 
associated with exposure data; (2) genetic variants are not associated 
with potential confounders; and (3) genetic variants affect the outcome 
only through the exposure of interest (Boef et al., 2015). In this study, 
multiple methods were used for MR and sensitivity analyses to confirm 
the robustness of our results. Enrichment analysis based on four 
databases was performed to investigate the potential role of the MR 
significant miRNAs, including Gene Ontology, KEGG, Reactome, and 
DisGeNET database. The conceptual framework of this study is 
presented in Figure 1.

Exposure data

In this study, we used the largest miRNA expression quantitative 
loci (eQTLs) data to date as our exposure. We obtained the miRNA 
eQTL data from a recent study (Nikpay et  al., 2019). This study 
comprehensively examined 2083 mature human miRNAs and their 
expression levels in blood samples among 710 unrelated people of 
European ancestry. Sex, age, first 10 principal components, and 
genotyping batch were corrected during the analysis.

Outcome data

To study the causal effect of miRNAs on PD comprehensively, 
we  collected GWAS summary statistics of seven PD-related 
phenotypes. We retrieved genetic data for Parkinson’s disease risk 
from the most recent GWAS meta-analysis of 16 cohorts from the 
International Parkinson’s Disease Genomics Consortium (IPDGC), 
with 37,688 cases, 18,618 proxy-cases (individuals without a diagnosis 
of PD but with a first degree relative with PD diagnosis), and 1,417,791 

Abbreviations: PD: Parkinson’s Disease; TD: tremor dominant; PIGD: postural 

instability/gait difficulty; CI: Confidence interval; cML-MA-BIC: A constrained 

maximum likelihood and model averaging-based MR method; FDR: False discovery 

rate; GWAS: Genome-wide association study; IV: Instrumental variable; IVW: 

Inverse variance weighted; LD: Linkage disequilibrium; eQTL: Expression 

quantitative trait loci; MR: Mendelian randomization; MR-PRESSO: MR pleiotropy 

residual sum and outlier; OR: Odds ratio; SNP: Single nucleotide polymorphism.
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controls (Nalls et al., 2019). According to previous PD studies, age is 
the most significant risk factor for developing PD, and men are more 
susceptible than women with a prevalence ratio of approximately 3:2 
(Blauwendraat et al., 2020). So we got the largest GWAS summary data 
of age at the onset of PD (n = 28,568) (Blauwendraat et al., 2019). 
We  also obtain the GWAS summary statistics of PD in male and 
female patients from a recent study, which is consisting of 13,020 male 
PD cases, 7,936 paternal proxy cases, 89,660 male controls, 7,947 
female PD cases, 5,473 maternal proxy cases, and 90,662 female 
controls (Blauwendraat et al., 2021). Since PD is mainly viewed as a 
motor disorder, we then retrieved genetic data of PD motor subtypes, 
including tremor dominant (TD) and postural instability/gait 
difficulty (PIGD) forms, which have implications for disease 
progression (n = 3,212) (Alfradique-Dunham et al., 2021). In addition 
to the motor disorders of PD, cognitive impairment and dementia are 
commonly seen in the later stages of PD, we thus retrieved the GWAS 
summary statistics of the rate of progression to PD dementia 
(n = 3,923) (Real et al., 2023).

Selection criteria of instrumental variables

As the three assumptions stated in the design of this study, quality 
control was performed on single nucleotide polymorphisms (SNPs) 
to assure our results were robust. Similar to most current MR studies, 
the genome-wide significance threshold (p < 5 × 10−8) was selected to 
screen SNPs. Because a limited number of SNPs meet the criteria of 
genome-wide significance, we  used SNPs with a more relaxed 
threshold (p < 1 × 10−5) as potential IVs of each miRNA. To ensure 
independence among IVs, we  applied linkage disequilibrium 
clumping with a clumping window of 10 MB and R2 < 0.001 based on 
European ancestry reference data from the 1,000 Genomes Project. 
Meanwhile, to avoid bias owing to the employment of weak 
instruments, F statistics were calculated for each SNP to measure the 
statistical strength, and only strong IVs (F-statistics >10) for each of 
our exposure remained. Ambiguous and palindromic SNPs of which 
the effect cannot be correct in the harmonizing process were excluded. 
Since MR frequently generates false positives in the presence of 

FIGURE 1

Flowchart of the study design. PD: Parkinson’s Disease; TD: tremor dominant; PIGD: postural instability/gait difficulty.

https://doi.org/10.3389/fnins.2024.1385675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Shi et al. 10.3389/fnins.2024.1385675

Frontiers in Neuroscience 04 frontiersin.org

genetic correlation between traits (O’Connor and Price, 2018; Reay 
et  al., 2022), the SNPs associated with the outcome (PD) were 
removed. Finally, according to previous reports, coffee drinking, 
smoking, education, and physical activity may affect PD (Bloem et al., 
2021). Therefore, we removed the instruments that were significantly 
associated with these confounders in the PhenoScanner V2 database1 
(Kamat et al., 2019).

Mendelian randomization analyses

If there were two or more IVs, three different methods of MR, 
random-effect inverse-variance weighted (IVW), MR Egger, and 
weighted median, were performed to estimate the causal effect of 
miRNAs on PD. IVW estimates were used as the main analysis, which 
combined the Wald ratio of each SNP on the outcome and obtained a 
pooled causal estimate. If horizontal pleiotropy was not present, the 
IVW results would be unbiased (Burgess et al., 2016). Meanwhile, 
MR-Egger and weighted median were used to improve the IVW 
estimates as they could provide more robust estimates in a broader set 
of scenarios, despite being less efficient (wider confidence interval). 
MR-Egger allows all genetic variants to have a pleiotropic effect but 
requires that the pleiotropic effects be independent of the variant-
exposure association (Bowden et al., 2015). The weighted median 
method allows for the correct estimation of causal association when 
up to 50% of instrumental variables are invalid (Hartwig et al., 2017). 
If only one IVs were available, the Wald ratio method was used for 
MR analysis.

Sensitivity analysis

Sensitivity analysis has been performed to detect the underlying 
pleiotropy and heterogeneity because they can seriously affect MR 
estimates. Cochran’s Q test was applied to detect heterogeneity (Greco M 
et  al., 2015). There was no heterogeneity detected if the p-value of 
Cochran’s Q test was >0.05. The pleiotropic analysis was preliminarily 
judged by the intercept of MR Egger regression (p < 0.05 was considered 
as possible pleiotropy in IVs) (Burgess and Thompson, 2017). 
MR-Pleiotropy Residual Sum and Outlier methods (MR-PRESSO) were 
also used to assess and correct horizontal pleiotropy (Ong and 
MacGregor, 2019). Meanwhile, a Leave-one-out analysis was performed 
to evaluate whether the MR estimate was driven or biased by a single 
SNP. We  also used a constrained maximum likelihood and model 
averaging-based MR method, called cML-MA, to control correlated and 
uncorrelated pleiotropic effects in this study (Xue et al., 2021).

Statistical analysis

F-statistic was used to calculate the strength of IVs by the formula 

F
R N K

R K
=

× − −( )
−( )×

2

2

1

1
, where R2 represents the proportion of variance 

in the exposure explained by the genetic variants, N represents sample 

1 http://www.phenoscanner.medschl.cam.ac.uk/

size, and K represents the number of IVs (Staiger and Stock, 1994). To 
account for multiple testing in our primary analyses, false discovery 
rate (FDR) correction was performed by applied q-value procedure, 
with a false discovery rate of q-value <0.1 (Storey and Tibshirani, 
2003). MiRNAs and PD were considered to have a nominal association 
when p < 0.05 but q ≥ 0.1.

All the analyses were performed by the Two-Sample MR package 
(version 0.5.6) (Hemani et al., 2017), MRcML package (Xue et al., 
2021), and qvalue package (version 2.15.0), (Storey and Tibshirani, 
2003) of the R program (version 4.2.1).

MiRNA target prediction

To further explore the potential function of the identified 
miRNAs, we used MiRNet 2.02 to predict the target genes of these 
miRNAs. Only experimentally validated target genes were considered 
as represented by the miRTarBase v8.0 database (Huang et al., 2020). 
The predicted target genes were further used as input for enrichment 
analysis based on four databases, including Gene Ontology, KEGG, 
Reactome, and DisGeNET database, to explore if the target genes were 
enriched in specific biological processes.

Results

According to the selection criteria of IVs, a total of 23,261 SNPs 
were used as IVs for 2083 miRNAs. F statistics for these genetic 
instruments were all larger than the normally selected value of 10, 
indicating strong instruments. Details about the selected instrumental 
variables are shown in Supplementary Table S1.

To comprehensively study the causal effect of miRNAs on PD, 
we performed a two-sample MR analysis between 2083 miRNAs and 
seven PD-related outcomes (Figure 1).

Among the tested PD phenotypes, IVW analysis suggested that 
two miRNAs, miR-205-5p (β = −0.46, 95%CI: −0.690 to −0.229, 
p = 9.3 × 10−5) and miR-6800-5p (β = −0.389, 95%CI: −0.575 to 
−0.202, p = 4.32 × 10−5), significantly decreased the rate of cognitive 
decline among PD patients (Figure 2). The results from other MR 
methods showed a consistent results with nominal significance 
(Table 1), making our results more reliable. Our results suggested 
that miR-205-5p and miR-6800-5p had a protective effect on 
PD dementia.

To assess the robustness of the above results, a series of sensitivity 
analyses, including Cochran’s Q test, MR Egger intercept test, and 
MR-PRESSO global test, were conducted. All p values of the above 
tests were >0.05, indicating that no heterogeneity and horizontal 
pleiotropy existed (Supplementary Tables S2–S4). To detect whether 
existed any high-influence SNPs biasing the MR results, a leave-
one-out analysis was performed and the results showed there is no 
SNPs independently drove the results, indicating the reliability of our 
results (Figure  3). To further control correlated and uncorrelated 
pleiotropic effects in this study, the cML-MA-BIC method was used 
to recalculate the MR results of the two miRNAs. The results of 

2 https://www.mirnet.ca/home.xhtml
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cML-MA-BIC were consistent with IVW (Supplementary Table S5), 
which suggested our results were robust after considering the 
associated pleiotropy.

To further explore the potential roles of these significant miRNAs 
in PD dementia, we predicted the target genes of two causal miRNAs 
and performed enrichment analysis based on four databases, including 
Gene Ontology, KEGG, Reactome, and DisGeNET database. A total 
of 221 unique genes were identified to be  regulated by these two 
miRNAs (Supplementary Table S6). Our results show that these target 
genes are significantly enriched in some previously reported 
PD-related pathways, such as metabolic process, cell cycle, aging, and 
protein phosphorylation (Figure 4).

Besides the two significant causal miRNAs above, 506 miRNAs 
were nominally associated with the seven PD-related outcomes 
(Supplementary Table S7). Although their q value is>0.1, which means 
they may be false positives, there must be real causal miRNAs of PD 
hiding in them. Therefore, we  choose the miRNAs which were 
nominally associated with more than three PD-related outcomes as 
our candidate causal miRNAs of PD. Finally, eight miRNAs were 
found, including miR-3186-5p, miR-192-5p, miR-19a-5p, 
miR-216a-5p, miR-3675-3p, miR-765, miR-8069, miR-8077 
(Figure 5A), and their beta value of IVW in different outcomes were 

presented in Figure 5B. A total of 1807 unique genes were predicted 
as potential targets of these eight miRNAs (Supplementary Table S8). 
GO analysis (using a biological process as GO term) showed that the 
target genes of these eight miRNAs were significantly enriched in the 
cell cycle (Figure 5C). These results suggested that these eight miRNAs 
may play an important role in the regulation of cell cycle through their 
target genes.

Discussion

We performed the first genome-wide MR study to investigate the 
causal relationships between miRNAs and PD. We  identified two 
MR-significant miRNAs that may have causal effects on the rate of 
cognitive decline among PD patients and eight miRNAs nominally 
associated with more than three PD-related outcomes. In addition, the 
target genes of the above miRNAs were significantly enriched in 
PD-related pathways, which supported the important role of these 
miRNAs in PD.

Although PD is mainly viewed as a motor disorder, the onset of 
dementia within PD significantly impacts morbidity, mortality, and 
social support needs (Szeto et al., 2020). The clinical and pathological 

FIGURE 2

Scatter plots for the causal association between miRNAs and the rate of cognitive decline among PD patients.

TABLE 1 MR estimates for the causal relationship between miRNAs and the rate of progression to PD dementia.

MicroRNA 
(exposure)

MR method No. of SNP BETA 95%CI p-value q-value

miR-205-5p IVW 14 −0.46 −0.690 – −0.229 9.30E-05 0.079

MR Egger 14 −0.686 −1.138 – −0.234 0.012 0.997

Weighted median 14 −0.375 −0.699 – −0.051 0.023 0.986

miR-6800-5p IVW 27 −0.389 −0.575 – −0.202 4.32E-05 0.073

MR Egger 27 −0.529 −1.032 – −0.027 0.05 0.997

Weighted median 27 −0.318 −0.571 – −0.064 0.014 0.986

MR, Mendelian randomization, SNP, single nucleotide polymorphism, CI, confidence interval, IVW, inverse variance weighted.
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characteristics of PD dementia often resemble dementia with Lewy 
bodies. However, in PD dementia, motor symptoms precede dementia 
by at least one year (Dubois et al., 2007). PD dementia is marked by 
neuropsychiatric symptoms, including cognitive fluctuations, visual 
misperceptions, hallucinations, and delusions, alongside deficits in 
attention, executive function, and visuo-spatial abilities. However, 
there is currently no cure for the underlying pathology of PD dementia. 
Therefore, elucidating the causal links between miRNAs and PD 
dementia is essential for developing novel treatments (Szeto et al., 
2020; Real et  al., 2023). Our study found that miR-205-5p and 
miR-6800-5p have a significant protective effect on PD dementia. 
Previous studies have shown that miR-205-5p directly regulates the 
expression of leucine-rich repeat kinase (LRRK2) (Chen et al., 2018), 

which was proven to contribute to the etiology of sporadic PD 
(Zimprich et al., 2004; Lin et al., 2009; Tolosa et al., 2020). Quantitative 
Real-Time PCR (qRT-PCR) and western blot assay showed that the 
expression levels of LRRK2 were increased, and the miR-205-5p level 
was decreased in the midbrains of PD mice (Chen et al., 2018), which 
suggested that downregulated miR-205 probably contribute to the 
increased LRRK2 protein level in the brains of patients with sporadic 
PD. Another similar research proposed that overexpression of miR-205 
may provide an applicable therapeutic strategy to suppress the 
abnormal upregulation of LRRK2 protein in PD (Cho et al., 2013), 
which was consistent with our findings. Additionally, the methylation 
research of miR-205 promoter also support our results. There is an 
observed increase in methylation of the miR-205 promoter region in 

FIGURE 3

Leave-one-out plots for the causal association between miRNAs and the rate of cognitive decline among PD patients.

FIGURE 4

Enrichment analysis of targets of significant microRNAs. GO analysis results of biological process (A), cellular component (B), and molecular function 
(C). (D) Enrichment analysis based on the DisGeNET database. (E) KEGG Enrichment analysis. (F) Reactome pathways analysis.
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cells of the PD model. The findings from the methylation inhibition 
assay demonstrate that hypomethylation of the miR-205 promoter 
region effectively suppresses LRRK2 expression (Wang et al., 2022). 
MiR-6800 level was significant higher in L2NMC (LRRK2 
non-manifesting carriers) than in L2PD (LRRK2 carrier with 
symptomatic PD) (Soto et al., 2023), which implies that miR-6800 have 
a significantly protective effect on PD. LRRK2 is a pivotal factor not 
only in Parkinson’s disease but also in the pathogenesis of dementia 
with Lewy bodies (Zhu et al., 2006). These previous studies implied 
that miR-205-5p and miR-6800-5p may slow down the rate of cognitive 
decline among PD patients by regulating expression of LRRK2.

The target genes of the two causal miRNAs are significantly 
enriched in some previously reported PD-related pathways. For 
example, Protein phosphorylation plays a crucial role in the 
pathophysiology of PD, particularly by influencing the phosphorylation 
of α-synuclein to promote its aggregation and toxicity, which are 
significant factors in neuronal damage and death in PD (Braithwaite 
et  al., 2012). Additionally, phosphorylation regulates dopamine 
signaling pathways, mitochondrial function, and related cellular 
signaling cascades, with aberrations potentially exacerbating PD 
progression (Bohush et al., 2018). Cell cycle and aging also play an 
important role in PD pathogenesis. Alterations in cell cycle protein 
expression, and acceleration of aging processes may exacerbate 
neuronal damage and death, thereby contributing to PD progression. 
Conversely, PD itself may impact metabolic regulation, cell cycle 
dynamics, and aging processes, forming a vicious cycle (Joseph et al., 
2020; Tchekalarova and Tzoneva, 2023). The above results further 
confirmed the relationship between miR-205-5p, miR-6800-5p and PD.

We also found eight miRNAs nominally associated with more 
than three PD-related outcomes, including miR-3186-5p, miR-192-5p, 
miR-19a-5p, miR-216a-5p, miR-3675-3p, miR-765, miR-8069, and 
miR-8077. Numerous studies have indicated that miR-192-5p plays a 

pivotal role in regulating oxidative stress, cellular proliferation, 
apoptosis, and inflammatory responses. Moreover, its association with 
various nervous system disorders such as Alzheimer’s disease, PD, 
amyotrophic lateral sclerosis, tuberous sclerosis, peripheral nerve 
injury, and depression has been reported (Ren et al., 2021). MiR-216a 
has been reported to regulate the progression of PD by modulating the 
Bax gene to attenuated neuronal apoptosis, and miR-216a may be a 
potential target for PD (Yang et al., 2020). A recent study suggested 
miR-8069 has the potential as an early progression biomarker for PD 
(Soto et al., 2023). The above studies prove the reliability of our results 
and the causal miRNAs in our results were worthy for further study.

This study demonstrates several strengths. Firstly, employing MR 
analysis allows us to emulate randomized controlled trials within 
observational settings, a method widely acknowledged in causal 
research. By utilizing an MR design, our study largely avoids the 
impact of reverse causation and confounding factors compared to 
traditional observational studies. Additionally, we conducted various 
sensitivity analyses, detecting no significant heterogeneity or 
pleiotropy. Our study represents the first attempt to employ MR 
analysis to investigate the causal relationship between miRNAs and 
PD. And provides novel biomarkers that could potentially contribute 
to the prevention and treatment of PD.

In this study, we conducted an MR analysis and identified two 
miRNAs that may have significant causal effects on the rate of 
cognitive decline among PD patients, and eight miRNAs nominally 
associated with more than three PD-related outcomes. Our findings 
will help to understand the pathogenesis of PD, but there are still some 
limitations in this study. Firstly, the sample size of miRNA eQTL data 
is relatively small. Although another miRNA eQTL study contained 
more subjects, it only identified 76 mature miRNAs that were affected 
by genetic variants (Huan et al., 2015). Therefore, we chose the eQTL 
data for 2083 miRNAs. Secondly, the participants in this study are 

FIGURE 5

The eight miRNAs which were nominally associated with more than three PD-related outcomes. (A) UpSetR plot shows the overlap of miRNAs 
nominally associated with different PD-related outcomes. (B) Heatmap shows the beta value of the eight miRNAs which was nominally associated with 
more than three PD-related outcomes. (C) GO analysis results. Only the top 20 most significant pathways are shown. The target genes showed the 
most significant enrichment in the cell cycle. PDall means PD patients of both sexes. PDmale means male PD patients. PDfemale means female PD 
patients. PDage menas age at onset of PD. PDbinary means dichotomous motor subtype (TD vs. PIGD). PDcont means a continuous tremor/PIGD 
score ratio. PDrate means the rate of cognitive decline among PD patients.
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European. Although population heterogeneity will be largely avoided, 
the results of our study may not be entirely applicable to subjects of 
other populations.

Conclusion

In summary, we  identified two miRNAs whose genetically 
regulated expression might have a causal role in the development of 
PD dementia. Our findings also provided potential miRNA 
biomarkers to make better and early diagnoses and risk 
assessments of PD.
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